Search results for: mixed methods approach
24625 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery
Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley
Abstract:
Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter
Procedia PDF Downloads 47224624 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances
Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo
Abstract:
Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.Keywords: hydrogen, methane, combustion, appliances, interchangeability
Procedia PDF Downloads 9124623 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning
Authors: Abdullah Bal
Abstract:
This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification
Procedia PDF Downloads 2124622 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs
Authors: M. De Filippo, J. S. Kuang
Abstract:
In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.Keywords: computational mechanics, lower bound method, reinforced concrete slabs, yield-line
Procedia PDF Downloads 17824621 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University
Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang
Abstract:
Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University
Procedia PDF Downloads 31624620 Keyloggers Prevention with Time-Sensitive Obfuscation
Authors: Chien-Wei Hung, Fu-Hau Hsu, Chuan-Sheng Wang, Chia-Hao Lee
Abstract:
Nowadays, the abuse of keyloggers is one of the most widespread approaches to steal sensitive information. In this paper, we propose an On-Screen Prompts Approach to Keyloggers (OSPAK) and its analysis, which is installed in public computers. OSPAK utilizes a canvas to cue users when their keystrokes are going to be logged or ignored by OSPAK. This approach can protect computers against recoding sensitive inputs, which obfuscates keyloggers with letters inserted among users' keystrokes. It adds a canvas below each password field in a webpage and consists of three parts: two background areas, a hit area and a moving foreground object. Letters at different valid time intervals are combined in accordance with their time interval orders, and valid time intervals are interleaved with invalid time intervals. It utilizes animation to visualize valid time intervals and invalid time intervals, which can be integrated in a webpage as a browser extension. We have tested it against a series of known keyloggers and also performed a study with 95 users to evaluate how easily the tool is used. Experimental results made by volunteers show that OSPAK is a simple approach.Keywords: authentication, computer security, keylogger, privacy, information leakage
Procedia PDF Downloads 12224619 Automated User Story Driven Approach for Web-Based Functional Testing
Authors: Mahawish Masud, Muhammad Iqbal, M. U. Khan, Farooque Azam
Abstract:
Manual writing of test cases from functional requirements is a time-consuming task. Such test cases are not only difficult to write but are also challenging to maintain. Test cases can be drawn from the functional requirements that are expressed in natural language. However, manual test case generation is inefficient and subject to errors. In this paper, we have presented a systematic procedure that could automatically derive test cases from user stories. The user stories are specified in a restricted natural language using a well-defined template. We have also presented a detailed methodology for writing our test ready user stories. Our tool “Test-o-Matic” automatically generates the test cases by processing the restricted user stories. The generated test cases are executed by using open source Selenium IDE. We evaluate our approach on a case study, which is an open source web based application. Effectiveness of our approach is evaluated by seeding faults in the open source case study using known mutation operators. Results show that the test case generation from restricted user stories is a viable approach for automated testing of web applications.Keywords: automated testing, natural language, restricted user story modeling, software engineering, software testing, test case specification, transformation and automation, user story, web application testing
Procedia PDF Downloads 38724618 Understanding the Impact of Resilience Training on Cognitive Performance in Military Personnel
Authors: Haji Mohammad Zulfan Farhi Bin Haji Sulaini, Mohammad Azeezudde’en Bin Mohd Ismaon
Abstract:
The demands placed on military athletes extend beyond physical prowess to encompass cognitive resilience in high-stress environments. This study investigates the effects of resilience training on the cognitive performance of military athletes, shedding light on the potential benefits and implications for optimizing their overall readiness. In a rapidly evolving global landscape, armed forces worldwide are recognizing the importance of cognitive resilience alongside physical fitness. The study employs a mixed-methods approach, incorporating quantitative cognitive assessments and qualitative data from military athletes undergoing resilience training programs. Cognitive performance is evaluated through a battery of tests, including measures of memory, attention, decision-making, and reaction time. The participants, drawn from various branches of the military, are divided into experimental and control groups. The experimental group undergoes a comprehensive resilience training program, while the control group receives traditional physical training without a specific focus on resilience. The initial findings indicate a substantial improvement in cognitive performance among military athletes who have undergone resilience training. These improvements are particularly evident in domains such as attention and decision-making. The experimental group demonstrated enhanced situational awareness, quicker problem-solving abilities, and increased adaptability in high-stress scenarios. These results suggest that resilience training not only bolsters mental toughness but also positively impacts cognitive skills critical to military operations. In addition to quantitative assessments, qualitative data is collected through interviews and surveys to gain insights into the subjective experiences of military athletes. Preliminary analysis of these narratives reveals that participants in the resilience training program report higher levels of self-confidence, emotional regulation, and an improved ability to manage stress. These psychological attributes contribute to their enhanced cognitive performance and overall readiness. Moreover, this study explores the potential long-term benefits of resilience training. By tracking participants over an extended period, we aim to assess the durability of cognitive improvements and their effects on overall mission success. Early results suggest that resilience training may serve as a protective factor against the detrimental effects of prolonged exposure to stressors, potentially reducing the risk of burnout and psychological trauma among military athletes. This research has significant implications for military organizations seeking to optimize the performance and well-being of their personnel. The findings suggest that integrating resilience training into the training regimen of military athletes can lead to a more resilient and cognitively capable force. This, in turn, may enhance mission success, reduce the risk of injuries, and improve the overall effectiveness of military operations. In conclusion, this study provides compelling evidence that resilience training positively impacts the cognitive performance of military athletes. The preliminary results indicate improvements in attention, decision-making, and adaptability, as well as increased psychological resilience. As the study progresses and incorporates long-term follow-ups, it is expected to provide valuable insights into the enduring effects of resilience training on the cognitive readiness of military athletes, contributing to the ongoing efforts to optimize military personnel's physical and mental capabilities in the face of ever-evolving challenges.Keywords: military athletes, cognitive performance, resilience training, cognitive enhancement program
Procedia PDF Downloads 8024617 Detection of Adulterants in Milk Using IoT
Authors: Shaik Mohammad Samiullah Shariff, Siva Sreenath, Sai Haripriya, Prathyusha, M. Padma Lalitha
Abstract:
The Internet of Things (IoT) is the emerging technology that has been utilized to extend the possibilities for smart dairy farming (SDF). Milk consumption is continually increasing due to the world's growing population. As a result, some providers are prone to using dishonest measures to close the supply-demand imbalance, such as adding adulterants to milk. To identify the presence of adulterants in milk, traditional testing methods necessitate the use of particular chemicals and equipment. While efficient, this method has the disadvantage of yielding difficult and time-consuming qualitative results. Furthermore, same milk sample cannot be tested for other adulterants later. As a result, this study proposes an IoT-based approach for identifying adulterants in milk by measuring electrical conductivity (EC) or Total Dissolved Solids (TDS) and PH. In order to achieve this, an Arduino UNO microcontroller is used to assess the contaminants. When there is no adulteration, the pH and TDS values of milk range from 6.45 to 6.67 and 750 to 780ppm, respectively, according to this study. Finally, the data is uploaded to the cloud via an IoT device attached to the Ubidot web platform.Keywords: internet of things (IoT), pH sensor, TDS sensor, EC sensor, industry 4.0
Procedia PDF Downloads 7824616 Post Harvest Preservation of Mango Fruit Using Freeze Drying and Tray Drying Methods
Authors: O. A. Adeyeye, E. R. Sadiku, Selvam Sellamuthu Periyar, Babu Perumal Anand, B. Nambiar Reshma
Abstract:
Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit, and only very few off-seasonal species are available in the market for consumption. Therefore, in order to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar.Keywords: postharvest, mangos, cultivar, total soluble solid, total phenol content, antioxidant
Procedia PDF Downloads 39024615 Implementation of CNV-CH Algorithm Using Map-Reduce Approach
Authors: Aishik Deb, Rituparna Sinha
Abstract:
We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing
Procedia PDF Downloads 13624614 The Impact of Cloud Accounting on Boards of Directors in the Middle East and North African (MENA) Countries
Authors: Ahmad Alqatan
Abstract:
Purpose: The purpose of this study is to analyze how the adoption of cloud accounting systems influences the governance practices and performance of boards of directors in MENA countries. The research aims to identify the benefits and challenges associated with cloud accounting and its role in improving board efficiency and oversight. Methodology: This research employs a mixed-method approach, combining quantitative surveys and qualitative interviews with board members and financial officers from a diverse range of companies in the MENA region. The quantitative data is analyzed to determine patterns and correlations, while qualitative insights provide a deeper understanding of the contextual factors influencing cloud accounting adoption and its impacts. Findings: The findings indicate that cloud accounting significantly enhances the decision-making capabilities of boards by providing real-time financial information and facilitating better communication among board members. Companies using cloud accounting reports improved financial oversight and more timely and accurate financial reporting. However, the research also identifies challenges such as cybersecurity concerns, resistance to change, and the need for ongoing training and support. Practical Implications: The study suggests that MENA companies can benefit from investing in cloud accounting technologies to improve board governance and strategic decision-making. It highlights the importance of addressing cybersecurity issues and providing adequate training for board members to maximize the advantages of cloud accounting. Originality: This research contributes to the limited literature on cloud accounting in the MENA region, offering valuable insights for policymakers, business leaders, and academics. It underscores the transformative potential of cloud accounting for enhancing board performance and corporate governance in emerging markets.Keywords: cloud accounting, board of directors, MENA region, corporate governance, financial transparency, real-time data, decision-making, cybersecurity, technology adoption
Procedia PDF Downloads 3024613 An Analytical Study of Organizational Implication in EFL Writing Experienced by Iranian Students with Learning Difficulties
Authors: Yoones Tavoosy
Abstract:
This present study concentrates on the organizational implication the Iranian students with learning difficulties (LD) experience when they write an English essay. Particularly, the present study aims at exploring students' structural problems in EFL essay writing. A mixed method research design was employed including a questionnaire and a semi-structured in-depth interview. Technical Data Analysis of findings exposed that students experience a number of difficulties in the structure of EFL essay writing. Discussion and implications of these findings are presented respectively.Keywords: Iranian students, learning difficulties, organizational implication, writing
Procedia PDF Downloads 22224612 Probabilistic Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Repeatedly Used Edible Oils and Finger Foods
Authors: Suraj Sam Issaka, Anita Asamoah, Abass Gibrilla, Joseph Richmond Fianko
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds that can form in edible oils during repeated frying and accumulate in fried foods. This study assesses the chances of health risks (carcinogenic and non-carcinogenic) due to PAHs levels in popular finger foods (bean cakes, plantain chips, doughnuts) fried in edible oils (mixed vegetable, sunflower, soybean) from the Ghanaian market. Employing probabilistic health risk assessment that considers variability and uncertainty in exposure and risk estimates provides a more realistic representation of potential health risks. Monte Carlo simulations with 10,000 iterations were used to estimate carcinogenic, mutagenic, and non-carcinogenic risks for different age groups (A: 6-10 years, B: 11-20 years, C: 20-70 years), food types (bean cake, plantain chips, doughnut), oil types (soybean, mixed vegetable, sunflower), and re-usage frying oil frequencies (once, twice, thrice). Our results suggest that, for age Group A, doughnuts posed the highest probability of carcinogenic risk (91.55%) exceeding the acceptable threshold, followed by bean cakes (43.87%) and plantain chips (7.72%), as well as the highest probability of unacceptable mutagenic risk (89.2%), followed by bean cakes (40.32%). Among age Group B, doughnuts again had the highest probability of exceeding carcinogenic risk limits (51.16%) and mutagenic risk limits (44.27%). At the same time, plantain chips exhibited the highest maximum carcinogenic risk. For adults age Group C, bean cakes had the highest probability of unacceptable carcinogenic (50.88%) and mutagenic risks (46.44%), though plantain chips showed the highest maximum values for both carcinogenic and mutagenic risks in this age group. Also, on non-carcinogenic risks across different age groups, it was found that age Group A) who consumed doughnuts had a 68.16% probability of a hazard quotient (HQ) greater than 1, suggesting potential cognitive impairment and lower IQ scores due to early PAH exposure. This group also faced risks from consuming plantain chips and bean cake. For age Group B, the consumption of plantain chips was associated with a 36.98% probability of HQ greater than 1, indicating a potential risk of reduced lung function. In age Group C, the consumption of plantain chips was linked to a 35.70% probability of HQ greater than 1, suggesting a potential risk of cardiovascular diseases.Keywords: PAHs, fried foods, carcinogenic risk, non-carcinogenic risk, Monte Carlo simulations
Procedia PDF Downloads 1324611 Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept
Authors: Brandtner-Hafner Martin
Abstract:
Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics.Keywords: biocomposites, structural safety, Gғ-concept, fracture analysis
Procedia PDF Downloads 15924610 Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control
Authors: Bogusław Schreyer
Abstract:
The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking.Keywords: select-high, select-low, torque distribution, wheeled robots
Procedia PDF Downloads 11924609 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors
Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche
Abstract:
Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships
Procedia PDF Downloads 30124608 Spectral Analysis Applied to Variables of Oil Wells Profiling
Authors: Suzana Leitão Russo, Mayara Laysa de Oliveira Silva, José Augusto Andrade Filho, Vitor Hugo Simon
Abstract:
Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals.Keywords: oil, well, spectral analysis, oil extraction
Procedia PDF Downloads 53524607 Fears of Strangers: Causes of Anonymity Rejection on Virtual World
Authors: Proud Arunrangsiwed
Abstract:
This research is a collaborative narrative research, which is mixed with issues of selected papers and researcher's experience as an anonymous user on social networking sites. The objective of this research is to understand the reasons of the regular users who reject to contact with anonymous users, and to study the communication traditions used in the selected studies. Anonymous users are rejected by regular users, because of the fear of cyber bully, the fear of unpleasant behaviors, and unwillingness of changing communication norm. The suggestion for future research design is to use longitudinal design or quantitative design; and the theory in rhetorical tradition should be able to help develop a strong trust message.Keywords: anonymous, anonymity, online identity, trust message, reliability
Procedia PDF Downloads 35924606 Do Interventions for Increasing Minorities' Access to Higher Education Work? The Case of Ethiopians in Israel
Authors: F. Nasser-Abu Alhija
Abstract:
In many countries, much efforts and resources are devoted to empowering and integrating minorities within the mainstream population. Major ventures in this route are crafted in higher education institutions where different outreach programs and methods such as lenient entry requirements, monitory incentives, learning skills workshops, tutoring and mentoring, are utilized. Although there is some information regarding these programs, their effectiveness still needs to be thoroughly examined. The Ethiopian community In Israel is one of the minority groups that has been targeted by sponsoring foundations and higher education institutions with the aim to ease the access, persistence and success of its young people in higher education and later in the job market. The evaluation study we propose to present focuses on the implementation of a program designed for this purpose. This program offers relevant candidates for study at a prestigious university a variety of generous incentives that include tuitions, livening allowance, tutoring, mentoring, skills and empowerment workshops and cultural meetings. Ten students were selected for the program and they started their studies in different subject areas before three and half years. A longitudinal evaluation has been conducted since the implementation of the program. Data were collected from different sources: participating students, program coordinator, mentors, tutors, program documents and university records. Questionnaires and interviews were used for collecting data on the different components of the program and on participants' perception of their effectiveness. Participants indicate that the lenient entry requirements and the monitory incentives are critical for starting their studies. During the first year, skills and empowering workshops, torturing and mentoring were evaluated as very important for persistence and success in studies. Tutoring was perceived as very important also at the second year but less importance is attributed to mentoring. Mixed results regarding integration in the Israeli culture emerged. The results are discussed with reference to findings from different settings around the world.Keywords: access to higher education, minority groups, monitory incentives, torturing, mentoring
Procedia PDF Downloads 37324605 Bridging Minds, Building Success Beyond Metrics: Uncovering Human Influence on Project Performance: Case Study of University of Salford
Authors: David Oyewumi Oyekunle, David Preston, Florence Ibeh
Abstract:
The paper provides an overview of the impacts of the human dimension in project management and team management on projects, which is increasingly affecting the performance of organizations. Recognizing its crucial significance, the research focuses on analyzing the psychological and interpersonal dynamics within project teams. This research is highly significant in the dynamic field of project management, as it addresses important gaps and offers vital insights that align with the constantly changing demands of the profession. A case study was conducted at the University of Salford to examine how human activity affects project management and performance. The study employed a mixed methodology to gain a deeper understanding of the real-world experiences of the subjects and project teams. Data analysis procedures to address the research objectives included the deductive approach, which involves testing a clear hypothesis or theory, as well as descriptive analysis and visualization. The survey comprised a sample size of 40 participants out of 110 project management professionals, including staff and final students in the Salford Business School, using a purposeful sampling method. To mitigate bias, the study ensured diversity in the sample by including both staff and final students. A smaller sample size allowed for more in-depth analysis and a focused exploration of the research objective. Conflicts, for example, are intricate occurrences shaped by a multitude of psychological stimuli and social interactions and may have either a deterrent perspective or a positive perspective on project performance and project management productivity. The study identified conflict elements, including culture, environment, personality, attitude, individual project knowledge, team relationships, leadership, and team dynamics among team members, as crucial human activities to minimize conflict. The findings are highly significant in the dynamic field of project management, as they address important gaps and offer vital insights that align with the constantly changing demands of the profession. It provided project professionals with valuable insights that can help them create a collaborative and high-performing project environment. Uncovering human influence on project performance, effective communication, optimal team synergy, and a keen understanding of project scope are necessary for the management of projects to attain exceptional performance and efficiency. For the research to achieve the aims of this study, it was acknowledged that the productive dynamics of teams and strong group cohesiveness are crucial for effectively managing conflicts in a beneficial and forward-thinking manner. Addressing the identified human influence will contribute to a more sustainable project management approach and offer opportunities for exploration and potential contributions to both academia and practical project management.Keywords: human dimension, project management, team dynamics, conflict resolution
Procedia PDF Downloads 10524604 Handling Missing Data by Using Expectation-Maximization and Expectation-Maximization with Bootstrapping for Linear Functional Relationship Model
Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, A. H. M. R. Imon
Abstract:
Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in two types of LFRM namely the full model of LFRM and in LFRM when the slope is estimated using a nonparametric method. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators
Procedia PDF Downloads 45524603 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell
Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan
Abstract:
In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell
Procedia PDF Downloads 20624602 Chemical Control Management Strategies for Corm Rot in Gladiolus communis L. under Field Conditions
Authors: Shahbaz Ahmad, Muhammad Ali, Sahar Naz
Abstract:
Corm rot is caused by the fungus Fusarium oxysporum f.sp. gladioli and it causes remarkable losses to the growers. Experiment was conducted in order to find some viable recommendations for this agronomically as well as economically important problem. Four fungicides, namely Carbendazim, Mancozeb, Thiophanate methyl and Chlorothalonil were used to control corm rot in gladiolus field. Fungicides were applied singly as foliar, in irrigation as well as with sulphuric acid in variable doses. The results revealed that application of all fungicides was variably effective to control corm rot in acid mixed irrigation followed by fungicide in irrigation. The application of all fungicides in various combinations was observed to be ineffective at all three doses.Keywords: gladiolus, corm rot, Fusarium oxysporum, fungicides
Procedia PDF Downloads 43424601 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation
Authors: Praveen Kumar, R. Uma, R. P. Sharma
Abstract:
This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation
Procedia PDF Downloads 7324600 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification
Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi
Abstract:
Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix
Procedia PDF Downloads 13724599 A Novel Approach for Energy Utilisation in a Pyrolysis Plant
Authors: S. Murugan, Bohumil Horak
Abstract:
Pyrolysis is one of the possible technologies to derive energy from waste organic substances. In recent years, pilot level and demonstrated plants have been installed in few countries. The heat energy lost during the process is not effectively utilized resulting in less savings of energy and money. This paper proposes a novel approach to integrate a combined heat and power unit(CHP) and reduce the primary energy consumption in a tyre pyrolysis pilot plant. The proposal primarily uses the micro combined heat and power concept that will help to produce both heat and power in the process.Keywords: pyrolysis, waste tyres, waste plastics, biomass, waste heat
Procedia PDF Downloads 32824598 Interdisciplinary Approach in Vocational Training for Orthopaedic Surgery
Authors: Mihail Nagea, Olivera Lupescu, Elena Taina Avramescu, Cristina Patru
Abstract:
Classical education of orthopedic surgeons involves lectures, self study, workshops and cadaver dissections, and sometimes supervised practical training within surgery, which quite seldom gives the young surgeons the feeling of being unable to apply what they have learned especially in surgical practice. The purpose of this paper is to present a different approach from the classical one, which enhances the practical skills of the orthopedic trainees and prepare them for future practice. The paper presents the content of the research project 2015-1-RO01-KA202-015230, ERASMUS+ VET ‘Collaborative learning for enhancing practical skills for patient-focused interventions in gait rehabilitation after orthopedic surgery’ which, using e learning as a basic tool , delivers to the trainees not only courses, but especially practical information through videos and case scenarios including gait analysis in order to build patient focused therapeutic plans, adapted to the characteristics of each patient. The outcome of this project is to enhance the practical skills in orthopedic surgery and the results are evaluated following the answers to the questionnaires, but especially the reactions within the case scenarios. The participants will thus follow the idea that any mistake within solving the cases might represent a failure of treating a real patient. This modern approach, besides using interactivity to evaluate the theoretical and practical knowledge of the trainee, increases the sense of responsibility, as well as the ability to react properly in real cases.Keywords: interdisciplinary approach, gait analysis, orthopedic surgery, vocational training
Procedia PDF Downloads 25124597 Performance Comparison of Wideband Covariance Matrix Sparse Representation (W-CMSR) with Other Wideband DOA Estimation Methods
Authors: Sandeep Santosh, O. P. Sahu
Abstract:
In this paper, performance comparison of wideband covariance matrix sparse representation (W-CMSR) method with other existing wideband Direction of Arrival (DOA) estimation methods has been made.W-CMSR relies less on a priori information of the incident signal number than the ordinary subspace based methods.Consider the perturbation free covariance matrix of the wideband array output. The diagonal covariance elements are contaminated by unknown noise variance. The covariance matrix of array output is conjugate symmetric i.e its upper right triangular elements can be represented by lower left triangular ones.As the main diagonal elements are contaminated by unknown noise variance,slide over them and align the lower left triangular elements column by column to obtain a measurement vector.Simulation results for W-CMSR are compared with simulation results of other wideband DOA estimation methods like Coherent signal subspace method (CSSM), Capon, l1-SVD, and JLZA-DOA. W-CMSR separate two signals very clearly and CSSM, Capon, L1-SVD and JLZA-DOA fail to separate two signals clearly and an amount of pseudo peaks exist in the spectrum of L1-SVD.Keywords: W-CMSR, wideband direction of arrival (DOA), covariance matrix, electrical and computer engineering
Procedia PDF Downloads 47124596 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data
Authors: Kai Warsoenke, Maik Mackiewicz
Abstract:
To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.Keywords: automotive production, machine learning, process optimization, smart tolerancing
Procedia PDF Downloads 116