Search results for: Wind Energy Conversion Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16873

Search results for: Wind Energy Conversion Systems

13633 A Regional Innovation System Model Based on the Systems Thinking Approach

Authors: Samara E., Kilintzis P., Katsoras E., Martinidis G.

Abstract:

Regions play an important role in the global economy by driving research and innovation policies through a major tool, the Regional Innovation System (RIS). RIS is a social system that encompasses the systematic interaction of the various organizations that comprise it in order to improve local knowledge and innovation. This article describes the methodological framework for developing and validating a RIS model utilizing system dynamics. This model focuses on the functional structure of the RIS, separating it in six diverse, interacting sub-systems.

Keywords: innovations, regional development, systems thinking, social system

Procedia PDF Downloads 57
13632 Sustainable Housing Framework for the Czech Republic: A Comparative Analysis of International and National Strategies

Authors: Jakub Adamec, Svatava Janouskova, Tomas Hak

Abstract:

The necessity of sustainable housing is explicitly embedded in ‘The 2030 agenda for sustainable development’, in particular, goal 11 ‘sustainable cities and communities’. Every UN member state is obligated to implement strategies from the agenda, including a strategy for sustainable housing into the practice in the local context. As shown in many countries, the lack of knowledge represses the adaptation process of sustainable strategies by governments. Hence, this study explores the concept of sustainable housing within the Czech Republic. The research elaborates on this term, and its current definition concerning ‘Geneva UN Charter on Sustainable Housing’. To this day, the charter represents the most comprehensive framework for a sustainable housing concept. Researchers conducted a comparative analysis of 38 international and 195 Czech national strategic documents. As a result, the charter‘s and strategic documents‘ goals were interconnected, identifying the most represented targets (e.g. improved environmental and energy performance of dwellings, resilient urban settlements which use renewable energy, and sustainable and integrated transport systems). The research revealed, even though the concept of sustainable housing is still dominated by environmental aspects, that social aspects significantly increased its importance. Additionally, this theoretical framework will serve as a foundation for the sustainable housing index development for the Czech Republic.

Keywords: comparative analysis, Czech national strategy, Geneva un charter, sustainable housing, urban theory

Procedia PDF Downloads 116
13631 Guided Energy Theory of a Particle: Answered Questions Arise from Quantum Foundation

Authors: Desmond Agbolade Ademola

Abstract:

This work aimed to introduce a theory, called Guided Energy Theory of a particle that answered questions that arise from quantum foundation, quantum mechanics theory, and interpretation such as: what is nature of wavefunction? Is mathematical formalism of wavefunction correct? Does wavefunction collapse during measurement? Do quantum physical entanglement and many world interpretations really exist? In addition, is there uncertainty in the physical reality of our nature as being concluded in the Quantum theory? We have been able to show by the fundamental analysis presented in this work that the way quantum mechanics theory, and interpretation describes nature is not correlated with physical reality. Because, we discovered amongst others that, (1) Guided energy theory of a particle fundamentally provides complete physical observable series of quantized measurement of a particle momentum, force, energy e.t.c. in a given distance and time.In contrast, quantum mechanics wavefunction describes that nature has inherited probabilistic and indeterministic physical quantities, resulting in unobservable physical quantities that lead to many worldinterpretation.(2) Guided energy theory of a particle fundamentally predicts that it is mathematically possible to determine precise quantized measurementof position and momentum of a particle simultaneously. Because, there is no uncertainty in nature; nature however naturally guides itself against uncertainty. Contrary to the conclusion in quantum mechanics theory that, it is mathematically impossible to determine the position and the momentum of a particle simultaneously. Furthermore, we have been able to show by this theory that, it is mathematically possible to determine quantized measurement of force acting on a particle simultaneously, which is not possible on the premise of quantum mechanics theory. (3) It is evidently shown by our theory that, guided energy does not collapse, only describes the lopsided nature of a particle behavior in motion. This pretty offers us insight on gradual process of engagement - convergence and disengagement – divergence of guided energy holders which further highlight the picture how wave – like behavior return to particle-like behavior and how particle – like behavior return to wave – like behavior respectively. This further proves that the particles’ behavior in motion is oscillatory in nature. The mathematical formalism of Guided energy theory shows that nature is certainty whereas the mathematical formalism of Quantum mechanics theory shows that nature is absolutely probabilistics. In addition, the nature of wavefunction is the guided energy of the wave. In conclusion, the fundamental mathematical formalism of Quantum mechanics theory is wrong.

Keywords: momentum, physical entanglement, wavefunction, uncertainty

Procedia PDF Downloads 277
13630 Probing Extensive Air Shower Primaries and Their Interactions by Combining Individual Muon Tracks and Shower Depth

Authors: Moon Moon Devi, Ran Budnik

Abstract:

The current large area cosmic ray detector surface arrays typically measure only the net flux and arrival-time of the charged particles produced in an extensive air shower (EAS). Measurement of the individual charged particles at a surface array will provide additional distinguishing parameters to identify the primary and to map the very high energy interactions in the upper layers of the atmosphere. In turn, these may probe anomalies in QCD interactions at energies beyond the reach of current accelerators. The recent attempts of studying the individual muon tracks are limited in their expandability to larger arrays and can only probe primary particles with energy up to about 10^15.5 eV. New developments in detector technology allow for a realistic cost of large area detectors, however with limitations on energy resolutions, directional information, and dynamic range. In this study, we perform a simulation study using CORSIKA to combine the energy spectrum and lateral spread of the muons with the longitudinal depth (Xmax) of an EAS initiated by a primary at ultra high energies (10¹⁶ – 10¹⁹) eV. Using proton and iron as the shower primaries, we show that the muon observables and Xmax together can be used to distinguish the primary. This study can be used to design a future detector for the surface array, which will be able to enhance our knowledge of primaries and QCD interactions.

Keywords: ultra high energy extensive air shower, muon tracking, air shower primaries, QCD interactions

Procedia PDF Downloads 211
13629 Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 76
13628 Ge₁₋ₓSnₓ Alloys with Tuneable Energy Band Gap on GaAs (100) Substrate Manufactured by a Modified Magnetron Co-Sputtering

Authors: Li Qian, Jinchao Tong, Daohua Zhang, Weijun Fan, Fei Suo

Abstract:

Photonic applications based on group IV semiconductors have always been an interest but also a challenge for the research community. We report manufacturing group IV Ge₁₋ₓSnₓ alloys with tuneable energy band gap on (100) GaAs substrate by a modified radio frequency magnetron co-sputtering. Images were taken by atomic force microscope, and scanning electron microscope clearly demonstrates a smooth surface profile, and Ge₁₋ₓSnₓ nano clusters are with the size of several tens of nanometers. Transmittance spectra were measured by Fourier Transform Infrared Spectroscopy that showed changing energy gaps with the variation in elementary composition. Calculation results by 8-band k.p method are consistent with measured gaps. Our deposition system realized direct growth of Ge₁₋ₓSnₓ thin film on GaAs (100) substrate by sputtering. This simple deposition method was modified to be able to grow high-quality photonic materials with tuneable energy gaps. This work provides an alternative and successful method for fabricating Group IV photonic semiconductor materials.

Keywords: GeSn, crystal growth, sputtering, photonic

Procedia PDF Downloads 133
13627 Assessment of Solar Hydrogen Production in Energetic Hybrid PV-PEMFC System

Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui

Abstract:

This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.

Keywords: electrolyzer, hydrogen, hydrogen fueled cell, photovoltaic

Procedia PDF Downloads 479
13626 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell

Authors: Sujit Kumar Guchhait, Subir Paul

Abstract:

One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.

Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM

Procedia PDF Downloads 287
13625 Logical-Probabilistic Modeling of the Reliability of Complex Systems

Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia

Abstract:

The paper presents logical-probabilistic methods, models, and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. It is important to design systems based on structural analysis, research, and evaluation of efficiency indicators. One of the important efficiency criteria is the reliability of the system, which depends on the components of the structure. Quantifying the reliability of large-scale systems is a computationally complex process, and it is advisable to perform it with the help of a computer. Logical-probabilistic modeling is one of the effective means of describing the structure of a complex system and quantitatively evaluating its reliability, which was the basis of our application. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of “weights” of elements of system. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research, and designing of optimal structure systems are carried out.

Keywords: complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability of systems, “weights” of elements

Procedia PDF Downloads 52
13624 Energy and Nutrient Intakes in Cystic Fibrosis: Do They Achieve Guidelines ?

Authors: Hatice Akbıyık, Hülya Gökmen Özel, Nagehan Emiralioğlu, Elmas Ebru Güneş Yalçın, Deniz Doğru Ersöz, Hayriye Uğur Özçelik, Nural Kiper

Abstract:

Background: Dietary recommendations in cystic fibrosis (CF) are based on the need to compensate for the increased energy needs of infection, the increased energy cost of breathing and the losses, incurred from malabsorption. Studies in CF indicate that dietary recommendations for CF patients can be difficult to achieve Aim: The aim of this study was to evaluate the energy and nutrient intakes and to compare in accordance with CF dietary guidelines in CF. Methods: One-hundred sixty patients with CF, aged between 2 to 20 years (mean±SD= 7.4±4.8 years) attending Hacettepe University, Faculty of Medicine, Department of Pediatric Pulmonary Diseases were included. Energy and nutrient intakes from foods and enteral products were calculated using a-24-hour dietary recall method with BEBIS 7.2 programme. Percentages of energy and nutrient intakes were compared in accordance with CF dietary guidelines. Patients or/and parents completed a questionnaire showing mealtime problems, usage of alternative therapies and type of nutrition. Statistical analyses were done using SPSS 16.0 programme. Results: It was obtained that 14.5% and 46.9% of the total energy intake were from proteins and carbohydrates, respectively. The actual contribution of total, saturated, monounsaturated and polyunsaturated fats to the total caloric intake was 37.5%, 14.3%, 14.9%, 9.9%, respectively. It was found that 87.7% of energy, 85% of protein 91.7% of carbohydrate, 81.1% of fat intakes were met, when compared CF recommended intakes of 120% RDA. Additionally 67%, 69.5%, 68.2% and 68.9% of the subjects did not achieve CF recommended intakes of 120% RDA for energy, protein, carbohydrate and fat, respectively. Patients with CF had low intakes for age for almost all vitamins and minerals, although supplementation was given. Especially most patients did not achieve the minimum recommended vitamin K intake of 120% RDA. The percentage meeting 120% RDA was 75.9% for vitamin K. It was shown that 41% of the patients had mealtime problems and they skipped the breakfast. Moreover 25.4% of the patients used alternative products outside the standard treatment (such as omega-3, ginger, turmeric, local honey). It was also showed that 60.8% of patients were using enteral products in addition to normal foods, the remaining patients were on only normal foods. Conclusion: The aims of improving nutritional status in children are to achieve normal weight gain and growth; optimize vitamin and mineral status; and slow the rate of clinical decline. In this study although enteral products were used in patients with CF, it was found that energy and nutrient requirements were unable to meet. Because dietary assessment is essential to identify the need for earlier nutritional intervention, in each visit patients need to be referred to CF specialist dietitian.

Keywords: cystic fibrosis, energy and nutrient intakes, mealtime problems, malabsorbtion

Procedia PDF Downloads 445
13623 Harmonizing Spatial Plans: A Methodology to Integrate Sustainable Mobility and Energy Plans to Promote Resilient City Planning

Authors: B. Sanchez, D. Zambrana-Vasquez, J. Fresner, C. Krenn, F. Morea, L. Mercatelli

Abstract:

Local administrations are facing established targets on sustainable development from different disciplines at the heart of different city departments. Nevertheless, some of these targets, such as CO2 reduction, relate to two or more disciplines, as it is the case of sustainable mobility and energy plans (SUMP & SECAP/SEAP). This opens up the possibility to efficiently cooperate among different city departments and to create and develop harmonized spatial plans by using available resources and together achieving more ambitious goals in cities. The steps of the harmonization processes developed result in the identification of areas to achieve common strategic objectives. Harmonization, in other words, helps different departments in local authorities to work together and optimize the use or resources by sharing the same vision, involving key stakeholders, and promoting common data assessment to better optimize the resources. A methodology to promote resilient city planning via the harmonization of sustainable mobility and energy plans is presented in this paper. In order to validate the proposed methodology, a representative city engaged in an innovation process in efficient spatial planning is used as a case study. The harmonization process of sustainable mobility and energy plans covers identifying matching targets between different fields, developing different spatial plans with dual benefit and common indicators guaranteeing the continuous improvement of the harmonized plans. The proposed methodology supports local administrations in consistent spatial planning, considering both energy efficiency and sustainable mobility. Thus, municipalities can use their human and economic resources efficiently. This guarantees an efficient upgrade of land use plans integrating energy and mobility aspects in order to achieve sustainability targets, as well as to improve the wellbeing of its citizens.

Keywords: integrated multi-sector planning, spatial plans harmonization, sustainable energy and climate action plan, sustainable urban mobility plan

Procedia PDF Downloads 156
13622 The Security Trade-Offs in Resource Constrained Nodes for IoT Application

Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve

Abstract:

The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.

Keywords: energy consumption, IEEE 802.15.4, IoT security, security cost evaluation

Procedia PDF Downloads 150
13621 An Investigation on Energy Absorption Capacity of a Composite Metal Foam Developed from Aluminum by Reinforcing with Cermet Hollow Spheres

Authors: Fisseha Zewdie, Naresh Bhatnagar

Abstract:

Lightweight and strong aluminum foam is developed by reinforcing Al-Si-Cu alloy (LM24) with Cermet Hollow Spheres (CHS) as porous creating agents. The foam samples were prepared by mixing the CHS in molten LM24 at 750°C, using gravity and stir casting. The CHSs were fabricated using a blend of silicon carbide and stainless-steel powders using the powder metallurgy technique. It was found that CHS reinforcement greatly enhances the performance of the composite metal foam, making it suitable for high impact loading applications such as crash protection and shock absorption. This study examined the strength, density, energy absorption and possible applications of the new aluminum foam. The results revealed that the LM24 foam reinforced with the CHS has the highest energy absorption of about 88 MJ/m3 among all categories of foam samples tested. Its density was found to be 1.3 g/cm3, while the strength, densification strains and porosity were 420 MPa, 34% and 70%, respectively. Besides, the matrix and reinforcement's microstructure, chemical composition, X-ray diffraction, HRTEM and related micrographic analyses are performed for characterization and verifications.

Keywords: composite metal foam, hollow spheres, gravity casting, energy absorption

Procedia PDF Downloads 51
13620 A Parallel Implementation of k-Means in MATLAB

Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas

Abstract:

The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.

Keywords: K-means algorithm, clustering, parallel computations, Matlab

Procedia PDF Downloads 372
13619 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 291
13618 Absorption of Ultrashort Electromagnetic Pulses on Gold Nanospheres in Various Dielectric Media

Authors: Sergey Svita, Valeriy Astapenko

Abstract:

The study is devoted to theoretical analysis of ultrashort electromagnetic pulses (USP) absorption on gold nanospheres. Dependencies of USP energy absorption on nanospheres placed in various matrix are compared. The results of calculation of absorbed energy on gold nanospheres as a function of ultrashort electromagnetic pulse carrier frequency and number of pulse cycles of carrier frequency show strong non-linear dependence of absorbed energy on number of cycles of carrier frequency, but for relatively large number of cycles on USP carrier frequency it goes to linear dependence.

Keywords: ultrashort electromagnetic pulses, absorption, nanospheres, theoretical research

Procedia PDF Downloads 245
13617 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forword, membrane, solar, water treatment

Procedia PDF Downloads 68
13616 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square

Procedia PDF Downloads 364
13615 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 89
13614 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading

Authors: Chui-Hsin Chen, Yu-Ting Chen

Abstract:

Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.

Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ

Procedia PDF Downloads 83
13613 Experimental Analysis of the Plate-on-Tube Evaporator on a Domestic Refrigerator’s Performance

Authors: Mert Tosun, Tuğba Tosun

Abstract:

The evaporator is the utmost important component in the refrigeration system, since it enables the refrigerant to draw heat from the desired environment, i.e. the refrigerated space. Studies are being conducted on this component which generally affects the performance of the system, where energy efficient products are important. This study was designed to enhance the effectiveness of the evaporator in the refrigeration cycle of a domestic refrigerator by adjusting the capillary tube length, refrigerant amount, and the evaporator pipe diameter to reduce energy consumption. The experiments were conducted under identical thermal and ambient conditions. Experiment data were analysed using the Design of Experiment (DOE) technique which is a six-sigma method to determine effects of parameters. As a result, it has been determined that the most important parameters affecting the evaporator performance among the selected parameters are found to be the refrigerant amount and pipe diameter. It has been determined that the minimum energy consumption is 6-mm pipe diameter and 16-g refrigerant. It has also been noted that the overall consumption of the experiment sample decreased by 16.6% with respect to the reference system, which has 7-mm pipe diameter and 18-g refrigerant.

Keywords: heat exchanger, refrigerator, design of experiment, energy consumption

Procedia PDF Downloads 135
13612 Passive Aeration of Wastewater: Analytical Model

Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy

Abstract:

Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.

Keywords: aeration, analytical, passive, wastewater

Procedia PDF Downloads 191
13611 Assessing Transition to Renewable Energy for Transportation in Indonesia through Drop-in Biofuel Utilization

Authors: Maslan Lamria, Ralph E. H. Sims, Tatang H. Soerawidjaja

Abstract:

In increasing its self-sufficiency on transportation fuel, Indonesia is currently developing commercial production and use of drop-in biofuel (DBF) from vegetable oil. To maximize the level of success, it is necessary to get insights on how the implementation would develop as well as any important factors. This study assessed the dynamics of transition from existing fossil fuel system to a renewable fuel system, which involves the transition from existing biodiesel to projected DBF. A systems dynamics approach was applied and a model developed to simulate the dynamics of liquid biofuel transition. The use of palm oil feedstock was taken as a case study to assess the projected DBF implementation by 2045. The set of model indicators include liquid fuel self-sufficiency, liquid biofuel share, foreign exchange savings and green-house gas emissions reduction. The model outputs showed that supports on DBF investment and use play an important role in the transition progress. Given assumptions which include application of a maximum level of supports over time, liquid fuel self-sufficiency would be still unfulfilled in which palm biofuel contribution is 0.2. Thus, other types of feedstock such as algae and oil feedstock from marginal lands need to be developed synergically. Regarding support on DBF use, this study recommended that removal of fossil subsidy would be necessary prior to applying a carbon tax policy effectively.

Keywords: biofuel, drop-in biofuel, energy transition, liquid fuel

Procedia PDF Downloads 125
13610 The Effect of System Parameters on the Biogas Production from Poultry Rendering Plant Anaerobic Digesters

Authors: N. Lovanh, J. Loughrin, G. Ruiz-Aguilar

Abstract:

Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system parameters on methane production from anaerobic digesters utilizing poultry rendering plant wastewater was carried out. Anaerobic batch reactors and continuous flow system subjected to different operation conditions (i.e., flow rate, temperature, and etc.) containing poultry rendering wastewater were set up to evaluate methane potential from each scenario. Biogas productions were sampled and monitored by gas chromatography and photoacoustic gas analyzer over six months of operation. The results showed that methane productions increased as the temperature increased. However, there is an upper limit to the increase in the temperature on the methane production. Flow rates and type of systems (batch vs. plug-flow regime) also had a major effect on methane production. Constant biogas production was observed in plug-flow system whereas batch system produced biogas quicker and tapering off toward the end of the six-month study. Based on these results, it is paramount to consider operating conditions and system setup in optimizing biogas production from agricultural wastewater.

Keywords: anaerobic digestion, methane, poultry rendering wastewater, biotechnology

Procedia PDF Downloads 371
13609 The Assessment of Some Biological Parameters With Dynamic Energy Budget of Mussels in Agadir Bay

Authors: Zahra Okba, Hassan El Ouizgani

Abstract:

Anticipating an individual’s behavior to the environmental factors allows for having relevant ecological forecasts. The Dynamic Energy Budget model facilitates prediction, and it is mechanically dependent on biology to abiotic factors but is generally field verified under relatively stable physical conditions. Dynamic Energy Budget Theory (DEB) is a robust framework that can link the individual state to environmental factors, and in our work, we have tested its ability to account for variability by looking at model predictions in the Agadir Bay, which is characterized by a semi-arid climate and temperature is strongly influenced by the trade winds front and nutritional availability. From previous works in our laboratory, we have collected different biological DEB model parameters of Mytilus galloprovincialis mussel in Agadir Bay. We mathematically formulated the equations that make up the DEB model and then adjusted our analytical functions with the observed biological data of our local species. We also assumed the condition of constant immersion, and then we integrated the details of the tidal cycles to calculate the metabolic depression at low tide. Our results are quite satisfactory concerning the length and shape of the shell in one part and the gonadosomatic index in another part.

Keywords: dynamic energy budget, mussels, mytilus galloprovincialis, agadir bay, DEB model

Procedia PDF Downloads 93
13608 Economic Growth: The Nexus of Oil Price Volatility and Renewable Energy Resources among Selected Developed and Developing Economies

Authors: Muhammad Siddique, Volodymyr Lugovskyy

Abstract:

This paper explores how nations might mitigate the unfavorable impacts of oil price volatility on economic growth by switching to renewable energy sources. The impacts of uncertain factor prices on economic activity are examined by looking at the Realized Volatility (RV) of oil prices rather than the more traditional method of looking at oil price shocks. The United States of America (USA), China (C), India (I), United Kingdom (UK), Germany (G), Malaysia (M), and Pakistan (P) are all included to round out the traditional literature's examination of selected nations, which focuses on oil-importing and exporting economies. Granger Causality Tests (GCT), Impulse Response Functions (IRF), and Variance Decompositions (VD) demonstrate that in a Vector Auto-Regressive (VAR) scenario, the negative impacts of oil price volatility extend beyond what can be explained by oil price shocks alone for all of the nations in the sample. Different nations have different levels of vulnerability to changes in oil prices and other factors that may play a role in a sectoral composition and the energy mix. The conventional method, which only takes into account whether a country is a net oil importer or exporter, is inadequate. The potential economic advantages of initiatives to decouple the macroeconomy from volatile commodities markets are shown through simulations of volatility shocks in alternative energy mixes (with greater proportions of renewables). It is determined that in developing countries like Pakistan, increasing the use of renewable energy sources might lessen an economy's sensitivity to changes in oil prices; nonetheless, a country-specific study is required to identify particular policy actions. In sum, the research provides an innovative justification for mitigating economic growth's dependence on stable oil prices in our sample countries.

Keywords: oil price volatility, renewable energy, economic growth, developed and developing economies

Procedia PDF Downloads 65
13607 Applying Energy Consumption Schedule and Comparing It with Load Shifting Technique in Residential Load

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasy

Abstract:

Energy consumption schedule (ECS) technique shifts usage of loads from on peak hours and redistributes them throughout the day according to residents’ operating time preferences. This technique is used as form of indirect control from utility to improve the load curve and hence its load factor and reduce customer’s total electric bill as well. Similarly, load shifting technique achieves ECS purposes but as direct control form applied from utility. In this paper, ECS is simulated twice as optimal constrained mathematical formula, solved by using CVX program in MATLAB® R2013b. First, it is utilized for single residential building with ten apartments to determine max allowable energy consumption per hour for each residential apartment. Then, it is used for single apartment with number of shiftable domestic devices, where operating schedule is deduced using previous simulation output results as constraints. The paper ends by giving differences between ECS technique and load shifting technique via literature and simulation. Based on results assessment, it will be shown whether using ECS or load shifting is more beneficial to both customer and utility.

Keywords: energy consumption schedule, load shifting, comparison, demand side mangement

Procedia PDF Downloads 170
13606 Effects of Feeding Time on Survival Rates, Growth Performance and Feeding Behavior of Juvenile Catfish

Authors: Abdullahi Ibrahim

Abstract:

The culture of Clarias gariepinus for fish production is becoming increasingly essential as the fish is contributing to the food abundance and nutritional benefit to family health, income generation, and employment opportunities. The effect of feeding frequency was investigated over a period of ten (10) weeks; the experiment was conducted to monitor survival rates, growth performance, and feeding behavior of juvenile catfish. The experimental fish were randomly assigned to five treatment groups; (i.e., with different feeding frequency intervals) of 100 fish each. Each treatment was replicated twice with 50 fish per replicate. All the groups were fed with floating fish feed (blue crown®). The five treatments (feeding frequency) were T1- once a day feeding of night hours only, T2- twice a day feeding time of morning and night hours, T3- trice a day feeding time of morning, evening and night hours, T-4 four times a day feeding of morning, afternoon, evening, and night hours, T-5 five times a day feeding at four hours interval. There were significant differences (p > 0.05) among treatments. Feed intake and weight gain improved significantly (p < 0.05) in T-4 and T-3. The best of the feeding time on weight gain, survival rate, and feed conversion ratio were obtained at three times a day feeding (T-3) compared to other treatments, especially those fed once and five times feeding a regiment. This might be attributed to the high level of dissolve oxygen and less stress. Feeding fish three times a day is therefore recommended for efficient catfish production to maximize profits as the feed represents more than 50% of aquaculture inputs, particularly in intensive farming systems.

Keywords: catfish, floating fish feed, dissolve oxygen, juvenile

Procedia PDF Downloads 137
13605 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound

Authors: Jung-Yoon Lee, Jongmun Kim, Hyo-Jun Chang, Jung-Min Kim

Abstract:

People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.

Keywords: resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution

Procedia PDF Downloads 255
13604 Kalman Filter for Bilinear Systems with Application

Authors: Abdullah E. Al-Mazrooei

Abstract:

In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.

Keywords: bilinear systems, state space model, Kalman filter, application, models

Procedia PDF Downloads 414