Search results for: interactive learning environments
6158 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models
Authors: Ethan James
Abstract:
Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina
Procedia PDF Downloads 1816157 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 1436156 Story Telling Method as a Bastion of Local Wisdom in the Frame of Education Technology Development in Medan, North Sumatra-Indonesia
Authors: Mardianto
Abstract:
Education and learning are now grown rapidly. Synergy of techonology especially instructional technology in the learning activities are very big influence on the effectiveness of learning and creativity to achieve optimal results. But on the other hand there is a education value that is difficult to be articulated through character-forming technology such as honesty, discipline, hard work, heroism, and so forth. Learning strategy and storytelling from the past until today is still an option for teachers to convey the message of character values. With the material was loaded from the local culture (stories folklore), the combination of learning objectives (build character child) strategy, and traditional methods (storytelling and story), and the preservation of local culture (dig tale folklore) is critical to maintaining the nation's culture. In the context of maintaining the nation's culture, then since the age of the child at the level of government elementary school a necessity. Globalization, the internet and technology sometimes feel can displace the role of the teacher in the learning activities. To the oral tradition is a mainstay of storytelling should be maintained and preserved. This research was conducted at the elementary school in the city of Medan, North Sumatra Indonesia, with a random sampling technique, the 27 class teachers were respondents who were randomly assigned to the Madrasah Ibtdaiyah (Islamic Elementary School) both public and private. Research conducted at the beginning of 2014 refers to a curriculum that is being transformed in the environment ministry Republic Religion Indonesia. The results of this study indicate that; the declining skills of teachers to develop storytelling this can be seen from; 74.07% of teachers have never attended a special training storytelling, 85.19% no longer nasakah new stories, only 22.22% are teachers who incorporate methods of stories in the learning plan. Most teachers are no longer concerned with storytelling, among those experiencing difficulty in developing methods because the story; 66.67% of children are more interested in children's cartoons like Bobo boy, Angrybirds and others, 59.26 children prefer other activities than listening to a story. The teachers hope, folklore books should be preserved, storytelling training should be provided by the government through the ministry of religion, race or competition of storytelling should be scheduled, writing a new script-based populist storytelling should be provided immediately. The teachers’ hope certainly not excessive, by realizing the story method becomes articulation as the efforts of child character development based populist, therefore the local knowledge can be a strong fortress facing society in the era of progress as at present, and future.Keywords: story telling, local wisdom, education, technology development
Procedia PDF Downloads 2786155 Alexa (Machine Learning) in Artificial Intelligence
Authors: Loulwah Bokhari, Jori Nazer, Hala Sultan
Abstract:
Nowadays, artificial intelligence (AI) is used as a foundation for many activities in modern computing applications at home, in vehicles, and in businesses. Many modern machines are built to carry out a specific activity or purpose. This is where the Amazon Alexa application comes in, as it is used as a virtual assistant. The purpose of this paper is to explore the use of Amazon Alexa among people and how it has improved and made simple daily tasks easier for many people. We gave our participants several questions regarding Amazon Alexa and if they had recently used or heard of it, as well as the different tasks it provides and whether it successfully satisfied their needs. Overall, we found that participants who have recently used Alexa have found it to be helpful in their daily tasks.Keywords: artificial intelligence, Echo system, machine learning, feature for feature match
Procedia PDF Downloads 1216154 Improving Grade Control Turnaround Times with In-Pit Hyperspectral Assaying
Authors: Gary Pattemore, Michael Edgar, Andrew Job, Marina Auad, Kathryn Job
Abstract:
As critical commodities become more scarce, significant time and resources have been used to better understand complicated ore bodies and extract their full potential. These challenging ore bodies provide several pain points for geologists and engineers to overcome, poor handling of these issues flows downs stream to the processing plant affecting throughput rates and recovery. Many open cut mines utilise blast hole drilling to extract additional information to feed back into the modelling process. This method requires samples to be collected during or after blast hole drilling. Samples are then sent for assay with turnaround times varying from 1 to 12 days. This method is time consuming, costly, requires human exposure on the bench and collects elemental data only. To address this challenge, research has been undertaken to utilise hyperspectral imaging across a broad spectrum to scan samples, collars or take down hole measurements for minerals and moisture content and grade abundances. Automation of this process using unmanned vehicles and on-board processing reduces human in pit exposure to ensure ongoing safety. On-board processing allows data to be integrated into modelling workflows with immediacy. The preliminary results demonstrate numerous direct and indirect benefits from this new technology, including rapid and accurate grade estimates, moisture content and mineralogy. These benefits allow for faster geo modelling updates, better informed mine scheduling and improved downstream blending and processing practices. The paper presents recommendations for implementation of the technology in open cut mining environments.Keywords: grade control, hyperspectral scanning, artificial intelligence, autonomous mining, machine learning
Procedia PDF Downloads 1136153 Teacher Trainers’ Motivation in Transformation of Teaching and Learning: The Fun Way Approach
Authors: Malathi Balakrishnan, Gananthan M. Nadarajah, Noraini Abd Rahim, Amy Wong On Mei
Abstract:
The purpose of the study is to investigate the level of intrinsic motivation of trainers after attending a Continuous Professional Development Course (CPD) organized by Institute of Teacher Training Malaysia titled, ‘Transformation of Teaching and Learning the Fun Way’. This study employed a survey whereby 96 teacher trainers were given Situational Intrinsic Motivational Scale (SIMS) Instruments. Confirmatory factor analysis was carried out to get validity of this instrument in local setting. Data were analyzed with SPSS for descriptive statistic. Semi structured interviews were also administrated to collect qualitative data on participants experiences after participating in the two-day fun-filled program. The findings showed that the participants’ level of intrinsic motivation showed higher mean than the amotivation. The results revealed that the intrinsic motivation mean is 19.0 followed by Identified regulation with a mean of 17.4, external regulation 9.7 and amotivation 6.9. The interview data also revealed that the participants were motivated after attending this training program. It can be concluded that this program, which was organized by Institute of Teacher Training Malaysia, was able to enhance participants’ level of motivation. Self-Determination Theory (SDT) as a multidimensional approach to motivation was utilized. Therefore, teacher trainers may have more success using the ‘The fun way approach’ in conducting training program in future.Keywords: teaching and learning, motivation, teacher trainer, SDT
Procedia PDF Downloads 4616152 Simulation of X-Ray Tissue Contrast and Dose Optimisation in Radiological Physics to Improve Medical Imaging Students’ Skills
Authors: Peter J. Riley
Abstract:
Medical Imaging students must understand the roles of Photo-electric Absorption (PE) and Compton Scatter (CS) interactions in patients to enable optimal X-ray imaging in clinical practice. A simulator has been developed that shows relative interaction probabilities, color bars for patient dose from PE, % penetration to the detector, and obscuring CS as Peak Kilovoltage (kVp) changes. Additionally, an anthropomorphic chest X-ray image shows the relative tissue contrasts and overlying CS-fog at that kVp, which determine the detectability of a lesion in the image. A series of interactive exercises with MCQs evaluate the student's understanding; the simulation has improved student perception of the need to acquire "sufficient" rather than maximal contrast to enable patient dose reduction at higher kVp.Keywords: patient dose optimization, radiological physics, simulation, tissue contrast
Procedia PDF Downloads 956151 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 646150 Perception Differences in Children Learning to Golf with Traditional versus Modified (Scaled) Equipment
Authors: Lindsey D. Sams, Dean R. Gorman, Cathy D. Lirgg, Steve W. Dittmore, Jack C. Kern
Abstract:
Golf is a lifetime sport that provides numerous physical and psychological benefits. The game has struggled with attrition and retention within minority groups and this has exposed the lack of a modified introduction to the game that is uniformly accessible and developmentally appropriate. Factors that have been related to sport participatory behaviors include perceived competence, enjoyment and intention. The purpose of this study was to examine self-reported perception differences in competence and enjoyment between learners using modified and traditional equipment as well as the potential effects these factors could have on intent for future participation. For this study, SNAG Golf was chosen to serve as the scaled equipment used by the modified equipment group. The participants in this study were 99 children (24 traditional equipment users/ 75 modified equipment users) located across the U.S. with ages ranging from 7 to 12 years (2nd-5th grade). Utilizing a convenience sampling method, data was obtained on a voluntary basis through surveys measuring children’s golf participation and self-perceptions concerning perceived competence, enjoyment and intention to continue participation. The scales used for perceived competence and enjoyment included Susan Harter’s Self-Perception Profile for Children (SPPC) along with the Physical Activity Enjoyment Scale (PACES). Analysis revealed no significant differences for enjoyment, perceived competence or intention between children learning with traditional golf equipment and modified golf equipment. This was true even though traditional equipment users reported significantly higher experience levels than that of modified users. Intention was regressed on the enjoyment and perceived competence variables. Congruent with current literature, enjoyment was a strong predictor of intention to continue participation, for both groups. Modified equipment users demonstrated significantly lower experience levels but reported similar levels of competence, enjoyment and intent to continue participation as reported by the more experienced, and potentially more skilled, traditional users. The ability to immediately generate these positive affects suggests the potential adoption of a more effective way to learn golf and a method that is conducive to participatory behaviors related to attrition and retention. These implications in turn, highlight an equipment candidate ideal for inception into physical education programs where new learners are introduced to various sports in safe and developmentally appropriate environments. A major goal of this study was to provide foundational research that instigates the further examination of golf’s introductory teaching methodologies, as there is a lack of its presence in current literature. Future research recommendations range from improvements in the current research design to expansive approaches related to the topic, such as progressive skill development, knowledge of the game’s tactical and strategic concepts, playing ability and teaching effectiveness when utilizing modified versus traditional equipment.Keywords: adaptive sports, enjoyment, golf participation, modified equipment, perceived competence, SNAG golf
Procedia PDF Downloads 3406149 Nuclear Near Misses and Their Learning for Healthcare
Authors: Nick Woodier, Iain Moppett
Abstract:
Background: It is estimated that one in ten patients admitted to hospital will suffer an adverse event in their care. While the majority of these will result in low harm, patients are being significantly harmed by the processes meant to help them. Healthcare, therefore, seeks to make improvements in patient safety by taking learning from other industries that are perceived to be more mature in their management of safety events. Of particular interest to healthcare are ‘near misses,’ those events that almost happened but for an intervention. Healthcare does not have any guidance as to how best to manage and learn from near misses to reduce the chances of harm to patients. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from the UK nuclear sector to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. The nuclear sector was chosen as an exemplar due to its status as an ultra-safe industry. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, scenario discussion, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how nuclear manages near misses with a focus on defining them and clarifying how best to support reporting and analysis to extract learning. Near misses related to radiation release or exposure were focused on. Results: Eightnuclear interviews contributed to the GT across nuclear power, decommissioning, weapons, and propulsion. The scoping review identified 83 articles across a range of safety-critical industries, with only six focused on nuclear. The GT identified that nuclear has a particular focus on precursors and low-level events, with regulation supporting their management. Exploration of definitions led to the recognition of the importance of several interventions in a sequence of events, but that do not solely rely on humans as these cannot be assumed to be robust barriers. Regarding reporting and analysis, no consistent methods were identified, but for learning, the role of operating experience learning groups was identified as an exemplar. The safety culture across nuclear, however, was heard to vary, which undermined reporting of near misses and other safety events. Some parts of the industry described that their focus on near misses is new and that despite potential risks existing, progress to mitigate hazards is slow. Conclusions: Healthcare often sees ‘nuclear,’ as well as other ultra-safe industries such as ‘aviation,’ as homogenous. However, the findings here suggest significant differences in safety culture and maturity across various parts of the nuclear sector. Healthcare can take learning from some aspects of management of near misses in nuclear, such as how they are defined and how learning is shared through operating experience networks. However, healthcare also needs to recognise that variability exists across industries, and comparably, it may be more mature in some areas of safety.Keywords: culture, definitions, near miss, nuclear safety, patient safety
Procedia PDF Downloads 1046148 Video Games Technologies Approach for Their Use in the Classroom
Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a set of educational materials based on video games technologies. Essentially these materials correspond to projects developed and under development as bachelor thesis of some Computer Engineering students of the Engineering School. All materials are based on the Unity SDK; integrating some devices such as kinect, leap motion, oculus rift, data gloves and Google cardboard. In detail, we present a virtual reality application for neurosciences students (suitable for neural rehabilitation), and virtual scenes for the Google cardboard, which will be used by the psychology students for phobias treatment. The objective is these materials will be located at a server to be available for all students, in the classroom or in the cloud, considering the use of smartphones has been widely extended between students.Keywords: virtual reality, interactive technologies, video games, educational materials
Procedia PDF Downloads 6576147 Using Q Methodology to Capture Attitudes about Academic Resilience in an Online Postgraduate Psychology Course
Authors: Eleanor F. Willard
Abstract:
The attrition rate on distance learning courses can be high. This research examines how online students often react when faced with poor results. Using q methodology, it was found that the emotional response level and the type of social support sought by students were key influences on their attitude to failure. As educational and psychological researchers, we are adept at measuring learning and achievement, but examining attitudes towards barriers to learning are not so well researched. The distance learning student has differing needs from onsite learners and, as the attrition rate is notoriously high in the online student population, examining learners’ attitude towards adversity and barriers is important. Self-report measures such as questionnaires are useful in terms of ascertaining levels of constructs such as resilience and academic confidence. Interviewing, too, can gain in depth detail of the opinions of such a population, but only in individuals. The aim of this research was to ascertain what the feelings and attitudes of online students were when faced with a setback. This was achieved using q methodology due to its use of both quantitative and qualitative methodology and its suitability for exploratory research. The emphasis with this methodology is the attitudes, not the individuals. The work was focused upon a population of distance learning students who attended a school on site for one week as part of their studies. They were engaged in a psychology masters conversion course and, as such, were graduate students. The Q sort had 30 items taken from the Academic Resilience Scale (ARS-30). The scale items represent three constructs; perseverance, reflecting (including adaptive help-seeking) and negative affect. These are widely acknowledged as being relevant concepts underpinning psychological resilience. The q sort was conducted with 19 students in total. This is done by participants arranging statement cards regarding how similar to themselves they believe each statement to be. This was done after reading a vignette describing an experience of academic failure. Commonalities and differences between the sorts from all participants are then analyzed in terms of correlations and response patterns. Following data collection, the participants' responses were initially analyzed and the key perspectives (factors) to emerge were labelled ‘persevering individuals’ and ‘emotional networkers’. The differences between the two perspectives centre around the level of emotion felt when faced with barriers and the extent that students enlist the help of others inside and outside of the university. The dominant factor to emerge from the sorts of ‘persevering individuals’ demonstrated that many distance learners are tenacious. However, for other students, the level of emotional and social support is pivotal in helping them complete their studies when facing adversity. This was demonstrated by the ‘emotional networkers’ perspective. This research forms a starting point for further work on engaging and retaining online students at university and can potentially provide insight into how universities can lower attrition rates on distance learning courses.Keywords: academic resilience, distance learning, online learning, q methodology
Procedia PDF Downloads 1276146 Exploring Social Emotional Learning in Diverse Academic Settings
Authors: Regina Rahimi, Delores Liston
Abstract:
The advent of COVID-19 has heightened awareness of the need for social emotional learning (SEL) throughout all educational contexts. Given this, schools (most often p12 settings) have begun to embrace practices for addressing social-emotional learning. While there is a growing body of research and literature on common practices of SEL, there is no ‘standard’ for its implementation. Our work proposed here recognizes there is no universal approach for addressing SEL and rather, seeks to explore how SEL can be approached in and through diverse contexts. We assert that left unrecognized and unaddressed by teachers, issues with social and emotional well-being profoundly negatively affect students’ academic performance and exacerbate teacher stress. They contribute to negative student-teacher relationships, poor classroom management outcomes, and compromised academic outcomes. Therefore, teachers and administrators have increasingly turned to developing pedagogical and classroom practices that support the social and emotional dimensions of students. Substantive quantitative evidence indicates professional development training to improve awareness and foster positive teacher-student relationships can provide a protective function for psycho-social outcomes and a promotive factor for improved learning outcomes for students. Our work aims to add to the growing body of literature on improving student well-being by providing a unique examination of SEL through a lens of diverse contexts. Methodology: This presentation hopes to present findings from an edited volume that will seek to highlight works that examine SEL practices in a variety of academic settings. The studies contained within the work represent varied forms of qualitative research. Conclusion: This work provides examples of SEL in higher education/postsecondary settings, a variety of P12 academic settings (public; private; rural, urban; charter, etc.), and international contexts. This work demonstrates the variety of ways educational institutions and educators have used SEL to address the needs of students, providing examples for others to adapt to their own diverse contexts. This presentation will bring together exemplar models of SEL in diverse practice settings.Keywords: social emotional learning, teachers, classrooms, diversity
Procedia PDF Downloads 636145 Investigation on Microfacies and Electrofacies of Upper Dalan and Kangan Formations in One of Costal Fars Gas Fields
Authors: Babak Rezaei, Arash Zargar Shoushtari
Abstract:
Kangan anticline is located in the Coastal Fars area, southwest of Nar and west of west Assaluyeh anticlines and north of Kangan harbor in Boushehr province. The Kangan anticline is nearly asymmetric and with 55Km long and 6Km wide base on structural map of Kangan Formation. The youngest and the oldest Formations on surface are Bakhtiyari (Pliocene) and Sarvak (Cenomanian) respectively. The highest dip angles of 30 and 40 degree were observed in north and south flanks of Kangan anticline respectively and two reverse faults cut these flanks parallel to structure strike. Existence of sweet gas in Kangan Fm. and Upper Dalan in this structure is confirmed with probable Silurian shales origin. Main facies belts in these formations include super tidal and intertidal flat, lagoon, oolitic-bioclastic shoals and open marine sub environments that expand in a homoclinal and shallow water carbonate ramp under the arid climates. Digenetic processes studies, indicates the influence of all digenetic environments (marine, meteoric, burial) in the reservoir succession. These processes sometimes has led to reservoir quality improvement (such as dolomitization and dissolution) but in many instances reservoir units has been destroyed (such as compaction, anhydrite and calcite cementation). In this study, petrophysical evaluation is made in Kangan and upper Dalan formations by using well log data of five selected wells. Probabilistic method is used for petrophysical evaluation by applying appropriate soft wares. According to this evaluation the lithology of Kangan and upper Dalan Formations mainly consist of limestone and dolomite with thin beds of Shale and evaporates. In these formations 11 Zones with different reservoir characteristic have been identified. Based on wire line data analyses, in some part of these formations, high porosity can be observed. The range of porosity (PHIE) and water saturation (Sw) are estimated around 10-20% and 20-30%, respectively.Keywords: microfacies, electrofacies, petrophysics, diagenese, gas fields
Procedia PDF Downloads 3586144 Stack Overflow Detection and Prevention on Operating Systems Using Machine Learning and Control-Flow Enforcement Technology
Authors: Cao Jiayu, Lan Ximing, Huang Jingjia, Burra Venkata Durga Kumar
Abstract:
The first virus to attack personal computers was born in early 1986, called C-Brain, written by a pair of Pakistani brothers. In those days, people still used dos systems, manipulating computers with the most basic command lines. In the 21st century today, computer performance has grown geometrically. But computer viruses are also evolving and escalating. We never stop fighting against security problems. Stack overflow is one of the most common security vulnerabilities in operating systems. It may result in serious security issues for an operating system if a program in it has a vulnerability with administrator privileges. Certain viruses change the value of specific memory through a stack overflow, allowing computers to run harmful programs. This study developed a mechanism to detect and respond to time whenever a stack overflow occurs. We demonstrate the effectiveness of standard machine learning algorithms and control flow enforcement techniques in predicting computer OS security using generating suspicious vulnerability functions (SVFS) and associated suspect areas (SAS). The method can minimize the possibility of stack overflow attacks occurring.Keywords: operating system, security, stack overflow, buffer overflow, machine learning, control-flow enforcement technology
Procedia PDF Downloads 1156143 Organizational Inertia: As a Control Mechanism for Organizational Creativity And Agility In Disruptive Environment
Authors: Doddy T. P. Enggarsyah, Soebowo Musa
Abstract:
Covid-19 pandemic has changed business environments and has spread economic contagion rapidly, as the stringent lockdowns and social distancing, which were initially intended to cut off the spread, have instead cut off the flow of economies. With no existing experience or playbook to deal with such a crisis, the prolonged pandemic can lead to bankruptcies, despite the fact that there are cases of companies that are not only able to survive but also to increase sales and create more jobs amid the economic crisis. This quantitative research study clarifies conflicting findings on organizational inertia whether it is a better strategy to implement during a disruptive environment. 316 respondents who worked in diverse firms operating in various industry types in Indonesia have completed the survey with a response rate of 63.2%. Further, this study clarifies the roles and relationships between organizational inertia, organizational creativity, organizational agility, and organizational resilience that potentially have determinants factors on firm performance in a disruptive environment. The findings of the study confirm that the organizational inertia of the firm will set up strong protection on the organization's fundamental orientation, which eventually will confine organizations to build adequate creative and adaptability responses—such fundamental orientation built from path dependency along with past success and prolonged firm performance. Organizational inertia acts like a control mechanism to ensure the adequacy of the given responses. The term adequate is important, as being overly creative during a disruptive environment may have a contradictory result since it can burden the firm performance. During a disruptive environment, organizations will limit creativity by focusing more on creativity that supports the resilience and new technology adoption will be limited since the cost of learning and implementation are perceived as greater than the potential gains. The optimal path towards firm performance is gained through organizational resilience, as in a disruptive environment, the survival of the organization takes precedence over firm performance.Keywords: disruptive environment, organizational agility, organizational creativity, organizational inertia, organizational resilience
Procedia PDF Downloads 1126142 Serious Game as a Performance Assessment Tool that Reduces Examination Anxiety
Authors: R. Ajith, Kamal Bijlani
Abstract:
Over the past few years, tremendous evolutions have happened in the educational discipline. Serious game, which is regarded as one of the most important inventions is being widely for learning purposes. Serious games can be used to negate the various drawbacks that the current evaluation and assessment methods have, like examination anxiety and the lack of proper feedback given to the learners. This paper proposes serious game as a tool for conducting evaluations and assessments. The examination anxiety faced by learners can be reduced, as they are provided with a game as an examination. The serious game also tracks learner’s actions, records them and provide feedback based on the predefined set of actions according to the course objectives. The appropriate feedback given to the learner will help in developmental activities in the learning process.Keywords: serious games, evaluation, performance assessment, examination anxiety, performance feedback
Procedia PDF Downloads 5946141 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 956140 Fine-Tuned Transformers for Translating Multi-Dialect Texts to Modern Standard Arabic
Authors: Tahar Alimi, Rahma Boujebane, Wiem Derouich, Lamia Hadrich Belguith
Abstract:
Machine translation task of low-resourced languages such as Arabic is a challenging task. Despite the appearance of sophisticated models based on the latest deep learning techniques, namely the transfer learning and transformers, all models prove incapable of carrying out an acceptable translation, which includes Arabic Dialects (AD), because they do not have official status. In this paper, we present a machine translation model designed to translate Arabic multidialectal content into Modern Standard Arabic (MSA), leveraging both new and existing parallel resources. The latter achieved the best results for both Levantine and Maghrebi dialects with a BLEU score of 64.99.Keywords: Arabic translation, dialect translation, fine-tune, MSA translation, transformer, translation
Procedia PDF Downloads 616139 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 1606138 Child-Friendly Digital Storytelling to Promote Young Learners' Critical Thinking in English Learning
Authors: Setyarini Sri, Nursalim Agus
Abstract:
Integrating critical thinking and digital based learning is one of demands in teaching English in 21st century. Child-friendly digital storytelling (CFDS) is an innovative learning model to promote young learners’ critical thinking. Therefore, this study aims to (1) investigate how child-friendly digital storytelling is implemented to promote young learners’ critical thinking in speaking English; (2) find out the benefits gained by the students in their learning based on CFDS. Classroom Action Research (CAR) took place in two cycles in which each of the cycle covered four phases namely: Planning, Acting, Observing, and Evaluating. Three classes of seventh graders were selected as the subjects of this study. Data were collected through observation, interview with some selected students as respondents, and document analysis in the form individual recorded storytelling. Sentences, phrases, words found in the transcribed data were identified and categorized based on Bloom taxonomy. The findings from the first cycle showed that the students seemed to speak critically that can be seen from the way they understood the story and related the story to their real life. Meanwhile, the result investigated from the second cycle likely indicated their higher level of critical thinking since the students spoke in English critically through comparing, questioning, analyzing, and evaluating the story by giving arguments, opinions, and comments. Such higher levels of critical thinking were also found in the students’ final project of individual recorded digital story. It is elaborated from the students’ statements in the interview who claimed CFDS offered opportunity to the students to promote their critical thinking because they comprehended the story deeply as they experienced in their real life. This learning model created good learning atmosphere and engaged the students directly so that they looked confident to retell the story in various perspectives. In term of the benefits of child-friendly digital storytelling, the students found it beneficial for some enjoyable classroom activities through watching beautiful and colorful pictures, listening to clear and good sounds, appealing moving motion and emotionally they were involved in that story. In the interview, the students also stated that child-friendly digital storytelling eased them to understand the meaning of the story as they were motivated and enthusiastic to speak in English critically.Keywords: critical thinking, child-friendly digital storytelling, English speaking, promoting, young learners
Procedia PDF Downloads 2826137 The Impact of Low-Systematization Level in Physical Education in Primary School
Authors: Wu Hong, Pan Cuilian, Wu Panzifan
Abstract:
The student’s attention during the class is one of the most important indicators for the learning evaluation; the level of attention is directly related to the results of primary education. In recent years, extensive research has been conducted across China on improving primary school students’ attention during class. During the specific teaching activities in primary school, students have the characteristics of short concentration periods, high probability of distraction, and difficulty in long-term immersive learning. In physical education teaching, where there are mostly outdoor activities, this characteristic is particularly prominent due to the large changes in the environment and the strong sense of freshness among students. It is imperative to overcome this characteristic in a targeted manner, improve the student’s experience in the course, and raise the degree of systematization. There are many ways to improve the systematization of teaching and learning, but most of them lack quantitative indicators, which makes it difficult to evaluate the improvements before and after changing the teaching methods. Based on the situation above, we use the case analysis method, combined with a literature review, to study the negative impact of low systematization levels in primary school physical education teaching, put forward targeted improvement suggestions, and make a quantitative evaluation of the method change.Keywords: attention, adolescent, evaluation, systematism, training-method
Procedia PDF Downloads 466136 Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids
Authors: Sami M. Alshareef
Abstract:
The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience.Keywords: machine learning, cyber-attacks, automatic generation control, smart grid
Procedia PDF Downloads 856135 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education
Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly
Abstract:
Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learningKeywords: bridging gap, medical education, teaching and learning, model of learning
Procedia PDF Downloads 616134 Decision-Making, Student Empathy, and Cold War Historical Events: A Case Study of Abstract Thinking through Content-Centered Learning
Authors: Jeffrey M. Byford
Abstract:
The conceptualized theory of decision making on historical events often does not conform to uniform beliefs among students. When presented the opportunity, many students have differing opinions and rationales associated with historical events and outcomes. The intent of this paper was to provide students with the economic, social and political dilemmas associated with the autonomy of East Berlin. Students ranked seven possible actions from the most to least acceptable. In addition, students were required to provide both positive and negative factors for each decision and relative ranking. Results from this activity suggested that while most students chose a financial action towards West Berlin, some students had trouble justifying their actions.Keywords: content-centered learning, cold war, Berlin, decision-making
Procedia PDF Downloads 4556133 Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, multi-agent, TeleRobotics control, security, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 4386132 Heat Transfer Characteristics of Film Condensation
Authors: M. Mosaad, J. H. Almutairi, A. S. Almutairi
Abstract:
In this paper, saturated-vapour film condensation on a vertical wall with the backside cooled by forced convection is analyzed as a conjugate problem. In the analysis, the temperature and heat flux at the wall sides are assumed unknown and determined from the solution. The model is presented in a dimensionless form to take a broad view of the solution. The dimensionless variables controlling this coupled heat transfer process are discovered from the analysis. These variables explain the relative impact of the interactive heat transfer mechanisms of forced convection and film condensation. The study shows that the conjugate treatment of film condensation process yields results different from that predicted by a non-conjugate Nusselt-type solution, wherein the effect of the cooling fluid is neglected.Keywords: film condensation, forced convection, coupled heat transfer, analytical modelling
Procedia PDF Downloads 3216131 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 2386130 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 376129 Information Technology and Communications in Management of the Imperial Citadel of Thang Long-A World Heritage Site
Authors: Ngo the Bach
Abstract:
Information technology and communications are growing strongly and penetrated almost the entire Vietnamese economy and society. The article presents an overview of information technology and application communications in the management the Central Sector of the Imperial Citadel of Thang Long (Hanoi, Vietnam) - A World Heritage Site. The author also points out the opportunities and challenges of the information technology and communications in the sectors of culture and heritage; the use of information technology as an effective tool to develop mass and interactive communications. The article emphasizes on the advantage of information technology and communications in supporting effectively the management reform with respect to the Imperial Citadel of Thang Long in particular and the management of world heritage sites in Vietnam in general.Keywords: information technology, communications, management, culture, heritage
Procedia PDF Downloads 330