Search results for: cyber operation capabilities
1021 A Graph Library Development Based on the Service-Oriented Architecture: Used for Representation of the Biological Systems in the Computer Algorithms
Authors: Mehrshad Khosraviani, Sepehr Najjarpour
Abstract:
Considering the usage of graph-based approaches in systems and synthetic biology, and the various types of the graphs employed by them, a comprehensive graph library based on the three-tier architecture (3TA) was previously introduced for full representation of the biological systems. Although proposing a 3TA-based graph library, three following reasons motivated us to redesign the graph library based on the service-oriented architecture (SOA): (1) Maintaining the accuracy of the data related to an input graph (including its edges, its vertices, its topology, etc.) without involving the end user: Since, in the case of using 3TA, the library files are available to the end users, they may be utilized incorrectly, and consequently, the invalid graph data will be provided to the computer algorithms. However, considering the usage of the SOA, the operation of the graph registration is specified as a service by encapsulation of the library files. In other words, overall control operations needed for registration of the valid data will be the responsibility of the services. (2) Partitioning of the library product into some different parts: Considering 3TA, a whole library product was provided in general. While here, the product can be divided into smaller ones, such as an AND/OR graph drawing service, and each one can be provided individually. As a result, the end user will be able to select any parts of the library product, instead of all features, to add it to a project. (3) Reduction of the complexities: While using 3TA, several other libraries must be needed to add for connecting to the database, responsibility of the provision of the needed library resources in the SOA-based graph library is entrusted with the services by themselves. Therefore, the end user who wants to use the graph library is not involved with its complexity. In the end, in order to make the library easier to control in the system, and to restrict the end user from accessing the files, it was preferred to use the service-oriented architecture (SOA) over the three-tier architecture (3TA) and to redevelop the previously proposed graph library based on it.Keywords: Bio-Design Automation, Biological System, Graph Library, Service-Oriented Architecture, Systems and Synthetic Biology
Procedia PDF Downloads 3111020 Analyzing the Untenable Corruption Intricate Patterns in Africa and Combating Strategies for the Efficiency of Public Sector Supply Chains
Authors: Charles Mazhazhate
Abstract:
This study interrogates and analyses the intricate kin- and- kith network patterns of corruption and mismanagement of resources prevalent in public sector supply chains bedeviling the developing economies of Sub-Saharan Africa with particular reference to Zimbabwe. This is forcing governments to resort to harsh fiscal policies that see their citizens paying high taxes against a backdrop of incomes below the poverty datum line, and this negatively affects their quality of life. The corporate world is also affected by the various tax-regime instituted. Mismanagement of resources and corrupt practices are rampant in state-owned enterprises to the extent that institutional policies, procedures, and practices are often flouted for the benefit of a clique of individuals. This interwoven in kith and kin blood human relations in organizations where appointments to critical positions are based on ascribed status. People no longer place value in their systems to make them work thereby violating corporate governance principles. Greediness and ‘unholy friendship connections’ are instrumental in fueling the employment of people who know each other from their discrete backgrounds. Such employments or socio-metric unions are meant to protect those at the top by giving them intelligent information through spying on what other subordinates are doing inside and outside the organization. This practice has led to the underperforming of organizations as those employees with connections and their upper echelons favorites connive to abuse resources for their own benefit. Even if culprits are known, no draconian measures are employed as a deterrence measure. Public value along public sector supply chains is lost. The study used a descriptive case study research design on fifty organizations in Zimbabwe mainly state-owned enterprises. Both qualitative and quantitative instrumentations were used. Both Snowball and random sampling techniques were used. The study found out that in all the fifty SOEs, there were employees in key positions related to top management, with tentacles feeding into the law enforcement agents, judiciary, security systems, and the executive. Such employees in public seem not to know each other with but would be involved in dirty scams and then share the proceeds with top people behind the scenes. The study also established that the same employees do not have the necessary competencies, qualifications, abilities, and capabilities to be in those positions. This culture is now strong that it is difficult to bust. The study recommends recruitment of all employees through an independent employment bureau to ensure strategic fit.Keywords: corruption, state owned enterprises, strategic fit, public sector supply chains, efficiency
Procedia PDF Downloads 1601019 Mercury Contamination of Wetland Caused by Wastewater from Chlor-Alkali Industry
Authors: Mitsuo Yoshida
Abstract:
A significant mercury contamination of soil/sediment was unveiled by an environmental monitoring program in a wetland along La Plata River, west to Montevideo City, Uruguay. The mercury contamination was caused by industrial wastewater discharged from a chlor-alkali plant using a mercury-cell process. The contamination level is above 60 mg/kg in soil/sediment. Most of mercury (Hg) in the environment is inorganic, but some fractions are converted by bacteria to methylmercury (MeHg), a toxic organic compound. MeHg biologically accumulates through a food-chain and become serious public health risk. In order to clarify the contaminated part for countermeasure operation, an intervention value of mercury contamination of sediment/soil was defined as 15 mg/kg (total Hg) by the authority. According to the intervention value, mercury contaminated area in the La Plata site is approximately 48,280 m² and estimated total volume of contaminated sediments/soils was around 18,750 m³. The countermeasures to contaminated zone were proposed in two stages; (i) mitigation of risks for public health and (ii) site remediation. The first stage is an installation of fens and net around the contamination zone, for mitigating risks of exposure, inhalation, and intake. The food chain among wetland-river ecosystem was also interrupted by the installation of net and fens. The state of mercury contamination in La Plata site and plan of countermeasure was disclosed to local people and the public, and consensus on setting off-limit area was successfully achieved. Mass media also contribute to share the information on the contamination site. The cost for countermeasures was borne by the industry under the polluter-pay-principle.Keywords: chlor-alkali plant, mercury contamination, polluter pay principle, Uruguay, wetland
Procedia PDF Downloads 1371018 Accuracy/Precision Evaluation of Excalibur I: A Neurosurgery-Specific Haptic Hand Controller
Authors: Hamidreza Hoshyarmanesh, Benjamin Durante, Alex Irwin, Sanju Lama, Kourosh Zareinia, Garnette R. Sutherland
Abstract:
This study reports on a proposed method to evaluate the accuracy and precision of Excalibur I, a neurosurgery-specific haptic hand controller, designed and developed at Project neuroArm. Having an efficient and successful robot-assisted telesurgery is considerably contingent on how accurate and precise a haptic hand controller (master/local robot) would be able to interpret the kinematic indices of motion, i.e., position and orientation, from the surgeon’s upper limp to the slave/remote robot. A proposed test rig is designed and manufactured according to standard ASTM F2554-10 to determine the accuracy and precision range of Excalibur I at four different locations within its workspace: central workspace, extreme forward, far left and far right. The test rig is metrologically characterized by a coordinate measuring machine (accuracy and repeatability < ± 5 µm). Only the serial linkage of the haptic device is examined due to the use of the Structural Length Index (SLI). The results indicate that accuracy decreases by moving from the workspace central area towards the borders of the workspace. In a comparative study, Excalibur I performs on par with the PHANToM PremiumTM 3.0 and more accurate/precise than the PHANToM PremiumTM 1.5. The error in Cartesian coordinate system shows a dominant component in one direction (δx, δy or δz) for the movements on horizontal, vertical and inclined surfaces. The average error magnitude of three attempts is recorded, considering all three error components. This research is the first promising step to quantify the kinematic performance of Excalibur I.Keywords: accuracy, advanced metrology, hand controller, precision, robot-assisted surgery, tele-operation, workspace
Procedia PDF Downloads 3361017 Findings: Impact of a Sustained Health Promoting Workplace on Stock Price Performance and Beta; A Singapore Case
Authors: Wee Tong Liaw, Elaine Wong Yee Sing
Abstract:
The main objective and focus of this study are to establish the significance of a sustained health promoting workplace on stock and portfolio returns focusing on companies listed on the Singapore stock exchange, using a two-factor model comprising of the single factor CAPM and a 'health promoting workplace' factor. The 'health promoting workplace' factor represents the excess returns derived between two portfolios of component stocks that, when combined, would represent a top tier stock market index in Singapore, namely the STI index. The first portfolio represents companies that are independently assessed by the Singapore’s Health Award, SHA, to have a sustained and comprehensive health promoting workplace (SHA-STI portfolio) and the second portfolio represents companies that had not been independently assessed (Non-SHA STI portfolio). Since 2001, many companies in Singapore have voluntarily participated in the bi-annual Singapore HEALTH Award initiated by the Health Promotion Board of Singapore (HPB). The Singapore HEALTH Award (SHA), is an industry-wide award and assessment process. SHA assesses and recognizes employers in Singapore for implementing a comprehensive and sustainable health promotion programme at their workplaces. When using a ten year holding period instead of a one year holding period, excess returns in the SHA-STI portfolio over Non-SHA STI portfolio were consistently being observed over all test periods, during 2001 to 2013. In addition, when applied to the SHA-STI portfolio, results from the Two Factor Model consistently revealed higher explanatory powers across all test periods for the portfolio as well as all the individual component stocks in SHA-STI portfolio, than the single factor CAPM model. However, with respect to attaining higher level of achievement in the Singapore Health Award, this study did not show any incentive for selecting listed companies that have achieved a higher level of award. Results from this study would give further insights to investors and fund managers alike who intend to consider health promoting workplace as a risk factor in their stock or portfolio selection process, in particular for investors who have a preference for STI’s component stocks and with a longer investment horizon. Key micro factors like management abilities, business development strategies and production capabilities that meet the needs of market would create the demand for a company’s product(s) or service(s) and consequently contribute to its top line and profitability. Thereafter, the existence of a sustainable health promoting workplace would be a key catalytic factor in sustaining a productive workforce needed to support the continued success of a profitable business.Keywords: asset pricing model, company's performance, stock returns, financial risk factor, sustained health promoting workplace
Procedia PDF Downloads 1691016 Conciliation Bodies as an Effective Tool for the Enforcement of Air Passenger Rights: Examination of an Exemplary Model in Germany
Authors: C. Hipp
Abstract:
The EU Regulation (EC) No 261/2004 under which air passengers can claim compensation in the event of denied boarding, cancellation or long delay of flights has to be regarded as a substantial progress for the consumer protection in the field of air transport since it went into force in February 2005. Nevertheless, different reviews of its effective functioning demonstrate that most passengers affected by service disruptions do not enforce their complaints and claims towards the airline. The main cause of this is not only the unclear legal situation due to the fact that the regulation itself suffers from many undetermined terms and loopholes it is also attributable to the strategy of the airlines which do not handle the complaints of the passengers or exclude their duty to compensate them. Economically contemplated, reasons like the long duration of a trial and the cost risk in relation to the amount of compensation make it comprehensible that passengers are deterred from enforcing their rights by filing a lawsuit. The paper focusses on the alternative dispute resolution namely the recently established conciliation bodies which deal with air passenger rights. In this paper, the Conciliation Body for Public Transport in Germany (Schlichtungsstelle für den öffentlichen Personenverkehr – SÖP) is examined as a successful example of independent consumer arbitration service. It was founded in 2009 and deals with complaints in the field of air passenger rights since November 2013. According to the current situation one has to admit that due to its structure and operation it meets on the one hand the needs of the airlines by giving them an efficient tool of their customer relation management and on the other hand that it contributes to the enforcement of air passenger rights effectively.Keywords: air passenger rights, alternative dispute resolution, consumer protection, EU law regulation (EC) 261/2004
Procedia PDF Downloads 2301015 A Challenge to Acquire Serious Victims’ Locations during Acute Period of Giant Disasters
Authors: Keiko Shimazu, Yasuhiro Maida, Tetsuya Sugata, Daisuke Tamakoshi, Kenji Makabe, Haruki Suzuki
Abstract:
In this paper, we report how to acquire serious victims’ locations in the Acute Stage of Large-scale Disasters, in an Emergency Information Network System designed by us. The background of our concept is based on the Great East Japan Earthquake occurred on March 11th, 2011. Through many experiences of national crises caused by earthquakes and tsunamis, we have established advanced communication systems and advanced disaster medical response systems. However, Japan was devastated by huge tsunamis swept a vast area of Tohoku causing a complete breakdown of all the infrastructures including telecommunications. Therefore, we noticed that we need interdisciplinary collaboration between science of disaster medicine, regional administrative sociology, satellite communication technology and systems engineering experts. Communication of emergency information was limited causing a serious delay in the initial rescue and medical operation. For the emergency rescue and medical operations, the most important thing is to identify the number of casualties, their locations and status and to dispatch doctors and rescue workers from multiple organizations. In the case of the Tohoku earthquake, the dispatching mechanism and/or decision support system did not exist to allocate the appropriate number of doctors and locate disaster victims. Even though the doctors and rescue workers from multiple government organizations have their own dedicated communication system, the systems are not interoperable.Keywords: crisis management, disaster mitigation, messing, MGRS, military grid reference system, satellite communication system
Procedia PDF Downloads 2361014 The Impact of Neuroscience Knowledge on the Field of Education
Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena
Abstract:
Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors
Procedia PDF Downloads 621013 Economic Assessment of CO2-Based Methane, Methanol and Polyoxymethylene Production
Authors: Wieland Hoppe, Nadine Wachter, Stefan Bringezu
Abstract:
Carbon dioxide (CO2) utilization might be a promising way to substitute fossil raw materials like coal, oil or natural gas as carbon source of chemical production. While first life cycle assessments indicate a positive environmental performance of CO2-based process routes, a commercialization of CO2 is limited by several economic obstacles up to now. We, therefore, analyzed the economic performance of the three CO2-based chemicals methane and methanol as basic chemicals and polyoxymethylene as polymer on a cradle-to-gate basis. Our approach is oriented towards life cycle costing. The focus lies on the cost drivers of CO2-based technologies and options to stimulate a CO2-based economy by changing regulative factors. In this way, we analyze various modes of operation and give an outlook for the potentially cost-effective development in the next decades. Biogas, waste gases of a cement plant, and flue gases of a waste incineration plant are considered as CO2-sources. The energy needed to convert CO2 into hydrocarbons via electrolysis is assumed to be supplied by wind power, which is increasingly available in Germany. Economic data originates from both industrial processes and process simulations. The results indicate that CO2-based production technologies are not competitive with conventional production methods under present conditions. This is mainly due to high electricity generation costs and regulative factors like the German Renewable Energy Act (EEG). While the decrease in production costs of CO2-based chemicals might be limited in the next decades, a modification of relevant regulative factors could potentially promote an earlier commercialization.Keywords: carbon capture and utilization (CCU), economic assessment, life cycle costing (LCC), power-to-X
Procedia PDF Downloads 2901012 Technology Changing Senior Care
Authors: John Kosmeh
Abstract:
Introduction – For years, senior health care and skilled nursing facilities have been plagued with the dilemma of not having the necessary tools and equipment to adequately care for senior residents in their communities. This has led to high transport rates to emergency departments and high 30-day readmission rates, costing billions of unnecessary dollars each year, as well as quality assurance issues. Our Senior care telemedicine program is designed to solve this issue. Methods – We conducted a 1-year pilot program using our technology coupled with our 24/7 telemedicine program with skilled nursing facilities in different parts of the United States. We then compared transports rates and 30-day readmission rates to previous years before the use of our program, as well as transport rates of other communities of similar size not using our program. This data was able to give us a clear and concise look at the success rate of reducing unnecessary transport and readmissions as well as cost savings. Results – A 94% reduction nationally of unnecessary out-of-facility transports, and to date, complete elimination of 30-day readmissions. Our virtual platform allowed us to instruct facility staff on the utilization of our tools and system as well as deliver treatment by our ER-trained providers. Delay waiting for PCP callbacks was eliminated. We were able to obtain lung, heart, and abdominal ultrasound imaging, 12 lead EKG, blood labs, auscultate lung and heart sounds, and collect other diagnostic tests at the bedside within minutes, providing immediate care and allowing us to treat residents within the SNF. Are virtual capabilities allowed for loved ones, family members, and others who had medical power of attorney to virtually connect with us at the time of visit, to speak directly with the medical provider, providing increased confidence in the decision to treat the resident in-house. The decline in transports and readmissions will greatly reduce governmental cost burdens, as well as fines imposed on SNF for high 30-day readmissions, reduce the cost of Medicare A readmissions, and significantly impact the number of patients visiting overcrowded ERs. Discussion – By utilizing our program, SNF can effectively reduce the number of unnecessary transports of residents, as well as create significant savings from loss of day rates, transportation costs, and high CMS fines. The cost saving is in the thousands monthly, but more importantly, these facilities can create a higher quality of life and medical care for residents by providing definitive care instantly with ER-trained personnel.Keywords: senior care, long term care, telemedicine, technology, senior care communities
Procedia PDF Downloads 941011 Application of Response Surface Methodology to Optimize the Factor Influencing the Wax Deposition of Malaysian Crude Oil
Authors: Basem Elarbe, Ibrahim Elganidi, Norida Ridzuan, Norhyati Abdullah
Abstract:
Wax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the oil and gas industry due to low-temperature conditions. It may lead to a reduction in production, shut-in, plugging of pipelines and increased fluid viscosity. The most significant popular approach to solve this issue is by injection of a wax inhibitor into the channel. This research aims to determine the amount of wax deposition of Malaysian crude oil by estimating the effective parameters using (Design-Expert version 7.1.6) by response surface methodology (RSM) method. Important parameters affecting wax deposition such as cold finger temperature, inhibitor concentration and experimental duration were investigated. It can be concluded that SA-co-BA copolymer had a higher capability of reducing wax in different conditions where the minimum point of wax reduction was found at 300 rpm, 14℃, 1h, 1200 ppmThe amount of waxes collected for each parameter were 0.12g. RSM approach was applied using rotatable central composite design (CCD) to minimize the wax deposit amount. The regression model’s variance (ANOVA) results revealed that the R2 value of 0.9906, indicating that the model can be clarified 99.06% of the data variation, and just 0.94% of the total variation were not clarified by the model. Therefore, it indicated that the model is extremely significant, confirming a close agreement between the experimental and the predicted values. In addition, the result has shown that the amount of wax deposit decreased significantly with the increase of temperature and the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA), which were set at 14°C and 1200 ppm, respectively. The amount of wax deposit was successfully reduced to the minimum value of 0.01 g after the optimization.Keywords: wax deposition, SABA inhibitor, RSM, operation factors
Procedia PDF Downloads 2851010 A Hybrid Energy Storage Module for the Emergency Energy System of the Community Shelter in Yucatán, México
Authors: María Reveles-Miranda, Daniella Pacheco-Catalán
Abstract:
Sierra Papacal commissary is located north of Merida, Yucatan, México, where the indigenous Maya population predominates. Due to its location, the region has an elevation of fewer than 4.5 meters above sea level, with a high risk of flooding associated with storms and hurricanes and a high vulnerability of infrastructure and housing in the presence of strong gusts of wind. In environmental contingencies, the challenge is providing an autonomous electrical supply using renewable energy sources that cover vulnerable populations' health, food, and water pumping needs. To address this challenge, a hybrid energy storage module is proposed for the emergency photovoltaic (PV) system of the community shelter in Sierra Papacal, Yucatán, which combines high-energy-density batteries and high-power-density supercapacitors (SC) in a single module, providing a quick response to energy demand, reducing the thermal stress on batteries and extending their useful life. Incorporating SC in energy storage modules can provide fast response times to power variations and balanced energy extraction, ensuring a more extended period of electrical supply to vulnerable populations during contingencies. The implemented control strategy increases the module's overall performance by ensuring the optimal use of devices and balanced energy exploitation. The operation of the module with the control algorithm is validated with MATLAB/Simulink® and experimental tests.Keywords: batteries, community shelter, environmental contingencies, hybrid energy storage, isolated photovoltaic system, supercapacitors
Procedia PDF Downloads 911009 Finite Element Model to Evaluate Gas Conning Phenomenon in Naturally Fractured Oil Reservoirs
Authors: Reda Abdel Azim
Abstract:
Gas conning phenomenon considered one of the prevalent matter in oil field applications as it significantly affects the amount of produced oil, increase cost of production operation and it has a direct effect on oil reservoirs recovery efficiency as well. Therefore, evaluation of such phenomenon and study the reservoir mechanisms that may strongly affect invading gas to the producing formation is crucial. Gas conning is a result of an imbalance between two major forces controlling the oil production: gravitational and viscous forces especially in naturally fractured reservoirs where the capillary pressure forces are negligible. Once the gas invading the producing formation near the wellbore due to large producing oil rate, the oil gas contact will change and such reservoirs are prone to gas conning. Moreover, the oil volume expected to be produced requires the use of long horizontal perforated well. This work presents a numerical simulation study to predict and propose solutions to gas coning in naturally fractured oil reservoirs. The simulation work is based on discrete fractures and permeability tensors approaches. The governing equations are discretized using finite element approach and Galerkin’s least square technique (GLS) is employed to stabilize the equation solutions. The developed simulator is validated against Eclipse-100 using horizontal fractures. The matrix and fracture properties are modelled. Critical rate, breakthrough time and GOR are determined to be used in investigation of the effect of matrix and fracture properties on gas coning. Results show that fracture distribution in terms of diverse dip and azimuth has a great effect on conning occurring. In addition, fracture porosity, anisotropy ratio, and fracture aperture.Keywords: gas conning, finite element, fractured reservoirs, multiphase
Procedia PDF Downloads 1951008 Innovating Electronics Engineering for Smart Materials Marketing
Authors: Muhammad Awais Kiani
Abstract:
The field of electronics engineering plays a vital role in the marketing of smart materials. Smart materials are innovative, adaptive materials that can respond to external stimuli, such as temperature, light, or pressure, in order to enhance performance or functionality. As the demand for smart materials continues to grow, it is crucial to understand how electronics engineering can contribute to their marketing strategies. This abstract presents an overview of the role of electronics engineering in the marketing of smart materials. It explores the various ways in which electronics engineering enables the development and integration of smart features within materials, enhancing their marketability. Firstly, electronics engineering facilitates the design and development of sensing and actuating systems for smart materials. These systems enable the detection and response to external stimuli, providing valuable data and feedback to users. By integrating sensors and actuators into materials, their functionality and performance can be significantly enhanced, making them more appealing to potential customers. Secondly, electronics engineering enables the creation of smart materials with wireless communication capabilities. By incorporating wireless technologies such as Bluetooth or Wi-Fi, smart materials can seamlessly interact with other devices, providing real-time data and enabling remote control and monitoring. This connectivity enhances the marketability of smart materials by offering convenience, efficiency, and improved user experience. Furthermore, electronics engineering plays a crucial role in power management for smart materials. Implementing energy-efficient systems and power harvesting techniques ensures that smart materials can operate autonomously for extended periods. This aspect not only increases their market appeal but also reduces the need for constant maintenance or battery replacements, thus enhancing customer satisfaction. Lastly, electronics engineering contributes to the marketing of smart materials through innovative user interfaces and intuitive control mechanisms. By designing user-friendly interfaces and integrating advanced control systems, smart materials become more accessible to a broader range of users. Clear and intuitive controls enhance the user experience and encourage wider adoption of smart materials in various industries. In conclusion, electronics engineering significantly influences the marketing of smart materials by enabling the design of sensing and actuating systems, wireless connectivity, efficient power management, and user-friendly interfaces. The integration of electronics engineering principles enhances the functionality, performance, and marketability of smart materials, making them more adaptable to the growing demand for innovative and connected materials in diverse industries.Keywords: electronics engineering, smart materials, marketing, power management
Procedia PDF Downloads 591007 Window Analysis and Malmquist Index for Assessing Efficiency and Productivity Growth in a Pharmaceutical Industry
Authors: Abbas Al-Refaie, Ruba Najdawi, Nour Bata, Mohammad D. AL-Tahat
Abstract:
The pharmaceutical industry is an important component of health care systems throughout the world. Measurement of a production unit-performance is crucial in determining whether it has achieved its objectives or not. This paper applies data envelopment (DEA) window analysis to assess the efficiencies of two packaging lines; Allfill (new) and DP6, in the Penicillin plant in a Jordanian Medical Company in 2010. The CCR and BCC models are used to estimate the technical efficiency, pure technical efficiency, and scale efficiency. Further, the Malmquist productivity index is computed to measure then employed to assess productivity growth relative to a reference technology. Two primary issues are addressed in computation of Malmquist indices of productivity growth. The first issue is the measurement of productivity change over the period, while the second is to decompose changes in productivity into what are generally referred to as a ‘catching-up’ effect (efficiency change) and a ‘frontier shift’ effect (technological change). Results showed that DP6 line outperforms the Allfill in technical and pure technical efficiency. However, the Allfill line outperforms DP6 line in scale efficiency. The obtained efficiency values can guide production managers in taking effective decisions related to operation, management, and plant size. Moreover, both machines exhibit a clear fluctuations in technological change, which is the main reason for the positive total factor productivity change. That is, installing a new Allfill production line can be of great benefit to increasing productivity. In conclusions, the DEA window analysis combined with the Malmquist index are supportive measures in assessing efficiency and productivity in pharmaceutical industry.Keywords: window analysis, malmquist index, efficiency, productivity
Procedia PDF Downloads 6091006 A Paradigm Shift into the Primary Teacher Education Program in Bangladesh
Authors: Happy Kumar Das, Md. Shahriar Shafiq
Abstract:
This paper portrays an assumed change in the primary teacher education program in Bangladesh. An initiative has been taken with a vision to ensure an integrated approach to developing trainee teachers’ knowledge and understanding about learning at a deeper level, and with that aim, the Diploma in Primary Education (DPEd) program replaces the Certificate-in-Education (C-in-Ed) program in Bangladeshi context for primary teachers. The stated professional values of the existing program such as ‘learner-centered’, ‘reflective’ approach to pedagogy tend to contradict the practice exemplified through the delivery mechanism. To address the challenges, through the main two components (i) Training Institute-based learning and (ii) School-based learning, the new program tends to cover knowledge and value that underpin the actual practice of teaching. These two components are given approximately equal weighting within the program in terms of both time, content and assessment as the integration seeks to combine theoretical knowledge with practical knowledge and vice versa. The curriculum emphasizes a balance between the taught modules and the components of the practicum. For example, the theories of formative and summative assessment techniques are elaborated through focused reflection on case studies as well as observation and teaching practice in the classroom. The key ideology that is reflected through this newly developed program is teacher’s belief in ‘holistic education’ that can lead to creating opportunities for skills development in all three (Cognitive, Social and Affective) domains simultaneously. The proposed teacher education program aims to address these areas of generic skill development alongside subject-specific learning outcomes. An exploratory study has been designed in this regard where 7 Primary Teachers’ Training Institutes (PTIs) in 7 divisions of Bangladesh was used for experimenting DPEd program. The analysis was done based on document analysis, periodical monitoring report and empirical data gathered from the experimental PTIs. The findings of the study revealed that the intervention brought positive change in teachers’ professional beliefs, attitude and skills along with improvement of school environment. Teachers in training schools work together for collective professional development where they support each other through lesson study, action research, reflective journals, group sharing and so on. Although the DPEd program addresses the above mentioned factors, one of the challenges of the proposed program is the issue of existing capacity and capabilities of the PTIs towards its effective implementation.Keywords: Bangladesh, effective implementation, primary teacher education, reflective approach
Procedia PDF Downloads 2171005 Influence of Infinite Elements in Vibration Analysis of High-Speed Railway Track
Authors: Janaki Rama Raju Patchamatla, Emani Pavan Kumar
Abstract:
The idea of increasing the existing train speeds and introduction of the high-speed trains in India as a part of Vision-2020 is really challenging from both economic viability and technical feasibility. More than economic viability, technical feasibility has to be thoroughly checked for safe operation and execution. Trains moving at high speeds need a well-established firm and safe track thoroughly tested against vibration effects. With increased speeds of trains, the track structure and layered soil-structure interaction have to be critically assessed for vibration and displacements. Physical establishment of track, testing and experimentation is a costly and time taking process. Software-based modelling and simulation give relatively reliable, cost-effective means of testing effects of critical parameters like sleeper design and density, properties of track and sub-grade, etc. The present paper reports the applicability of infinite elements in reducing the unrealistic stress-wave reflections from so-called soil-structure interface. The influence of the infinite elements is quantified in terms of the displacement time histories of adjoining soil and the deformation pattern in general. In addition, the railhead response histories at various locations show that the numerical model is realistic without any aberrations at the boundaries. The numerical model is quite promising in its ability to simulate the critical parameters of track design.Keywords: high speed railway track, finite element method, Infinite elements, vibration analysis, soil-structure interface
Procedia PDF Downloads 2721004 Post Operative Analgesia after Orthotopic Liver Transplantation; A Clinical Randomized Trial
Authors: Soudeh Tabashi, Mohammadreza Moshari, Parisa Sezari
Abstract:
Introduction: Postoperative analgesia in Orthotopic Liver Transplantation (OLT) surgery is challenging for anesthesiologists. Although OLT is one of the most extensive abdominal operations, it seems that patients don’t suffer from severe post operative pain. On the other hands drug metabolism is unpredictable due to unknown graft function. The aim of this study was to compare intraoperative infusion of remifentanil versus fentanyl in postoperative opioid demand in patients with OLT and evaluating the complications in two groups. Method: In this double-blind clinical trial 34 patients who had OLT were included. They divided randomly in two groups of Remifentanil (R) and Fentanyl (F). Patients in group R and F received infusion of Remifentanil 0.3-1 µg/Kg/min and Fentanyl 0.3-1 µg/Kg/min during maintenance of anesthesia. Post operative pain were measured in 6, 12, 18, 24 hours and second and third days after surgery with Numeric Rate Scale (NRS). Patients had received intravenous acetaminophen as rescue therapy with NRS of 3 or more. In addition to demographic information, post operative opioid consumption were recorded as the primary outcome. Intraoperative blood transfusion, intraoperative inotropic drugs consumption, weaning time and intensive care unit stay were also evaluated. Results: Total dose of acetaminophen consumption in first 3 days after surgery did not have significant difference between two groups (Pvalue=0.716). intraoperative inotrope consumption, blood transfusion and post operative weaning time and ICU stay were also similar in both groups. Conclusion: This study demonstrates that intraoperative infusion of remifentanil in OLT have the same effect on post operative pain management as fentanyl. Despite the complications of operation were not increased by remifentanil.Keywords: liver transplantation, postoperative pain, remifentanil, fentanyl
Procedia PDF Downloads 681003 Seepage Analysis through Earth Dam Embankment: Case Study of Batu Dam
Authors: Larifah Mohd Sidik, Anuar Kasa
Abstract:
In recent years, the demands for raw water are increasing along with the growth of the economy and population. Hence, the need for the construction and operation of dams is one of the solutions for the management of water resources problems. The stability of the embankment should be taken into consideration to evaluate the safety of retaining water. The safety of the dam is mostly based on numerous measurable components, for instance, seepage flowrate, pore water pressure and deformation of the embankment. Seepage and slope stability is the primary and most important reason to ascertain the overall safety behavior of the dams. This research study was conducted to evaluate static condition seepage and slope stability performances of Batu dam which is located in Kuala Lumpur capital city. The numerical solution Geostudio-2012 software was employed to analyse the seepage using finite element method, SEEP/W and slope stability using limit equilibrium method, SLOPE/W for three different cases of reservoir level operations; normal and flooded condition. Results of seepage analysis using SEEP/W were utilized as parental input for the analysis of SLOPE/W. Sensitivity analysis on hydraulic conductivity of material was done and calibrated to minimize the relative error of simulation SEEP/W, where the comparison observed field data and predicted value were also carried out. In seepage analysis, such as leakage flow rate, pore water distribution and location of a phreatic line are determined using the SEEP/W. The result of seepage analysis shows the clay core effectively lowered the phreatic surface and no piping failure is shown in the result. Hence, the total seepage flux was acceptable and within the permissible limit.Keywords: earth dam, dam safety, seepage, slope stability, pore water pressure
Procedia PDF Downloads 2201002 Technology, Ethics and Experience: Understanding Interactions as Ethical Practice
Authors: Joan Casas-Roma
Abstract:
Technology has become one of the main channels through which people engage in most of their everyday activities; from working to learning, or even when socializing, technology often acts as both an enabler and a mediator of such activities. Moreover, the affordances and interactions created by those technological tools determine the way in which the users interact with one another, as well as how they relate to the relevant environment, thus favoring certain kinds of actions and behaviors while discouraging others. In this regard, virtue ethics theories place a strong focus on a person's daily practice (understood as their decisions, actions, and behaviors) as the means to develop and enhance their habits and ethical competences --such as their awareness and sensitivity towards certain ethically-desirable principles. Under this understanding of ethics, this set of technologically-enabled affordances and interactions can be seen as the possibility space where the daily practice of their users takes place in a wide plethora of contexts and situations. At this point, the following question pops into mind: could these affordances and interactions be shaped in a way that would promote behaviors and habits basedonethically-desirable principles into their users? In the field of game design, the MDA framework (which stands for Mechanics, Dynamics, Aesthetics) explores how the interactions enabled within the possibility space of a game can lead to creating certain experiences and provoking specific reactions to the players. In this sense, these interactions can be shaped in ways thatcreate experiences to raise the players' awareness and sensitivity towards certain topics or principles. This research brings together the notions of technological affordances, the notions of practice and practical wisdom from virtue ethics, and the MDA framework from game design in order to explore how the possibility space created by technological interactions can be shaped in ways that enable and promote actions and behaviors supporting certain ethically-desirable principles. When shaped accordingly, interactions supporting certain ethically-desirable principlescould allow their users to carry out the kind of practice that, according to virtue ethics theories, provides the grounds to develop and enhance their awareness, sensitivity, and ethical reasoning capabilities. Moreover, and because ethical practice can happen collaterally in almost every context, decision, and action, this additional layer could potentially be applied in a wide variety of technological tools, contexts, and functionalities. This work explores the theoretical background, as well as the initial considerations and steps that would be needed in order to harness the potential ethically-desirable benefits that technology can bring, once it is understood as the space where most of their users' daily practice takes place.Keywords: ethics, design methodology, human-computer interaction, philosophy of technology
Procedia PDF Downloads 1581001 Fuzzy Climate Control System for Hydroponic Green Forage Production
Authors: Germán Díaz Flórez, Carlos Alberto Olvera Olvera, Domingo José Gómez Meléndez, Francisco Eneldo López Monteagudo
Abstract:
In recent decades, population growth has exerted great pressure on natural resources. Two of the most scarce and difficult to obtain resources, arable land, and water, are closely interrelated, to the satisfaction of the demand for food production. In Mexico, the agricultural sector uses more than 70% of water consumption. Therefore, maximize the efficiency of current production systems is inescapable. It is essential to utilize techniques and tools that will enable us to the significant savings of water, labor and fertilizer. In this study, we present a production module of hydroponic green forage (HGF), which is a viable alternative in the production of livestock feed in the semi-arid and arid zones. The equipment in addition to having a forage production module, has a climate and irrigation control system that operated with photovoltaics. The climate control, irrigation and power management is based on fuzzy control techniques. The fuzzy control provides an accurate method in the design of controllers for nonlinear dynamic physical phenomena such as temperature and humidity, besides other as lighting level, aeration and irrigation control using heuristic information. In this working, firstly refers to the production of the hydroponic green forage, suitable weather conditions and fertigation subsequently presents the design of the production module and the design of the controller. A simulation of the behavior of the production module and the end results of actual operation of the equipment are presented, demonstrating its easy design, flexibility, robustness and low cost that represents this equipment in the primary sector.Keywords: fuzzy, climate control system, hydroponic green forage, forage production module
Procedia PDF Downloads 3971000 Hierarchical Porous Carbon Composite Electrode for High Performance Supercapacitor Application
Authors: Chia-Chia Chang, Jhen-Ting Huang, Hu-Cheng Weng, An-Ya Lo
Abstract:
This study developed a simple hierarchical porous carbon (HPC) synthesis process and used for supercapacitor application. In which, mesopore provides huge specific surface area, meanwhile, macropore provides excellent mass transfer. Thus the hierarchical porous electrode improves the charge-discharge performance. On the other hand, cerium oxide (CeO2) have also got a lot research attention owing to its rich in content, low in price, environmentally friendly, good catalytic properties, and easy preparation. Besides, a rapid redox reaction occurs between trivalent cerium and tetravalent cerium releases oxygen atom and increase the conductivity. In order to prevent CeO2 from disintegration under long-term charge-discharge operation, the CeO2 carbon porous materials were was integrated as composite material in this study. For in the ex-situ analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) analysis were adopted to identify the surface morphology, crystal structure, and microstructure of the composite. 77K Nitrogen adsorption-desorption analysis was used to analyze the porosity of each specimen. For the in-situ test, cyclic voltammetry (CV) and chronopotentiometry (CP) were conducted by potentiostat to understand the charge and discharge properties. Ragone plot was drawn to further analyze the resistance properties. Based on above analyses, the effect of macropores/mespores and the CeO2/HPC ratios on charge-discharge performance were investigated. As a result, the capacitance can be greatly enhanced by 2.6 times higher than pristine mesoporous carbon electrode.Keywords: hierarchical porous carbon, cerium oxide, supercapacitor
Procedia PDF Downloads 123999 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique
Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method
Procedia PDF Downloads 179998 Trends in Use of Millings in Pavement Maintenance
Authors: Rafiqul Tarefder, Mohiuddin Ahmad, Mohammad Hossain
Abstract:
While milling materials from old pavement surface can be an important component of cost effective maintenance operation, their use in maintenance projects are not uniform and well documented. This study documents the different maintenance practices followed by four transportation districts of New Mexico Department of Transportation (NMDOT) in an attempt to find whether millings are being used in maintenance projects by those districts. Based on existing literature, a questionnaire was developed related to six common maintenance practices. NMDOT district personal were interviewed face to face to discuss and get answers to that questionnaire. It revealed that NMDOT districts mainly use chip seal and patching. Other maintenance procedures such as sand seal, scrub seal, slurry seal, and thin overlay have limited use. Two out of four participating districts do not have any documents on chip sealing; rather they employ the experiences of the chip seal crew. All districts use polymer modified high float emulsion (HFE100P) for chip seal with an application rate ranging from 0.4 to 0.56 gallons per square yard. Chip application rate varies from 15 to 40 lb/ square yard. State wide, the thickness of chip seal varies from 3/8" to 1" and life varies from 3 to 10 years. NMDOT districts mainly use three type of patching: pothole, dig-out and blade patch. Pothole patches are used for small potholes and during emergency, dig-out patches are used for all type of potholes sometimes after pothole patching, and blade patch is used when a significant portion of the pavement is damaged. Pothole patches last as low as three days whereas, blade patch lasts as long as 3 years. It was observed that all participating districts use millings in maintenance projects.Keywords: chip seal, sand seal, scrub seal, slurry seal, overlay, patching, millings
Procedia PDF Downloads 342997 Carbon Capture and Storage Using Porous-Based Aerogel Materials
Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar
Abstract:
The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.Keywords: CCS, porous, carbon capture, oil and gas, sustainability
Procedia PDF Downloads 41996 Numerical Modeling of a Molten Salt Power Tower Configuration Adaptable for Harsh Winter Climate
Authors: Huiqiang Yang, Domingo Santana
Abstract:
This paper proposes a novel configuration which introduces a natural draft dry cooling tower system in a molten salt power tower. A three-dimensional numerical modeling was developed based on the novel configuration. A plan of building 20 new concentrating solar power plants has been announced by Chinese government in September 2016, and among these 20 new plants, most of them are located in regions with long winter and harsh winter climate. The innovative configuration proposed includes an external receiver concrete tower at the center, a natural draft dry cooling tower which is surrounding the external receiver concrete tower and whose shell is fixed on the external receiver concrete tower, and a power block (including a steam generation system, a steam turbine system and hot/cold molten salt tanks, and water treatment systems) is covered by the roof of the natural draft dry cooling tower. Heat exchanger bundles are vertically installed at the furthest edge of the power block. In such a way, all power block equipment operates under suitable environmental conditions through whole year operation. The monthly performance of the novel configuration is simulated as compared to a standard one. The results show that the novel configuration is much more efficient in each separate month in a typical meteorological year. Moreover, all systems inside the power block have less thermal losses at low ambient temperatures, especially in harsh winter climate. It is also worthwhile mentioning that a photovoltaic power plant can be installed on the roof of the cooling tower to reduce the parasites of the molten salt power tower.Keywords: molten salt power tower, natural draft dry cooling, commercial scale, power block, harsh winter climate
Procedia PDF Downloads 341995 Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser
Authors: Yanrong Song, Zikai Dong, Runqin Xu, Jinrong Tian, Kexuan Li
Abstract:
Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively.Keywords: fiber laser, mode-locking, nonlinear polarization rotation, Raman scattering
Procedia PDF Downloads 221994 Optimum Dewatering Network Design Using Firefly Optimization Algorithm
Authors: S. M. Javad Davoodi, Mojtaba Shourian
Abstract:
Groundwater table close to the ground surface causes major problems in construction and mining operation. One of the methods to control groundwater in such cases is using pumping wells. These pumping wells remove excess water from the site project and lower the water table to a desirable value. Although the efficiency of this method is acceptable, it needs high expenses to apply. It means even small improvement in a design of pumping wells can lead to substantial cost savings. In order to minimize the total cost in the method of pumping wells, a simulation-optimization approach is applied. The proposed model integrates MODFLOW as the simulation model with Firefly as the optimization algorithm. In fact, MODFLOW computes the drawdown due to pumping in an aquifer and the Firefly algorithm defines the optimum value of design parameters which are numbers, pumping rates and layout of the designing wells. The developed Firefly-MODFLOW model is applied to minimize the cost of the dewatering project for the ancient mosque of Kerman city in Iran. Repetitive runs of the Firefly-MODFLOW model indicates that drilling two wells with the total rate of pumping 5503 m3/day is the result of the minimization problem. Results show that implementing the proposed solution leads to at least 1.5 m drawdown in the aquifer beneath mosque region. Also, the subsidence due to groundwater depletion is less than 80 mm. Sensitivity analyses indicate that desirable groundwater depletion has an enormous impact on total cost of the project. Besides, in a hypothetical aquifer decreasing the hydraulic conductivity contributes to decrease in total water extraction for dewatering.Keywords: groundwater dewatering, pumping wells, simulation-optimization, MODFLOW, firefly algorithm
Procedia PDF Downloads 294993 Impact of Terrorism as an Asymmetrical Threat on the State's Conventional Security Forces
Authors: Igor Pejic
Abstract:
The main focus of this research will be on analyzing correlative links between terrorism as an asymmetrical threat and the consequences it leaves on conventional security forces. The methodology behind the research will include qualitative research methods focusing on comparative analysis of books, scientific papers, documents and other sources, in order to deduce, explore and formulate the results of the research. With the coming of the 21st century and the rising multi-polar, new world threats quickly emerged. The realistic approach in international relations deems that relations among nations are in a constant state of anarchy since there are no definitive rules and the distribution of power varies widely. International relations are further characterized by egoistic and self-orientated human nature, anarchy or absence of a higher government, security and lack of morality. The asymmetry of power is also reflected on countries' security capabilities and its abilities to project power. With the coming of the new millennia and the rising multi-polar world order, the asymmetry of power can be also added as an important trait of the global society which consequently brought new threats. Among various others, terrorism is probably the most well-known, well-based and well-spread asymmetric threat. In today's global political arena, terrorism is used by state and non-state actors to fulfill their political agendas. Terrorism is used as an all-inclusive tool for regime change, subversion or a revolution. Although the nature of terrorist groups is somewhat inconsistent, terrorism as a security and social phenomenon has a one constant which is reflected in its political dimension. The state's security apparatus, which was embodied in the form of conventional armed forces, is now becoming fragile, unable to tackle new threats and to a certain extent outdated. Conventional security forces were designed to defend or engage an exterior threat which is more or less symmetric and visible. On the other hand, terrorism as an asymmetrical threat is a part of hybrid, special or asymmetric warfare in which specialized units, institutions or facilities represent the primary pillars of security. In today's global society, terrorism is probably the most acute problem which can paralyze entire countries and their political systems. This problem, however, cannot be engaged on an open field of battle, but rather it requires a different approach in which conventional armed forces cannot be used traditionally and their role must be adjusted. The research will try to shed light on the phenomena of modern day terrorism and to prove its correlation with the state conventional armed forces. States are obliged to adjust their security apparatus to the new realism of global society and terrorism as an asymmetrical threat which is a side-product of the unbalanced world.Keywords: asymmetrical warfare, conventional forces, security, terrorism
Procedia PDF Downloads 262992 Lateral Sural Artery Perforators: A Cadaveric Dissection Study to Assess Perforator Surface Anatomy Variability and Average Pedicle Length for Flap Reconstruction
Authors: L. Sun, O. Bloom, K. Anderson
Abstract:
The medial and lateral sural artery perforator flaps (MSAP and LSAP, respectively) are two recently described flaps that are less commonly used in lower limb trauma reconstructive surgeries compared to flaps such as the anterolateral thigh (ALT) flap or the gastrocnemius flap. The LSAP flap has several theoretical benefits over the MSAP, including the ability to be sensate and being more easily manoeuvred into position as a local flap for coverage of lateral knee or leg defects. It is less commonly used in part due to a lack of documented studies of the anatomical reliability of the perforator, and an unquantified average length of the pedicle used for microsurgical anastomosis (if used as a free flap) or flap rotation (if used as a pedicled flap). It has been shown to have significantly lower donor site morbidity compared to other flaps such as the ALT, due to the decreased need for intramuscular dissection and resulting in less muscle loss at the donor site. 11 cadaveric lower limbs were dissected, with a mean of 1.6 perforators per leg, with an average pedicle length of 45mm to the sural artery and 70mm to the popliteal artery. While the majority of perforating arteries lay close to the midline (average of 19mm lateral to the midline), there were patients whose artery was significantly lateral and would have been likely injured by the initial incision during an operation. Adding to the literature base of documented LSAP dissections provides a greater understanding of the anatomical basis of these perforator flaps, and the authors hope this will establish them as a more commonly used and discussed option when managing complicated lower limb trauma requiring soft tissue reconstruction.Keywords: cadaveric, dissection, lateral, perforator flap, sural artery, surface anatomy
Procedia PDF Downloads 155