Search results for: electron diffraction spectroscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3930

Search results for: electron diffraction spectroscopy

690 Comparisonal Study of Succinylation and Glutarylation of Jute Fiber: Study of Mechanical Properties of Modified Fiber Reinforced Epoxy Composites

Authors: R. Vimal, K. Hari Hara Subramaniyan, C. Aswin, B. Logeshwaran, M. Ramesh

Abstract:

Due to several environmental concerns, natural fibers have greatly replaced the synthetic fibers as a reinforcing material in polymer matrix composites. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. In recent years, modification of plant fibers with range of chemicals to increase various mechanical and thermal properties has been focused greatly. Among that, some of the plant fibers were modified using succinic anhydride. In the present study, Jute fibers have been modified chemically by treatment with succinic anhydride and glutaric anhydride at different concentrations of 5%, 10%, 20%, 30% and 40%. The fiber modification was done under retting condition at various retention times of 3, 6, 12, 24, 36, and 48 hours. The modification of fiber structure in both the cases is confirmed with Infrared Spectroscopy. The degree of modification increases with increase in retention time, but higher retention time has damaged the fiber structure which is common in both the cases. Comparatively, treatment of fibers with glutaric anhydride has shown efficient output than that of succinic anhydride. The unmodified fibers, succinylated fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix at various volume fractions of fiber under room temperature. The composite made using unmodified fiber is used as a standard material. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of succinylated and unmodified fiber.

Keywords: flexural strength, glutarylation, jute fibers, succinylation, tensile strength

Procedia PDF Downloads 489
689 Biophysical Study of the Interaction of Harmalol with Nucleic Acids of Different Motifs: Spectroscopic and Calorimetric Approaches

Authors: Kakali Bhadra

Abstract:

Binding of small molecules to DNA and recently to RNA, continues to attract considerable attention for developing effective therapeutic agents for control of gene expression. This work focuses towards understanding interaction of harmalol, a dihydro beta-carboline alkaloid, with different nucleic acid motifs viz. double stranded CT DNA, single stranded A-form poly(A), double-stranded A-form of poly(C)·poly(G) and clover leaf tRNAphe by different spectroscopic, calorimetric and molecular modeling techniques. Results of this study converge to suggest that (i) binding constant varied in the order of CT DNA > poly(C)·poly(G) > tRNAphe > poly(A), (ii) non-cooperative binding of harmalol to poly(C)·poly(G) and poly(A) and cooperative binding with CT DNA and tRNAphe, (iii) significant structural changes of CT DNA, poly(C)·poly(G) and tRNAphe with concomitant induction of optical activity in the bound achiral alkaloid molecules, while with poly(A) no intrinsic CD perturbation was observed, (iv) the binding was predominantly exothermic, enthalpy driven, entropy favoured with CT DNA and poly(C)·poly(G) while it was entropy driven with tRNAphe and poly(A), (v) a hydrophobic contribution and comparatively large role of non-polyelectrolytic forces to Gibbs energy changes with CT DNA, poly(C)·poly(G) and tRNAphe, and (vi) intercalated state of harmalol with CT DNA and poly(C)·poly(G) structure as revealed from molecular docking and supported by the viscometric data. Furthermore, with competition dialysis assay it was shown that harmalol prefers hetero GC sequences. All these findings unequivocally pointed out that harmalol prefers binding with ds CT DNA followed by ds poly(C)·poly(G), clover leaf tRNAphe and least with ss poly(A). The results highlight the importance of structural elements in these natural beta-carboline alkaloids in stabilizing different DNA and RNA of various motifs for developing nucleic acid based better therapeutic agents.

Keywords: calorimetry, docking, DNA/RNA-alkaloid interaction, harmalol, spectroscopy

Procedia PDF Downloads 213
688 Gap Formation into Bulk InSb Crystals Grown by the VDS Technique Revealing Enhancement in the Transport Properties

Authors: Dattatray Gadkari, Dilip Maske, Manisha Joshi, Rashmi Choudhari, Brij Mohan Arora

Abstract:

The vertical directional solidification (VDS) technique has been applied to the growth of bulk InSb crystals. The concept of practical stability is applied to the case of detached bulk crystal growth on earth in a simplified design. By optimization of the set up and growth parameters, 32 ingots of 65-75 mm in length and 10-22 mm in diameter have been grown. The results indicate that the wetting angle of the melt on the ampoule wall and the pressure difference across the interface are the crucial factors effecting the meniscus shape and stability. Taking into account both heat transfer and capillarity, it is demonstrated that the process is stable in case of convex menisci (seen from melt), provided that pressure fluctuations remain in a stable range. During the crystal growth process, it is necessary to keep a relationship between the rate of the difference pressure controls and the solidification to maintain the width of gas gap. It is concluded that practical stability gives valuable knowledge of the dynamics and could be usefully applied to other crystal growth processes, especially those involving capillary shaping. Optoelectronic properties were investigated in relation to the type of solidification attached and detached ingots growth. These samples, room temperature physical properties such as Hall mobility, FTIR, Raman spectroscopy and microhardness achieved for antimonide samples grown by VDS technique have shown the highest values gained till at this time. These results reveal that these crystals can be used to produce InSb with high mobility for device applications.

Keywords: alloys, electronic materials, semiconductors, crystal growth, solidification, etching, optical microscopy, crystal structure, defects, Hall effect

Procedia PDF Downloads 400
687 Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia

Authors: Abdul Murad Zainal Abidin, Tuan Suhaimi Salleh, Siti Nor Azila Khalid, Noryati Mustapa

Abstract:

Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste.

Keywords: building materials, cement replacement, quarry microstructure, quarry product, sustainable materials

Procedia PDF Downloads 160
686 Effect of Forging Pressure on Mechanical Properties and Microstructure of Similar and Dissimilar Friction Welded Joints (Aluminium, Copper, Steel)

Authors: Sagar Pandit

Abstract:

The present work focuses on the effect of various process parameters on the mechanical properties and microstructure of joints produced by continuous drive friction welding and linear friction welding. An attempt is made to investigate the feasibility of obtaining an acceptable weld joint between similar as well as dissimilar components and the microstructural changes have also been assessed once the good weld joints were considered (using Optical Microscopy and Scanning Electron Microscopy techniques). The impact of forging pressure in the microstructure of the weld joint has been studied and the variation in joint strength with varying forge pressure is analyzed. The weld joints were obtained two pair of dissimilar materials and one pair of similar materials, which are listed respectively as: Al-AA5083 & Cu-C101 (dissimilar), Aluminium alloy-3000 series & Mild Steel (dissimilar) and High Nitrogen Austenitic Stainless Steel pair (similar). Intermetallic phase formation was observed at the weld joints in the Al-Cu joint, which consequently harmed the properties of the joint (less tensile strength). It was also concluded that the increase in forging pressure led to both increment and decrement in the tensile strength of the joint depending on the similarity or dissimilarity of the components. The hardness was also observed to possess maximum as well as minimum values at the weld joint depending on the similarity or dissimilarity of workpieces. It was also suggested that a higher forging pressure is needed to obtain complete joining for the formation of the weld joint.

Keywords: forging pressure, friction welding, mechanical properties, microstructure

Procedia PDF Downloads 100
685 The Combination of Porcine Plasma Protein and Maltodextrin as Wall Materials on Microencapsulated Turmeric Oil Powder Quality

Authors: Namfon Samsalee, Rungsinee Sothornvit

Abstract:

Turmeric is a natural plant herb and generally extracted as essential oil and widely used in food, cosmetic, pharmaceutical products including insect repellent. However, turmeric oil is a volatile essential oil which is easy to be lost during storage or exposure to light. Therefore, biopolymers such as protein and polysaccharide can be used as wall materials to encapsulate the essential oil which will solve this drawback. Approximately 60% plasma from porcine blood contains 6-7% of protein content mainly albumin and globulin which can be a good source of animal protein at the low-cost biopolymer from by-product. Microencapsulation is a useful technique to entrap volatile compounds in the biopolymer matrix and protect them to degrade. The objective of this research was to investigate the different ratios of two biopolymers (PPP and maltodextrin; MD) as wall materials at 100:0, 75:25, 50:50, 25:75 and 0:100 at a fixed ratio of wall material: core material (turmeric oil) at 3:1 (oil in water) on the qualities of microencapsulated powder using freeze drying. It was found that the combination of PPP and MD showed higher solubility of microencapsules compared to the use of PPP alone (P < 0.05). Moreover, the different ratios of wall materials also affected on color (L*, a* and b*) of microencapsulated powder. Morphology of microencapsulated powder using a scanning electron microscope showed holes on the surface reflecting on free oil content and encapsulation efficiency of microencapsules. At least 50% of MD was needed to increase encapsulation efficiency of microencapsulates rather than using only PPP as the wall material (P < 0.05). Microencapsulated turmeric oil powder can be useful as food additives to improve food texture, as a biopolymer material for edible film and coating to maintain quality of food products.

Keywords: microencapsulation, turmeric oil, porcine plasma protein, maltodextrin

Procedia PDF Downloads 165
684 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 377
683 Effect of Omeprazole on the Renal Cortex of Adult Male Albino Rats and the Possible Protective Role of Ginger: Histological and Immunohistochemical study

Authors: Nashwa A. Mohamed

Abstract:

Introduction: Omeprazole is a proton pump inhibitor used commonly in the treatment of acid-peptic disorders. Although omeprazole is generally well tolerated, serious adverse effects such as renal failure have been reported. Ginger is an antioxidant that could play a protective role in models of experimentally induced nephropathies. Aim of the work: The aim of this work was to study the possible histological changes induced by omeprazole on renal cortex and evaluate the possible protective effect of ginger on omeprazole-induced renal damage in adult male albino rats. Materials and methods: Twenty-four adult male albino rats divided into four groups (six rats each) were used in this study. Group I served as the control group. Rats of group II received only an aqueous extract of ginger daily for 3 months through a gastric tube. Rats of group III were received omeprazole orally through a gastric tube for 3 months. Rats of group IV were given both ginger and omeprazole at the same doses and through the same routes as the previous two groups. At the end of the experiment, the rats were sacrificed. Renal tissue samples were processed for light, immunohistochemical and electron microscopic examination. The obtained results were analysed morphometrically and statistically. Results: Omeprazole caused several histological changes in the form of loss of normal appearance of renal cortex with degenerative changes in the renal corpuscle and tubules. Cellular infilteration was also observed. The filteration barrier was markedly affected. Ginger ameliorated the omeprazole-induced histological changes. Conclusion: Omeprazole induced injurious effects on renal cortex. Coadministration of ginger can ameliorate the histological changes induced by omeprazole.

Keywords: ginger, kidney, omeprazole, rat

Procedia PDF Downloads 237
682 Wood Decay Fungal Strains Useful for Bio-Composite Material Production

Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino

Abstract:

Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.

Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi

Procedia PDF Downloads 127
681 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine

Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel

Procedia PDF Downloads 134
680 Quantum Dot – DNA Conjugates for Biological Applications

Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret

Abstract:

Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.

Keywords: bioimaging, cellular targeting, drug delivery, photostability

Procedia PDF Downloads 407
679 Keratin Fiber Fabrication from Biowaste for Biomedical Application

Authors: Ashmita Mukherjee, Yogesh Harishchandra Kabutare, Suritra Bandyopadhyay, Paulomi Ghosh

Abstract:

Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding.

Keywords: biomaterial, biowaste, fiber, keratin

Procedia PDF Downloads 165
678 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal

Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.

Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity

Procedia PDF Downloads 561
677 Chitosan Hydrogel Containing Nitric Oxide Donors with Potent Antibacterial Effect

Authors: Milena Trevisan Pelegrino, Bruna De Araujo Lima, Mônica H. M. Do Nascimento, Christiane B. Lombello, Marcelo Brocchi, Amedea B. Seabra

Abstract:

Nitric oxide (NO) is a small molecule involved in a wide range of physiological and pathophysiological processes, including vasodilatation, control of inflammatory pain, wound healing, and antibacterial activities. As NO is a free radical, the design of drugs that generates therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL) - chitosan (CS) hydrogel, in an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial and biocompatibility properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior, and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications, at physiological and skin temperatures. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which correspondents to 1 mmol·L-1 of GSNO). Interesting, the concentration range in which the NO-releasing hydrogel demonstrated antibacterial effect was not found toxic to Vero mammalian cell. Thus, GSNO-PL/CS hydrogel is suitable biomaterial for topical NO delivery applications.

Keywords: antimicrobial, chitosan, biocompatibility, S-nitrosothiols

Procedia PDF Downloads 161
676 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary

Abstract:

The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.

Keywords: chemical deposition, CdS, optical properties, surface, thin film

Procedia PDF Downloads 149
675 Characterization of Complex Gold Ores for Preliminary Process Selection: The Case of Kapanda, Ibindi, Mawemeru, and Itumbi in Tanzania

Authors: Sospeter P. Maganga, Alphonce Wikedzi, Mussa D. Budeba, Samwel V. Manyele

Abstract:

This study characterizes complex gold ores (elemental and mineralogical composition, gold distribution, ore grindability, and mineral liberation) for preliminary process selection. About 200 kg of ore samples were collected from each location using systematic sampling by mass interval. Ores were dried, crushed, milled, and split into representative sub-samples (about 1 kg) for elemental and mineralogical composition analyses using X-ray fluorescence (XRF), fire assay finished with Atomic Absorption Spectrometer (AAS), and X-ray Diffraction (XRD) methods, respectively. The gold distribution was studied on size-by-size fractions, while ore grindability was determined using the standard Bond test. The mineral liberation analysis was conducted using ThermoFisher Scientific Mineral Liberation Analyzer (MLA) 650, where unsieved polished grain mounts (80% passing 700 µm) were used as MLA feed. Two MLA measurement modes, X-ray modal analysis (XMOD) and sparse phase liberation-grain X-ray mapping analysis (SPL-GXMAP), were employed. At least two cyanide consumers (Cu, Fe, Pb, and Zn) and kinetics impeders (Mn, S, As, and Bi) were present in all locations investigated. Copper content at Kapanda (0.77% Cu) and Ibindi (7.48% Cu) exceeded the recommended threshold of 0.5% Cu for direct cyanidation. The gold ore at Ibindi indicated a higher rate of grinding compared to other locations. This could be explained by the highest grindability (2.119 g/rev.) and lowest Bond work index (10.213 kWh/t) values. The pyrite-marcasite, chalcopyrite, galena, and siderite were identified as major gold, copper, lead, and iron-bearing minerals, respectively, with potential for economic extraction. However, only gold and copper can be recovered under conventional milling because of grain size issues (galena is exposed by 10%) and process complexity (difficult to concentrate and smelt iron from siderite). Therefore, the preliminary process selection is copper flotation followed by gold cyanidation for Kapanda and Ibindi ores, whereas gold cyanidation with additives such as glycine or ammonia is selected for Mawemeru and Itumbi ores because of low concentrations of Cu, Pb, Fe, and Zn minerals.

Keywords: complex gold ores, mineral liberation, ore characterization, ore grindability

Procedia PDF Downloads 58
674 Water-Repellent Coating Based on Thermoplastic Polyurethane, Silica Nanoparticles and Graphene Nanoplatelets

Authors: S. Naderizadeh, A. Athanassiou, I. S. Bayer

Abstract:

This work describes a layer-by-layer spraying method to produce a non-wetting coating, based on thermoplastic polyurethane (TPU) and silica nanoparticles (Si-NPs). The main purpose of this work was to transform a hydrophilic polymer to superhydrophobic coating. The contact angle of pure TPU was measured about 77˚ ± 2, and water droplets did not roll away upon tilting even at 90°. But after applying a layer of Si-NPs on top of this, not only the contact angle increased to 165˚ ± 2, but also water droplets can roll away even below 5˚ tilting. The most important restriction in this study was the weak interfacial adhesion between polymer and nanoparticles, which had a bad effect on durability of the coatings. To overcome this problem, we used a very thin layer of graphene nanoplatelets (GNPs) as an interlayer between TPU and Si-NPs layers, followed by thermal treatment at 150˚C. The sample’s morphology and topography were characterized by scanning electron microscopy (SEM), EDX analysis and atomic force microscopy (AFM). It was observed that Si-NPs embedded into the polymer phase in the presence of GNPs layer. It is probably because of the high surface area and considerable thermal conductivity of the graphene platelets. The contact angle value for the sample containing graphene decreased a little bit respected to the coating without graphene and reached to 156.4˚ ± 2, due to the depletion of the surface roughness. The durability of the coatings against abrasion was evaluated by Taber® abrasion test, and it was observed that superhydrophobicity of the coatings remains for a longer time, in the presence of GNPs layer. Due to the simple fabrication method and good durability of the coating, this coating can be used as a durable superhydrophobic coating for metals and can be produced in large scale.

Keywords: graphene, silica nanoparticles, superhydrophobicity, thermoplastic polyurethane

Procedia PDF Downloads 168
673 Immobilized Iron Oxide Nanoparticles for Stem Cell Reconstruction in Magnetic Particle Imaging

Authors: Kolja Them, Johannes Salamon, Harald Ittrich, Michael Kaul, Tobias Knopp

Abstract:

Superparamagnetic iron oxide nanoparticles (SPIONs) are nanoscale magnets which can be biologically functionalized for biomedical applications. Stem cell therapies to repair damaged tissue, magnetic fluid hyperthermia for cancer therapy and targeted drug delivery based on SPIONs are prominent examples where the visualization of a preferably low concentrated SPION distribution is essential. In 2005 a new method for tomographic SPION imaging has been introduced. The method named magnetic particle imaging (MPI) takes advantage of the nanoparticles magnetization change caused by an oscillating, external magnetic field and allows to directly image the time-dependent nanoparticle distribution. The SPION magnetization can be changed by the electron spin dynamics as well as by a mechanical rotation of the nanoparticle. In this work different calibration methods in MPI are investigated for image reconstruction of magnetically labeled stem cells. It is shown that a calibration using rotationally immobilized SPIONs provides a higher quality of stem cell images with fewer artifacts than a calibration using mobile SPIONs. The enhancement of the image quality and the reduction of artifacts enables the localization and identification of a smaller number of magnetically labeled stem cells. This is important for future medical applications where low concentrations of functionalized SPIONs interacting with biological matter have to be localized.

Keywords: biomedical imaging, iron oxide nanoparticles, magnetic particle imaging, stem cell imaging

Procedia PDF Downloads 445
672 Azadrachea indica Leaves Extract Assisted Green Synthesis of Ag-TiO₂ for Degradation of Dyes in Aqueous Medium

Authors: Muhammad Saeed, Sheeba Khalid

Abstract:

Aqueous pollution due to the textile industry is an important issue. Photocatalysis using metal oxides as catalysts is one of the methods used for eradication of dyes from textile industrial effluents. In this study, the synthesis, characterization, and evaluation of photocatalytic activity of Ag-TiO₂ are reported. TiO₂ catalysts with 2, 4, 6 and 8% loading of Ag were prepared by green methods using Azadrachea indica leaves' extract as reducing agent and titanium dioxide and silver nitrate as precursor materials. The 4% Ag-TiO₂ exhibited the best catalytic activity for degradation of dyes. Prepared catalyst was characterized by advanced techniques. Catalytic degradation of methylene blue and rhodamine B were carried out in Pyrex glass batch reactor. Deposition of Ag greatly enhanced the catalytic efficiency of TiO₂ towards degradation of dyes. Irradiation of catalyst excites electrons from conduction band of catalyst to valence band yielding an electron-hole pair. These photoexcited electrons and positive hole undergo secondary reaction and produce OH radicals. These active radicals take part in the degradation of dyes. More than 90% of dyes were degraded in 120 minutes. It was found that there was no loss catalytic efficiency of prepared Ag-TiO₂ after recycling it for two times. Photocatalytic degradation of methylene blue and rhodamine B followed Eley-Rideal mechanism which states that dye reacts in fluid phase with adsorbed oxygen. 27 kJ/mol and 20 kJ/mol were found as activation energy for photodegradation of methylene blue and rhodamine B dye respectively.

Keywords: TiO₂, Ag-TiO₂, methylene blue, Rhodamine B., photo degradation

Procedia PDF Downloads 144
671 Phytochemical Composition and Characterization of Bioactive Compounds of the Green Seaweed Ulva lactuca: A Phytotherapeutic Approach

Authors: Mariame Taibi, Marouane Aouiji, Rachid Bengueddour

Abstract:

The Moroccan coastline is particularly rich in algae and constitutes a reserve of species with considerable economic, social and ecological potential. This work focuses on the research and characterization of algae bioactive compounds that can be used in pharmacology or phytopathology. The biochemical composition of the green alga Ulva lactuca (Ulvophyceae) was studied by determining the content of moisture, ash, phenols, flavonoids, total tannins, and chlorophyll. Seven solvents: distilled water, methanol, ethyl acetate, chloroform, benzene, petroleum ether, and hexane, were tested for their effectiveness in recovering chemical compounds. The identification of functional groupings, as well as the bioactive chemical compounds, was determined by FT-IR and GC-MS. The moisture content of the alga was 77%, while the ash content was 15%. Phenol content differed from one solvent studied to another, while chlorophyll a, b, and total chlorophyll were determined at 14%, 9.52%, and 25%, respectively. Carotenoid was present in a considerable amount (8.17%). The experimental results show that methanol is the most effective solvent for recovering bioactive compounds, followed by water. Moreover, the green alga Ulva lactuca is characterized by a high level of total polyphenols (45±3.24 mg GAE/gDM), average levels of total tannins and flavonoids (22.52±8.23 mg CE/gDM, 15.49±0.064 mg QE/gDM) respectively. The results of Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of alcohol/phenol and amide functions in Ulva lactuca. The GC-MS analysis gave precisely the compounds contained in the various extracts, such as phenolic compounds, fatty acids, terpenoids, alcohols, alkanes, hydrocarbons, and steroids. All these results represent only a first step in the search for biologically active natural substances from seaweed. Additional tests are envisaged to confirm the bioactivity of seaweed.

Keywords: algae, Ulva lactuca, phenolic compounds, FTIR, GC-MS

Procedia PDF Downloads 90
670 Carbon Electrode Materials for Supercapacitors

Authors: Yu. Mateyshina, A. Ulihin, N. Uvarov

Abstract:

Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013.

Keywords: supercapacitors, carbon electrode, mesoporous carbon, electrochemistry

Procedia PDF Downloads 280
669 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke

Authors: Kyou Hee Shim, Hwa Sung Shin

Abstract:

When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.

Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration

Procedia PDF Downloads 212
668 Mitochondrial Apolipoprotein A-1 Binding Protein Promotes Repolarization of Inflammatory Macrophage by Repairing Mitochondrial Respiration

Authors: Hainan Chen, Jina Qing, Xiao Zhu, Ling Gao, Ampadu O. Jackson, Min Zhang, Kai Yin

Abstract:

Objective: Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1) macrophages to anti-inflammatory (M2) macrophages is highly associated with mitochondrial respiration. Recent studies have suggested that mitochondrial apolipoprotein A-1 binding protein (APOA1BP) was essential for the cellular metabolite NADHX repair to NADH, which is necessary for the mitochondrial function. The exact role of APOA1BP in the repolarization of M1 to M2, however, is uncertain. Material and method: THP-1-derived macrophages were incubated with LPS (10 ng/ml) or/and IL-4 (100 U/ml) for 24 hours. Biochemical parameters of oxidative phosphorylation and M1/M2 markers were analyzed after overexpression of APOA1BP in cells. Results: Compared with control and IL-4-exposed M2 cells, APOA1BP was downregulated in M1 macrophages. APOA1BP restored the decline in mitochondrial function to improve metabolic and phenotypic reprogramming of M1 to M2 macrophages. Blocking oxidative phosphorylation by oligomycin blunts the effects of APOA1BP on M1 to M2 repolarization. Mechanistically, LPS triggered the hydration of NADH and increased its hydrate NADHX which inhibit cellular NADH dehydrogenases, a key component of electron transport chain for oxidative phosphorylation. APOA1BP decreased the level of NADHX via converting R-NADHX to biologically useful S-NADHX. The mutant of APOA1BP aspartate188, the binding site of NADHX, fail to repair oxidative phosphorylation, thereby preventing repolarization. Conclusions: Restoring mitochondrial function by increasing mitochondrial APOA1BP might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control inflammatory diseases.

Keywords: inflammatory diseases, macrophage repolarization, mitochondrial respiration, apolipoprotein A-1 binding protein, NADHX, NADH

Procedia PDF Downloads 154
667 Reconstruction Paleogeomorphological Map of the Nile River in Upper Egypt by Using Some Geomorphological and Geoarchaeological Indicators

Authors: Magdy Torab

Abstract:

Ancient Egyptians built their temples purposefully close to the River Nile to use it for transporting construction stones from far away quarries to building sites in river-boats. Most temples, therefore, have river-harbors associated with their geometric designs. The paleoriver channel remapped by using this idea, besides other geomorphological and geoarchaeological indicators/evidence located between Aswan and Luxor cities. In this sense, this paper defines the characteristics of this ancient course and its associated landforms using paleochannel morphology, paleomeandering, and ancient river dynamics during historic and prehistoric times. Both geomorphological and geoarchaeological approaches used to reconstruct the paleomorphology of the river course. It helps to investigate the ancient river morphology by using the following techniques: comparison and interpretation of multi dates satellite images and historical maps between 1943 and 2004. The results illustrated on maps using GIS (ARC GIS V.10 software) and the field data collected from the western bank of The Nile River at Luxor area and Karnak, Edfu, Esna and Kom Ombo temples. Created both current and paleogeomorphological maps depending upon the results of geoarchaeological surveying and soil analysis and dating, for surface and subsurface soil sampling by handle auger, laser diffraction analysis for 7 soil samples collected from some mounds and Malkata channel in the western bank of The Nile River near Luxor. Paleo-current directions were determined by using standard Brunton compass to use it as an indicator is evidence for the direction of flow of The Nile River during deposition of some accumulated mounds on the western part of the floodplain near Luxor city. C-14 dating was used for two samples collected from these mounds as well as geographical information system (GIS) technique for mapping. The geomorphological and geoarchaeological evidence shows that the Nile River course in Luxor area was around 4.5 km wide and contained many islands and sandbars which separated inside the river channel, now appearing as scattered mounds inside the floodplain. Upper Egypt has migrated during the historic times to the east up to five kilometers and become far away from the ancient temples, quarries, and harbors. It has also become as well as become more meandering and narrower than before.

Keywords: Nile River, ancient harbours, Luxor, paleogeomorphology, geoarchaeology

Procedia PDF Downloads 139
666 Lactobacillus sp. Isolates Slaughterhouse Waste as Probiotics for Broilers

Authors: Nourmalita Safitri Ningsih, Ridwan, Iqri Puspa Yunanda

Abstract:

The aim of this study was to utilize the waste from slaughterhouses for chicken feed ingredients is probiotic. Livestock waste produced by livestock activities such as feces, urine, food remains, as well as water from livestock and cage cleaning. The process starts with the isolation of bacteria. Rumen fluid is taken at Slaughterhouse Giwangan, Yogyakarta. Isolation of Lactobacillus ruminus is done by using de Mann Rogosa Sharpe (MRS) medium. In the sample showed a rod-shaped bacteria are streaked onto an agar plates. After it was incubated at 37ºC for 48 hours, after which it is observed. The observation of these lactic acid bacteria it will show a clear zone at about the colony. These bacterial colonies are white, round, small, shiny on the agar plate mikroenkapsul In the manufacturing process carried out by the method of freeze dried using skim milk in addition capsulated material. Then the results of these capsulated bacteria are mixed with feed for livestock. The results from the mixing of capsulated bacteria in feed are to increase the quality of animal feed so as to provide a good effect on livestock. Scanning electron microscope testing we have done show the results of bacteria have been shrouded in skim milk. It can protect the bacteria so it is more durable in use. The observation of the bacteria showed a sheath on Lactobacillus sp. Preservation of bacteria in this way makes the bacteria more durable for use. As well as skim milk can protect bacteria that are resistant to the outside environment. Results of probiotics in chicken feed showed significant weight gain in chickens. Calculation Anova (P <0.005) shows the average chicken given probiotics her weight increased.

Keywords: chicken, probiotics, waste, Lactobacillus sp, bacteria

Procedia PDF Downloads 301
665 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorraina, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: cruciform specimen, multiaxial fatigue, nickel-based superalloy

Procedia PDF Downloads 275
664 Soil with Carbonate Accumulation in Tensift Al Haouz Lowland (Morocco): Characterization, Genesis and the Environmental Significance

Authors: Lahcen Daoudi, Soukaina Elidrissi, Nathalie Fagel

Abstract:

The calcareous accumulations in the surface formations of the soil, are a very widespread phenomenon in the arid and semi-arid regions. Many aspects of physical and chemical evolution of these soils were debated for more than one century. The last two decades have witnessed a remarkable interest in the study of the calcrete. In Morocco, as in most Mediterranean countries, soils with carbonate accumulation cover large areas of the territory. The isohumic subtropical soils and red Mediterranean soils include always a horizon of calcrete accumulation. In the lowland of Tensift Al Haouz located in the central part of Morocco, the arable lands are underlain by indurate pedogenic calcrete of various thicknesses; this constitutes a serious handicap for agricultural development in the region. Our aims in this study is to analyze the characteristics of the crusts developed in this area in order to identify the various facies, their geographic distribution and the factors that played a significant role in the differentiation of these calcareous accumulations. The characterizations were based on various techniques including field observations, X-ray diffraction analysis (XRD) for both raw materials and clay fractions, SEM analysis, Calcimetry and Loss On Ignition (LOI). The analysis of encrusting calcrete in a rich and varied observation field as the region of Tensift Al Haouz enabled us to specify the important types of accumulations: diffuse, nodular and massive encrusting. The shape of encrusting as well as their consistency and hardness is clearly related to the contents of CaCO3 of the profiles. Among these facies, the hardpan which results from a complex succession of processes is certainly the most morphologically advanced form of encrusting. The vertical and lateral distribution of these forms in the Tensift Al Haouz area indicates that they do not appear randomly but seem related to well defined environmental conditions. The differentiation and evolution of encrusting is under the influence of two major factors: 1) the availability of carbonate rich solution which is controlled by the topography, the nature and texture of underlying host rock and the detrital processes; 2) the climate which is responsible for the evaporation and crystallization of carbonate.

Keywords: soil calcrete, characterization, morphology, Tensift Al Haouz, Morocco

Procedia PDF Downloads 381
663 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods

Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo

Abstract:

The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.

Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines

Procedia PDF Downloads 599
662 Enhanced Kinetic Solubility Profile of Epiisopiloturine Solid Solution in Hipromellose Phthalate

Authors: Amanda C. Q. M. Vieira, Cybelly M. Melo, Camila B. M. Figueirêdo, Giovanna C. R. M. Schver, Salvana P. M. Costa, Magaly A. M. de Lyra, Ping I. Lee, José L. Soares-Sobrinho, Pedro J. Rolim-Neto, Mônica F. R. Soares

Abstract:

Epiisopiloturine (EPI) is a drug candidate that is extracted from Pilocarpus microphyllus and isolated from the waste of Pilocarpine. EPI has demonstrated promising schistosomicidal, leishmanicide, anti-inflammatory and antinociceptive activities, according to in vitro studies that have been carried out since 2009. However, this molecule shows poor aqueous solubility, which represents a problem for the release of the drug candidate and its absorption by the organism. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of a solid solution (SS) of EPI in hipromellose phthalate HP-55 (HPMCP), an enteric polymer carrier. SS was obtained by the solvent evaporation methodology, using acetone/methanol (60:40) as solvent system. Both EPI and polymer (drug loading 10%) were dissolved in this solvent until a clear solution was obtained, and then dried in oven at 60ºC during 12 hours, followed by drying in a vacuum oven for 4 h. The results show a considerable modification in the crystalline structure of the drug candidate. For instance, X-ray diffraction (XRD) shows a crystalline behavior for the EPI, which becomes amorphous for the SS. Polarized light microscopy, a more sensitive technique than XRD, also shows completely absence of crystals in SS sample. Differential Scanning Calorimetric (DSC) curves show no signal of EPI melting point in SS curve, indicating, once more, no presence of crystal in this system. Interaction between the drug candidate and the polymer were found in Infrared microscopy, which shows a carbonyl 43.3 cm-1 band shift, indicating a moderate-strong interaction between them, probably one of the reasons to the SS formation. Under sink conditions (pH 6.8), EPI SS had its dissolution performance increased in 2.8 times when compared with the isolated drug candidate. EPI SS sample provided a release of more than 95% of the drug candidate in 15 min, whereas only 45% of EPI (alone) could be dissolved in 15 min and 70% in 90 min. Thus, HPMCP demonstrates to have a good potential to enhance the kinetic solubility profile of EPI. Future studies to evaluate the stability of SS are required to conclude the benefits of this system.

Keywords: epiisopiloturine, hipromellose phthalate HP-55, pharmaceuticaltechnology, solubility

Procedia PDF Downloads 598
661 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer

Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon

Abstract:

Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.

Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode

Procedia PDF Downloads 249