Search results for: oxygen species
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4337

Search results for: oxygen species

1157 Epidemiological Survey of Feline Leukemia Virus in Domestic Cats on Tsushima Island, Japan: Tsushima Leopard Cats Are at Risk

Authors: Isaac Makundi, Kazuo Nishigaki

Abstract:

The Tsushima leopard cat (TLC) Prionailurus bengalensis euptilurus, designated a National Natural Monument of Japan, inhabits Tsushima Island, Nagasaki Prefecture, Japan. TLC is considered a subspecies of P. bengalensis, and lives only on Tsushima Island. TLCs are threatened by various infectious diseases. Feline leukemia virus (FeLV) causes a serious infectious disease with a poor prognosis in cats. Therefore, the transmission of FeLV from Tsushima domestic cats (TDCs) to TLCs may threaten the TLC population. We investigated the FeLV infection status of both TDCs and TLCs on Tsushima Island by screening blood samples for FeLV p27 antigen and using PCR to amplify the full-length FeLV env gene. The prevalence of FeLV was 6.4% in TDCs and 0% in TLCs. We also demonstrated that the virus can replicate in the cells of TLCs, suggesting its potential cross-species transmission. The viruses in TDCs were classified as genotype I/clade 3, which is prevalent on a nearby island, based on previous studies of FeLV genotypes and FeLV epidemiology. The FeLV viruses identified on Tsushima Island can be further divided into two lineages within genotype I/clade 3, which are geographically separated in Kamijima and Shimojima, indicating that FeLV may have been transmitted to Tsushima Island at least twice. Monitoring FeLV infection in the TDC and TLC populations is highly recommended as part of the TLC surveillance and management strategy.

Keywords: epidemiology, Feline leukemia virus, Tsushima Island, wildlife management

Procedia PDF Downloads 206
1156 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 145
1155 Antifungal Susceptibility of Yeasts Isolated from Clinical Samples from a Tertiary Hospital from State of Puebla

Authors: Ricardo Munguia-Perez, Nayeli Remigio-Alvarado, M.Miriam Hernandez-Arroyo, Elsa Castañeda-Roldan

Abstract:

Fungi have emerged as important pathogens causing morbidity and mortality mainly in immunosuppressed, malnourished and elderly patients. It has detected an increase in resistance to azoles primarily to fluconazol. The fungal infections have become a problem of public health for the resistance to antifungal agents, they have developed new antifungals with broad-spectrum. The aim of this study was determine the antifungal susceptibility of yeasts isolated from clinical samples (respiratory secretions, exudates, wounds, blood cultures, urine cultures) obtained from inpatients and outpatients of a tertiary hospital from State of Puebla. The antifungal susceptibility of the yeast from several clinical samples were determined by the CLS M44-A disk diffusion methods. 149 samples of yeast were analyzed. All species were 100% susceptible to nystatin and amphotericin B. Candida albicans showed resistance of 95.5 % to fluconazole, 50.7 % to 5-flurocytosine and 55.2 % intermediate susceptibility to ketoconazole. Candida glabrata 81.3 % was susceptibility to ketoconazole and 75 % to fluconazole, for the case of 5-flurocytosine the 56.3 % was susceptible. Candida krusei 100 % was susceptible to ketoconazole, 50 % to fluconazole and 37.5 % to 5-flurocytosine. The internal medicine have greater diversity of yeast, the samples have susceptibility of 64.7% to ketoconazole, 47.1 % to fluconazole and 27.5 % to 5-flurocytosine. Hospitalized patients are more resistant to fluconazole and nystatin, but in the case of outpatients presents resistance to ketoconazole.

Keywords: antifungal, susceptibility, yeast, clinical samples

Procedia PDF Downloads 340
1154 Zinc Oxide Nanoparticle-Doped Poly (8-Anilino-1-Napthalene Sulphonic Acid/Nat Nanobiosensors for TB Drugs

Authors: Rachel Fanelwa Ajayi, Anovuyo Jonnas, Emmanuel I. Iwuoha

Abstract:

Tuberculosis (TB) is an infectious disease caused by the bacterium (Mycobacterium tuberculosis) which has a predilection for lung tissue due to its rich oxygen supply. The mycobacterial cell has a unique innate characteristic which allows it to resist human immune systems and drug treatments; hence, it is one of the most difficult of all bacterial infections to treat, let alone to cure. At the same time, multi-drug resistance TB (MDR-TB) caused by poorly managed TB treatment, is a growing problem and requires the administration of expensive and less effective second line drugs which take much longer treatment duration than fist line drugs. Therefore, to acknowledge the issues of patients falling ill as a result of inappropriate dosing of treatment and inadequate treatment administration, a device with a fast response time coupled with enhanced performance and increased sensitivity is essential. This study involved the synthesis of electroactive platforms for application in the development of nano-biosensors suitable for the appropriate dosing of clinically diagnosed patients by promptly quantifying the levels of the TB drug; Isonaizid. These nano-biosensors systems were developed on gold surfaces using the enzyme N-acetyletransferase 2 coupled to the cysteamine modified poly(8-anilino-1-napthalene sulphonic acid)/zinc oxide nanocomposites. The morphology of ZnO nanoparticles, PANSA/ZnO nano-composite and nano-biosensors platforms were characterized using High-Resolution Transmission Electron Microscopy (HRTEM) and High-Resolution Scanning Electron Microscopy (HRSEM). On the other hand, the elemental composition of the developed nanocomposites and nano-biosensors were studied using Fourier Transform Infra-Red Spectroscopy (FTIR) and Energy Dispersive X-Ray (EDX). The electrochemical studies showed an increase in electron conductivity for the PANSA/ZnO nanocomposite which was an indication that it was suitable as a platform towards biosensor development.

Keywords: N-acetyletransferase 2, isonaizid, tuberculosis, zinc oxide

Procedia PDF Downloads 374
1153 Ethanol Extract of Potentilla pradoxa Nutt Inhibits LPS-induced Inflammatory Responses via NF-κB and AP-1 Inactivation

Authors: Hae-Jun Lee, Ji-Sun Shin, Kyung-Tae Lee

Abstract:

Potentilla species (Rosasease) have been used in traditional medicine to treat different ailment, disease or malady. In this study, we investigated the anti-inflammatory effects of ethanol extracts of NUTT (EPP) in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages and septic mice. EPP suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in LPS-induced Raw 264.7 macrophages. Consistent with these observations, EPP reduced the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) by downregulation of their promoter activities. EPP inhibited tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) at production and mRNA levels. Molecularly, EPP attenuated the LPS-induced transcriptional activity, and DNA-binding activity of nuclear factor-κB (NF-κB), and this was associated with a decrease of translocation and phosphorylation of p65 NF-κB by inhibiting the inhibitory κB-α (IκB-α) degradation and IκB kinase-α/β (IKK-α/β) phosphorylation. Furthermore, EPP suppressed the LPS-induced activation of activator protein-1 (AP-1) by reducing the expression of c-Fos and c-Jun in nuclear. EPP also reduced the phosphorylation of mitogen-activated protein kinase (MAPK), such as p38 MAPK and c-Jun N-terminal kinase/stress-activated protein kinase (JNK). In a sepsis model, pretreatment with EPP reduced the LPS-induced lethality. Collectively, these results suggest that the anti-inflammatory effects of EPP were associated with the suppression of NF-κB and AP-1 activation, and support its possible therapeutic role for the treatment of sepsis.

Keywords: anti-inflammation, activator protein-1, nuclear factor κB, Potentilla paradoxa Nutt

Procedia PDF Downloads 338
1152 Microbial Deterioration of Some Different Archaeological Objects Made from Cellulose by Bacillus Group

Authors: Mohammad Abdel Fattah Mohammad Kewisha

Abstract:

Microbial deterioration of ancient materials became one of the biggest problems facing the workers in the field of cultural heritage protection because the microbial deterioration of artifacts causes detrimental effects on the aesthetic value of the monuments due to colonization, whether they are made of inorganic materials such as stone or organic like wood, textiles, wall paintings, and paper. So, the early identification of the bacterial strains that caused deterioration is the most important point for the protection of monument objects. The present study focuses on the Bacillus spp. group, which was isolated from some biodeterioration monuments from different areas of Egypt. The investigated objects in this study were made from organic materials (cellulose), paper, textile, and wood. Isolated strains were identified up to the species level biochemically. Eleven bacterial isolates were obtained from collected samples. They were taken from different archaeological objects, four microbicides, cetrimonium bromide, sodium azide, tetraethyl ammonium bromide, and dichloroxylenol, at various concentrations ranging from 25 ppm to 500 ppm. They were screened for their antibacterial activity against the Bacillus spp. isolates, and detection of Minimum inhibitory concentration (MIC). It was also necessary to indicate the ideal Minimum inhibitory concentration for each strain for the purpose of biotreatment of the infected monuments with less damaging effect on monument materials.

Keywords: microbial deterioration, ancient materials, heritage protection, protection of monuments, biodeteriorative monuments

Procedia PDF Downloads 60
1151 Homeopathic Approach in a Dog with Idiopathic Epilepsy - Case Report

Authors: Barbosa M. L. S., von Ancken A. C. B., Coelho C. P.

Abstract:

In order to improve the treatment of epileptic dogs, this case report aims toobjective todescribe the use of the homeopathic medicine Cicuta virosa for the treatmentof seizuresin dogs that already use allopathy to control them. Howeach patient presents symptoms individually, the choice of medicationhomeopathic treatment must also be individualized. He was treated in the municipality of RibeirãoPires, São Paulo - Brazil, an animal of the canine species, female, 7 years old, SRD, with a history of seizuregeneralized tonic-clonic for two years, with a variable frequency of 1-2 seizures perday. With no identifiable etiology, the patient used phenobarbital daily, and the dose ofmedication was increased according to the frequency of seizures. The serum concentration of phenobarbital within 12 hours of itsadministration via blood sample was within the range ofreference. The patient experienced weight gain and intermittent sedation. the choice ofhomeopathic medicine Cicuta virosa 6 cH, prepared according to the PharmacopoeiaBrazilian Homeopathic Medicine, occurred due to its characteristic action on the nervous system, especially in epileptic animals that present with seizures, spasmodic contractions of the muscles of the whole body starting from the head, mouth, extremely violent, with rigidity and opisthotonos, extreme agitation, contortionsmultiple. The animal was submitted to treatment with 2 globules orally twicea day for 30 days. The treatment resulted in a clinical cure as there was no moreseizures, being effective to control this symptom.

Keywords: homeopathy, cicuta virosa, epilepsy, veterinary medicine

Procedia PDF Downloads 107
1150 Determination of Hydrolisis Condition in the Extraction of Fatty Acids from Pinchagua's (Opisthonema libertate) Heads, a By-Product of Sardine Industry

Authors: Belen Carrillo, Mauricio Mosquera

Abstract:

Fatty acids are bioactive compounds widely used as nutritional supplements in the food and pharmaceutical industry. Bluefish such as sardines have a large variety of these fatty acids in their composition. The objective of this project is to extract these compounds from fishing wastes, to do this, heads of known species as Pinchagua (Opistonema libertate) were used. The conducted study represents a simplified alternative for obtaining and simultaneous saponification of oil through basic hydrolysis, which separates lipids from protein and saponifies sample all the same time to isolate the fatty acid accurately through salts formation. To do these different concentrations of sodium hydroxide were used, it was demonstrated at a concentration of 1 M the highest yield of saponified oil recovery corresponding a value of 3,64% was obtained. Subsequently, the saponified oil was subjected to an acid hydrolysis in which fatty acids were isolated. Different sulfuric acid concentrations and temperatures for the process were tested. Thus, it was shown that the great fatty acids variety were obtained at a 60 °C temperature and sulfuric acid concentration of 50% v/v. Among the obtained compounds the presence of acids such as palmitic, lauric, caproic and myristic are highlighted. Applications of this type of elements are varied and widely used in the nutritional supplements development. Thus, the described methodology proposes a simple mechanism in the revaluation of fishing industry wastes that allow directly generate high added value elements.

Keywords: fatty acids, hydrolysis, Pinchagua, saponification

Procedia PDF Downloads 180
1149 Sea Cucumber (Stichopus chloronotus) to Expedite Healing of Minor Wounds

Authors: Isa Naina Mohamed, Mazliadiyana Mazlan, Ahmad Nazrun Shuid

Abstract:

Stichopus chloronotus (Black Knobby or green fish) is a sea cucumber species commonly found along Malaysia’s coastline. In Malaysia, it is believed that sea cucumber can expedite healing of wounds, provide extra energy and used as an ointment to relieve pain. The aim of this study is to determine the best concentration of Stichopus chlronotus extract to promote wound healing. 12 male Sprague-Dawley rats with wounds created using 6mm disposable punch biopsy were divided into 6 treatment groups. The normal control group (untreated), positive control group (flavin treated only), negative control group (emulsifying ointment only), and group 0.1, group 0.5, group 1 were each treated with 0.1%, 0.5% and 1% of Stichopus chlronotus water extract mixed in emulsifying ointment, respectively. Treatments were administered topically for 10 days. Changes in wound area were measured using caliper and photographs were taken on day 2, 4, 6, 8, and 10 after index wound. Results showed that wound reduction of group 0.5 on day 4, 6, and 8 was significantly higher compared to normal control group and positive control group. Group 0.5 also had higher wound reduction from day 6 until day 10 compared to all other groups. In conclusion, Sea Cucumber (Stichopus chloronotus) extract demonstrated the best minor wound healing properties at concentration 0.5%. The potential of Stichopus chlronotus extract ointment for wound healing shall be investigated further.

Keywords: minor wound healing, expedite wound healing, sea cucumber, Stichopus chloronotus

Procedia PDF Downloads 394
1148 First Record of Eotragus noyei from the Middle Siwalik Dhok Pathan Formation of Pakistan

Authors: Abdul M. Khan, Hafiza I. Naz, Ayesha Iqbal, Muhammad Akhtar

Abstract:

The fossil remains described in this study have been recovered during fieldwork by the authors from the Dhok Pathan Formation of Middle Siwaliks Pakistan in December, 2015. The sample comprises maxillary and mandibular fragments along with isolated upper and lower teeth. The morphometric analysis of the specimens led us to recognize the sample as belonging to Eotragus noyei, which has been considered as the smallest and the oldest bovid in the Siwaliks. Eotragus noyei is characterized by brachydont teeth, finely rugose enamel, more inclined buccal walls of the molars and small lingual cingula. The inclination of the metaconal area has caused rotation of the metastyle in relation to the antero-posterior tooth axis and thus situated more lingually. The protocone in second upper premolar is well developed and situated posteriorly and also has an anterior lingual constriction. The metaconule in the third upper molar is smaller than the protocone. The dentition in Eotragus noyei is smaller in size as compared to Eotragus sansaniensis and Eotragus lampangensis. In Eotragus noyei the buccal walls in molars are more inclined while in Eotragus sansaniensis they are less inclined. The genus Eotragus has been reported previously in the Lower and Middle Siwaliks of Pakistan; however, the recognition of the present sample as Eotragus noyei has extended the range of this species from Lower to the Middle Siwaliks of Pakistan.

Keywords: Boselaphini, Chakwal, Dhok Pathan, late miocene

Procedia PDF Downloads 293
1147 Exaptive Urbanism: Evolutionary Biology and the Regeneration of Mumbai’s Dhobighat

Authors: Piyush Bajpai, Sneha Pandey

Abstract:

Mumbai’s Dhobighat, 150 year old largest open laundry in the world, is the true live-work place and only source of income for some of Mumbai’s highest density ‘urban poor’ residents. The regeneration of Dhobighat, due to its ultra prime location and complex socio-political culture has been a complex issue. This once flourishing urban industrial core has been degrading for the past several decades mainly due to the decline of the open laundry business, the site’s over burdened infrastructure and conflicting socio-political and economic forces. The phenomena of ‘exaptation’ or ‘co-option’ has been observed by evolutionary biologists as a process responsible for producing highly tenacious and resilient offsprings within a species. The reddish egret uses its wings to cast shadow in shallow waters to attract small fish and hunt them. An unrelated feature used opportunistically to produce a very favorable result. How can this idea of co-option be applied to resolve the complex issue of Dhobighat’s regeneration? Our paper proposes a new methodology/approach for the regeneration of Dhobighat through the lens of evolutionary biology. Forces and systems (social, political, economic, cultural and ecological) that seem conflicting or unrelated by nature are opportunistically transformed into symbiotic and complimentary relationships that produce an inclusive, resilient and holistic solution for the regeneration of Dhobighat.

Keywords: urban regeneration, exaptation, resilience, Dhobighat, Mumbai

Procedia PDF Downloads 298
1146 Estimation of the Antioxidant Potential of Microalgae With ABTS and CUPRAC Assays

Authors: Juliana Ianova, Lyudmila Kabaivanova, Tanya Toshkova- Yotova

Abstract:

Background: Microalgae are widely known for their nutritional and therapeutic applications due to the richness in nutrients and bioactive elements. The aim of this research was to investigate the growth and production of bioactive compounds with antioxidant properties by different microalgal strains: Scenedesmus acutus M Tomaselli 8, Scenedesmus obliquus BGP, Porphyridium aerugineum and Porphyridium cruentum (Chlorophyta and Rhodophyta). Most of them are freshwater species, with only one marine microalga P. cruentum. Methods: Monoalgal, non-axenic cultures of the investigated strains were grown autotrophically in 200 ml flasks, CO2 - 2% at 132 μmol m-2 s-1 photon flux density and T 25°C. Algal biomass concentration was measured daily by the dry weight. The ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid, C18H18N4O6S4) scavenging assay and CUPRAC assay (cupric ion reducing antioxidant capacity) were used to establish the antioxidant activity of the four algae at the end of the cultivation process, when stationary phase of growth was reached. Results: The highest biomass yield was achieved by Scenedesmus obliquus BGP- (6.6 g/L) after 144 hours of cultivation. Scenedesmus obliquus showed much higher levels of antioxidant properties from the assessed strains. The red microalga Porphyridium aerugineum also exhibits promising reducing antioxidant power. Conclusion: This study confirmed the view that microalgae are promising producers of food supplements and pharmaceuticals.

Keywords: microalgae, dry weight, antioxidant activity, CUPRAC, ABTS

Procedia PDF Downloads 110
1145 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 142
1144 Biomass and CPUA Estimation and Distribution Pattern of Saurida Tumbil in the Northwest of Persian Gulf

Authors: Negar Ghotbeddin, Izadpanah Zeinab, Tooraj Valinassab, Mohammad Azhir

Abstract:

It is reported on results of a trawls survey in 2011 to assess the amount of biomass and Catch Per Unit of Area (CPUA) and also to determine the distribution pattern of Synodonidae family of demersal fishes (with emphasize on great lizardfish, Saurida tumbil) as one the most important and commercial fish species in the northwest of Persian Gulf. Samples were collected at a total 65 trawl stations selected a stratified random procedure. The study area was stratified to five strata (A to E) covering the depth layers of 10-20, 20-30 and 30-50 m. The catch rates of CPUA and biomass of lizardfishes were estimated to be approximately 316.20 kg/nm2, and 2902.1 tons, respectively. The highest value of biomass of Synodontids was recorded in the east of the study area, Bordkhoon to Dayer (stratum D & E, approximately 1310.6 tonnes) and in depth layer of 30-50 m; and the lowest value was estimated for stratum A (West of Khuzestan Province) and in depth layer of 10-20 m. On the other hand, the highest CPUA was recorded in stratum D and depth layer of 20-30 m; and the lowest value for stratum A and 10-20 m depth. It was concluded that stratum D (namely from Bordkhoon to Dayer) contains the best fishing area from the point of higher density and distribution of Synodontidae in the covering area, and from the point of depth distribution, they are found in depths more than 30 m.

Keywords: Saurida tumbil, CPUA, biomass, distribution, fishing area, Persian gulf

Procedia PDF Downloads 407
1143 Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems

Authors: Lei Zhang

Abstract:

The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale.

Keywords: classification system, land cover, ecosystem, carbon storage, object based

Procedia PDF Downloads 70
1142 A Facile One Step Modification of Poly(dimethylsiloxane) via Smart Polymers for Biomicrofluidics

Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta

Abstract:

Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. It is easily patterned and can replicate features down to nanometers. Its flexibility, gas permeability that allows oxygenation, and low cost also drive its wide adoption. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant non-specific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. While silicon, glass, and thermoplastics have been used, they come with problems of their own such as rigidity, high cost, and special tooling needs, which limit their use to a smaller user base. Many strategies to alleviate these common problems with PDMS are lack of general practical applicability, or have limited shelf lives in terms of the modifications they achieve. This restricts large scale implementation and adoption by industrial and research communities. Accordingly, we aim to tailor biocompatible PDMS surfaces by developing a simple and one step bulk modification approach with novel smart materials to reduce non-specific molecular adsorption and to stabilize long-term cell analysis with PDMS substrates. Smart polymers that blended with PDMS during device manufacture, spontaneously segregate to surfaces when in contact with aqueous solutions and create a < 1 nm layer that reduces non-specific adsorption of organic and biomolecules. Our methods are fully compatible with existing PDMS device manufacture protocols without any additional processing steps. We have demonstrated that our modified PDMS microfluidic system is effective at blocking the adsorption of proteins while retaining the viability of primary rat hepatocytes and preserving the biocompatibility, oxygen permeability, and transparency of the material. We expect this work will enable the development of fouling-resistant biomedical materials from microfluidics to hospital surfaces and tubing.

Keywords: cell culture, microfluidics, non-specific protein adsorption, PDMS, smart polymers

Procedia PDF Downloads 294
1141 Design and Development of an Autonomous Underwater Vehicle for Irrigation Canal Monitoring

Authors: Mamoon Masud, Suleman Mazhar

Abstract:

Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 50,000 km. Maintenance and monitoring of this demands enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water theft detection. The vehicle is a hovering-type AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 17 inches, and a radius of 3.5 inches with a depth rating of 5m. Multiple sensors are present onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids (TDS) and dissolved oxygen. A 9-DOF Inertial Measurement Unit (IMU), GY-85, is used, which incorporates an Accelerometer (ADXL345), a Gyroscope (ITG-3200) and a Magnetometer (HMC5883L). The readings from these sensors are fused together using directional cosine matrix (DCM) algorithm, providing the AUV with the heading angle, while a pressure sensor gives the depth of the AUV. 2 sonar-based range sensors are used for obstacle detection, enabling the vehicle to align itself with the irrigation canals edges. 4 thrusters control the vehicle’s surge, heading and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative (PID) feedback control system, with heading angle and depth being the controller’s input and the thruster motor speed as the output. A flow sensor has been incorporated to monitor canal water level to detect water-theft event in the irrigation system. In addition to water theft detection, the vehicle also provides information on water quality, providing us with the ability to identify the source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV being low cost, small sized and suitable for autonomous maneuvering, water level and quality monitoring in the irrigation canals, can be used for irrigation network monitoring at a large scale.

Keywords: the autonomous underwater vehicle, irrigation canal monitoring, water quality monitoring, underwater line tracking

Procedia PDF Downloads 148
1140 A Case Study on Management of Coal Seam Gas by-Product Water

Authors: Mojibul Sajjad, Mohammad G. Rasul, Md. Sharif Imam Ibne Amir

Abstract:

The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland Coal Seam Gas industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully Mine field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects.

Keywords: coal seam gas (CSG), cleat water, hydro-fracking, product water

Procedia PDF Downloads 421
1139 Women Participation in Agriculture and Rural Development Activities in Kwacciyar-Lalle and Mogonho Communities of Sokoto State, Nigeria

Authors: B. Z. Abubakar, J. P. Voh, B. F. Umar, S. Khalid, A. A. Barau, J. Aigbe

Abstract:

The study was conducted to identify and assess the various community development programmes designed and executed by Sokoto Agricultural and Community Development Project (SACDP) with the assistance of International Funds for Agricultural Development (IFAD) among women beneficiaries in Kwacciyar-lalle and Mogonho communities of Sokoto state. A simple random sampling technique was employed to select 20 project beneficiaries in each of the selected communities, making a total of 40 beneficiaries. Structured questionnaire, descriptive statistics such as frequencies and percentages and also participatory methodologies such as focus group discussion and pair wise ranking were used to analyze the data. Results showed that majority of the beneficiaries (75%) were married and undertook animal rearing as their major occupation. Results further showed that (85%) of the beneficiaries were involved in decision making, which enhanced their participation. Pair-wise ranking showed dug well as the most preferred activity, followed by construction of Islamic school in Kwacciyar-lalle while well construction followed by provision of improved animal species were most preferred in Mogonho. Recommendations made in the light of achieving people’s participation include provision of more infrastructural facilities and working materials.

Keywords: community development, focus group, pair-wise ranking, infrastructure

Procedia PDF Downloads 372
1138 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties

Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou

Abstract:

The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.

Keywords: cellulose, spectroscopy, surface treatment, water absorption

Procedia PDF Downloads 202
1137 Arginase Enzyme Activity in Human Serum as a Marker of Cognitive Function: The Role of Inositol in Combination with Arginine Silicate

Authors: Katie Emerson, Sara Perez-Ojalvo, Jim Komorowski, Danielle Greenberg

Abstract:

The purpose of this study was to evaluate arginase activity levels in response to combinations of an inositol-stabilized arginine silicate (ASI; Nitrosigine®), L-arginine, and Inositol. Arginine acts as a vasodilator that promotes increased blood flow resulting in enhanced delivery of oxygen and nutrients to the brain and other tissues. ASI alone has been shown to improve performance on cognitive tasks. Arginase, found in human serum, catalyzes the conversion of arginine to ornithine and urea, completing the last step in the urea cycle. Decreasing arginase levels maintains arginine and results in increased nitric oxide production. This study aimed to determine the most effective combination of ASI, L-arginine and inositol for minimizing arginase levels and therefore maximize ASI’s effect on cognition. Serum was taken from untreated healthy donors by separation from clotted factors. Arginase activity of serum in the presence or absence of test products was determined (QuantiChrom™, DARG-100, Bioassay Systems, Hayward CA). The remaining ultra-filtrated serum units were harvested and used as the source for the arginase enzyme. ASI alone or combined with varied levels of Inositol were tested as follows: ASI + inositol at 0.25 g, 0.5 g, 0.75 g, or 1.00 g. L-arginine was also tested as a positive control. All tests elicited changes in arginase activity demonstrating the efficacy of the method used. Adding L-arginine to serum from untreated subjects, with or without inositol only had a mild effect. Adding inositol at all levels reduced arginase activity. Adding 0.5 g to the standardized amount of ASI led to the lowest amount of arginase activity as compared to the 0.25g 0.75g or 1.00g doses of inositol or to L-arginine alone. The outcome of this study demonstrates an interaction of the pairing of inositol with ASI on the activity of the enzyme arginase. We found that neither the maximum nor minimum amount of inositol tested in this study led to maximal arginase inhibition. Since the inhibition of arginase activity is desirable for product formulations looking to maintain arginine levels, the most effective amount of inositol was deemed preferred. Subsequent studies suggest this moderate level of inositol in combination with ASI leads to cognitive improvements including reaction time, executive function, and concentration.

Keywords: arginine, inositol, arginase, cognitive benefits

Procedia PDF Downloads 113
1136 Clinical Evidence of the Efficacy of ArtiCovid (Artemisia Annua Extract) on Covid-19 Patients in DRC

Authors: Md, MCS, MPH Munyangi Wa Nkola Jerome

Abstract:

The pandemic of COVID-19, a recently discovered contagious respiratory disease called SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2 Majority of people infected with SARS-CoV-2: Asymptomatic or mildly ill 14% of patients will develop severe illness requiring hospitalization and oxygen support, and 5% of these will be transferred to an intensive care unit, Urgent need for new treatments that can be used quickly to avoid transfer of patients to intensive care and death. Objective: To evaluate the clinical activity (efficacy) of ArtiCovid Hypothesis: Administration of 3 times a teaspoon per day by COVID patients (symptomatic, mild, or moderate forms) results in the disappearance of symptoms and improvement of biological parameters (including viral suppression). Clinical efficacy: the disappearance of clinical signs after seven days of treatment; reduction in the rate of patients transferred to intensive care units for mechanical ventilation and a decrease in mortality related to this infection Paraclinical efficacy: improvement of biological parameters (mainly d-dimer, CRP) Virological efficacy: suppression of the viral load after seven days of treatment (control test on the seventh day is negative) Pilot study using a standardized solution based on Artemisia annua (ARTICOVID) Obtaining authorization from the health authorities of the province of Central Kongo Recruitment of volunteer patients, mainly in the Kinkanda HospitalCarrying out tests before and after treatment as well as analyses before and after treatment. The protocol obtained the approval of the ethics committee 50 patients who completed the treatment were aged between 2 and 70 years, with an average age of 36 yearsMore half were male (56%). One in four patients was a health professional (25%) Of the 12 health professionals, 4 were physicians. For those who reported the date of onset of the disease, the average duration between the appearance of the first symptoms and the medical consultation was 5 days. The 50 patients put on ARTICOVID were discharged alive with CRP levels substantially normalizedAfter seven to eight days, the control test came back negative. This pilot study suggests that ARTICOVID may be effective against COVID-19 infection.

Keywords: artiCovid, DRC, Covid-19, SARS_COV_2

Procedia PDF Downloads 121
1135 Assessing Antimicrobial Activity of Various Plant Extracts on Midgutmicroflora of Aedesaegypti

Authors: V. Baweja, K. K. Gupta, V. Dubey, C. Keshavam

Abstract:

Antimicrobial activity of six indigenous plants such as Tulsi Ocimum sanctum, Neem Azadirachta indica, Aloe vera, Turmeric Curcuma longa, Lantana Lantana camara, and Clove Syzygium aromaticum was assessed against the gut microbiota of the dengue fever mosquito Aedes aegypti, keeping in view that the presence of midgut bacteria may affect the ability of the vector to transmit pathogens. Eleven different types of bacterial clones were isolated from the midgut of lab-reared fourth instar larvae of Aedes aegypti and were grown on LB agar medium at an optimum temperature of 25 ºC. Identification of these bacteria was done on the basis of their colony characteristic such as colony size, shape, opacity, elevation, consistency, and growth. Light microscopic studies of the gut microbiota revealed dominance of Gram-negative cocci over gram positive cocci and bacilli and Gram-negative bacilli. Identification of species was done by chemical characterization of the colonies. Crude extracts of all test plants were screened for their antimicrobial activities against gut microbiota by disc diffusion assay. The zone of exclusion seen after 24 hr of incubation in different assays revealed the most potent antibacterial activities in neem followed by clove and turmeric. Lantana and Aloe vera were least effective.

Keywords: plant extract, aedes, dengue, antimicrobial activity

Procedia PDF Downloads 405
1134 Laccase Catalysed Conjugation of Tea Polyphenols for Enhanced Antioxidant Properties

Authors: Parikshit Gogo, N. N. Dutta

Abstract:

The oxidative enzymes specially laccase (benzenediol: oxygen oxidoreductase, E.C.1.10.3.2) from bacteria, fungi and plants have been playing an important role in green technologies due to their specific advantageous properties. Laccase from different sources and in different forms was used as a biocatalyst in many oxidation and conjugation reactions starting from phenol to hydrocarbons. Tea polyphenols and its derivatives attract the scientific community because of their potential use as antioxidants in food, pharmaceutical and cosmetic industries. Conjugate of polyphenols emerged as a novel materials which shows better stability and antioxidant properties in applied fields. The conjugation reaction of catechin with poly (allylamine) has been studied using free, immobilized and cross-linked enzyme crystals (CLEC) of laccase from Trametes versicolor with particular emphasis on the effect of pertinent variables and kinetic aspects of the reaction. The stability and antioxidant property of the conjugated product was improved as compared to the unconjugated tea polyphenols. The reaction was studied in 11 different solvents in order to deduce the solvent effect through an attempt to correlate the initial reaction rate with solvent properties such as hydrophobicity (logP), water solubility (logSw), electron pair acceptance (ETN) and donation abilities (DNN), polarisibility and dielectric constant which exhibit reasonable correlations. The study revealed, in general that polar solvents favour the initial reaction rate. The kinetics of the conjugation reaction conformed to the so-called Ping-Pong-Bi-Bi mechanism with catechin inhibition. The stability as well as activity of the CLEC was better than the free enzymes and immobilized laccase for practical application. In case of immobilized laccase system marginal diffusional limitation could be inferred from the experimental data. The kinetic parameters estimated by non-linear regression analysis were found to be KmPAA(mM) = 0.75, 1.8967 and Kmcat (mM) = 11.769, 15.1816 for free and immobilized laccase respectively. An attempt has been made to assess the activity of the laccase for the conjugation reaction in relation to other reactions such as dimerisation of ferulic acids and develop a protocol to enhance polyphenol antioxidant activity.

Keywords: laccase, catechin, conjugation reaction, antioxidant properties

Procedia PDF Downloads 270
1133 High Resolution Solid State NMR Structural Study of a Ternary Hydraulic Mixture

Authors: Rym Sassi, Franck Fayon, Mohend Chaouche, Emmanuel Veron, Valerie Montouillout

Abstract:

The chemical phenomena occurring during cement hydration are complex and interdependent, and even after almost two centuries of studies, they are still difficult to solve for complex mixtures combining different hydraulic binders. Powder-XRD has been widely used for characterizing the crystalline phases in both anhydrous and hydrated cement, but only limited information is obtained in the case of strongly disordered and amorphous phases. In contrast, local spectroscopies like solid-state NMR can provide a quantitative description of noncrystalline phases. In this work, the structural modifications occurring during hydration of a fast-setting ternary binder based on white Portland cement, white calcium aluminate cement, and calcium sulfate were investigated using advanced solid-state NMR methods. We particularly focused on the early stage of the hydration up to 28 days, working with samples whose hydration was controlled and stopped. ²⁷Al MQ-MAS as well as {¹H}-²⁷Al and {¹H}-²⁹Si Cross- Polarization MAS NMR techniques were combined to distinguish all of the aluminum and silicon species formed during the hydration. The NMR quantification of the different phases was conducted in parallel with the XRD analyses. The consumption of initial products, as well as the precipitation of hydraulic phases (ettringite, monosulfate, strätlingite, CSH, and CASH), were unambiguously quantified. Finally, the drawing of the consumption and formation of phases was correlated with mechanical strength measurements.

Keywords: cement, hydration, hydrates structure, mechanical strength, NMR

Procedia PDF Downloads 155
1132 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications

Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia

Abstract:

In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 58
1131 Phytoremediation of Pharmaceutical Emerging Contaminant-Laden Wastewater: A Techno-Economic and Sustainable Development Approach

Authors: Reda A. Elkhyat, Mahmoud Nasr, Amel A. Tammam, Mohamed A. Ghazy

Abstract:

Pharmaceuticals and personal care products (PPCPs) are a unique group of emerging contaminants continuously introduced into the aquatic ecosystem at concentrations capable of inducing adverse effects on humans and aquatic organisms, even at trace levels ranging from ppt to ppm. Amongst the common pharmaceutical emerging pollutants detected in several aquatic environments, acetaminophen has been recognized for its high toxicity. Once released into the aquatic environment, acetaminophen could be degraded by the microbial community and adsorption/ uptake by the plants. Although many studies have investigated the hazard risks of acetaminophen pollutants on aquatic animals, the number of studies demonstrating its removal efficiency and effects on the aquatic plant still needs to be expanded. In this context, this study aims to apply the aquatic plant-based phytoremediation system to eliminate this emerging contaminant from domestic wastewater. The phytoremediation experiment was performed in a hydroponic system containing Eichhornia crassipes and operated under the natural environment at 25°C to 30°C. This system was subjected to synthetic domestic wastewater with the maximum initial chemical oxygen demand (COD) of 390 mg/L and three different acetaminophen concentrations of 25, 50, and 200 mg/L. After 17 d of operation, the phytoremediation system achieved removal efficiencies of about 100% and 85.6±4.2% for acetaminophen and COD, respectively.Moreover, the Eichhornia crassipes could withstand the toxicity associated with increasing the acetaminophen concentrations from 25 to 200 mg/L. This high treatment performance could be assigned to the well-adaptation of the water hyacinth to the phytoremediation factors. Moreover, it has been proposed that this phytoremediation system could be largely supported by phytodegradation and plant uptaking mechanisms; however, detecting the generated intermediates, metabolites, and degradation products are still under investigation. Applying this free-floating plant in wastewater treatment and reducing emerging contaminants would meet the targets of SDGs 3, 6, and. 14. The cost-benefit analysis was performed for the phytoremediation system. The phytoremediation system is financially viable as the net profit was 2921 US $/ y with a payback period of nine years.

Keywords: domestic wastewater, emerging pollutants, hydrophyte Eichhornia crassipes, paracetamol removal efficiency, sustainable development goals (SDGs)

Procedia PDF Downloads 115
1130 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 60
1129 Unveiling the Potential of MoSe₂ for Toxic Gas Sensing: Insights from Density Functional Theory and Non-equilibrium Green’s Function Calculations

Authors: Si-Jie Ji, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

With the rapid development of industrialization and urbanization, air pollution poses significant global environmental challenges, contributing to acid rain, global warming, and adverse health effects. Therefore, it is necessary to monitor the concentration of toxic gases in the atmospheric environment in real-time and to deploy cost-effective gas sensors capable of detecting their emissions. In this study, we systematically investigated the sensing capabilities of the two-dimensional MoSe₂ for seven key environmental gases (NO, NO₂, CO, CO₂, SO₂, SO₃, and O₂) using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) calculations. We also investigated the impact of H₂O as an interfering gas. Our results indicate that the MoSe₂ monolayer is thermodynamically stable and exhibits strong gas-sensing capabilities. The calculated adsorption energies indicate that these gases can stably adsorb on MoSe₂, with SO₃ exhibiting the strongest adsorption energy (-0.63 eV). Electronic structure analysis, including projected density of states (PDOS) and Bader charge analysis, demonstrates significant changes in the electronic properties of MoSe₂ upon gas adsorption, affecting its conductivity and sensing performance. We find that oxygen (O₂) adsorption notably influenced the deformation of MoSe₂. To comprehensively understand the potential of MoSe₂ as a gas sensor, we used the NEGF method to assess the electronic transport properties of MoSe₂ under gas adsorption, evaluating current-voltage (I-V), resistance-voltage (R-V) characteristics, and transmission spectra to determine sensitivity, selectivity, and recovery time compared to pristine MoSe₂. Sensitivity, selectivity, and recovery time are analyzed at a bias voltage of 1.7V, showing excellent performance of MoSe₂ in detecting SO₃, among other gases. The pronounced changes in electronic transport behavior induced by SO₃ adsorption confirm MoSe₂’s strong potential as a high-performance gas-sensing material. Overall, this theoretical study provides new insights into the development of high-performance gas sensors, demonstrating the potential of MoSe₂ as a gas-sensing material, particularly for gases like SO₃.

Keywords: density functional theory, gas sensing, MoSe₂, non-equilibrium Green’s function, SO

Procedia PDF Downloads 24
1128 Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min followed by 24 h reperfusion was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity was also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rise in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.

Keywords: ischemia-reperfusion, neuroprotective, stroke, antioxidant

Procedia PDF Downloads 117