Search results for: statistical machine translation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7121

Search results for: statistical machine translation

3971 Examination of 12-14 Years Old Volleyball Players’ Body Image Levels

Authors: Dilek Yalız Solmaz, Gülsün Güven

Abstract:

The aim of this study is to examine the body image levels of 12-14 years old girls who are playing volleyball. The research group consists of 113 girls who are playing volleyball in Sakarya during the fall season of 2015-2016. Data was collected by means of the 'Body Image Questionnaire' which was originally developed by Secord and Jourard. The consequence of repeated analysis of the reliability of the scale was determined to as '.96'. This study employed statistical calculations as mean, standard deviation and t-test. According to results of this study, it was determined that the mean point of the volleyball players is 158.5 ± 25.1 (minimum=40; maximum=200) and it can be said that the volleyball players’ body image levels are high. There is a significant difference between the underweight (167.4 ± 20.7) and normal weight (151.4 ± 26.2) groups according to their Body Mass Index. Body image levels of underweight group were determined higher than normal weight group.

Keywords: volleyball, players, body image, body image levels

Procedia PDF Downloads 210
3970 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties

Authors: Petr Homola, Roman Růžek

Abstract:

Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.

Keywords: fatigue, fracture surface, laser beam micro-drilling, titanium alloy

Procedia PDF Downloads 156
3969 A Family of Distributions on Learnable Problems without Uniform Convergence

Authors: César Garza

Abstract:

In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.

Keywords: statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization

Procedia PDF Downloads 131
3968 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology

Authors: Amarendar Reddy Addula

Abstract:

Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.

Keywords: artificial intelligence, ethics & human rights issues, laws, international laws

Procedia PDF Downloads 95
3967 Preliminary Knowledge Extraction from Beethoven’s Sonatas: from Musical Referential Patterns to Emotional Normative Ratings

Authors: Christina Volioti, Sotiris Manitsaris, Eleni Katsouli, Vasiliki Tsekouropoulou, Leontios J. Hadjileontiadis

Abstract:

The piano sonatas of Beethoven represent part of the Intangible Cultural Heritage. The aims of this research were to further explore this intangibility by placing emphasis on defining emotional normative ratings for the “Waldstein” (Op. 53) and “Tempest” (Op. 31) Sonatas of Beethoven. To this end, a musicological analysis was conducted on these particular sonatas and referential patterns in these works of Beethoven were defined. Appropriate interactive questionnaires were designed in order to create a statistical normative rating that describes the emotional status when an individual listens to these musical excerpts. Based on these ratings, it is possible for emotional annotations for these same referential patterns to be created and integrated into the music score.

Keywords: emotional annotations, intangible cultural heritage, musicological analysis, normative ratings

Procedia PDF Downloads 175
3966 Relationship between Iron-Related Parameters and Soluble Tumor Necrosis Factor-Like Weak Inducer of Apoptosis in Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Iron is physiologically essential. However, it also participates in the catalysis of free radical formation reactions. Its deficiency is associated with amplified health risks. This trace element establishes some links with another physiological process related to cell death, apoptosis. Both iron deficiency and iron overload are closely associated with apoptosis. Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) has the ability to trigger apoptosis and plays a dual role in the physiological versus pathological inflammatory responses of tissues. The aim of this study was to investigate the status of these parameters as well as the associations among them in children with obesity, a low-grade inflammatory state. The study was performed on groups of children with normal body mass index (N-BMI) and obesity. Forty-three children were included in each group. Based upon age- and sex-adjusted BMI percentile tables prepared by World Health Organization, children whose values varied between 85 and 15 were included in N-BMI group. Children whose BMI percentile values were between 99 and 95 comprised obese (OB) group. Institutional ethical committee approval and informed consent forms were taken prior to the study. Anthropometric measurements (weight, height, waist circumference, hip circumference, head circumference, neck circumference) and blood pressure values (systolic blood pressure and diastolic blood pressure) were recorded. Routine biochemical analysis including serum iron, total iron binding capacity (TIBC), transferrin saturation percent (Tf Sat %), and ferritin were performed. Soluble tumor necrosis factor-like weak inducer of apoptosis levels were determined by enzyme-linked immunosorbent assay. Study data was evaluated using appropriate statistical tests performed by the statistical program SPSS. Serum iron levels were 91±34 mcrg/dl and 75±31 mcrg/dl in N-BMI and OB children, respectively. The corresponding values for TIBC, Tf Sat %, ferritin were 265 mcrg/dl vs 299 mcrg/dl, 37.2±19.1 % vs 26.7±14.6 %, and 41±25 ng/ml vs 44±26 ng/ml. in N-BMI and OB groups, sTWEAK concentrations were measured as 351 ng/L and 325 ng/L, respectively (p>0.05). Correlation analysis revealed significant associations between sTWEAK levels and iron related parameters (p<0.05) except ferritin. In conclusion, iron contributes to apoptosis. Children with iron deficiency have decreased apoptosis rate in comparison with that of healthy children. sTWEAK is inducer of apoptosis. Obese children had lower levels of both iron and sTWEAK. Low levels of sTWEAK are associated with several types of cancers and poor survival. Although iron deficiency state was not observed in this study, the correlations detected between decreased sTWEAK and decreased iron as well as Tf Sat % values were valuable findings, which point out decreased apoptosis. This may induce a proinflammatory state, potentially leading to malignancies in the future lives of obese children.

Keywords: apoptosis, children, iron-related parameters, obesity, soluble tumor necrosis factor-like weak inducer of apoptosis

Procedia PDF Downloads 132
3965 Detection of Extrusion Blow Molding Defects by Airflow Analysis

Authors: Eva Savy, Anthony Ruiz

Abstract:

In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.

Keywords: extrusion blow molding, signal, sensor, defects, detection

Procedia PDF Downloads 152
3964 Validation of the Arabic Version of the Positive and Negative Syndrome Scale (PANSS)

Authors: Arij Yehya, Suhaila Ghuloum, Abdlmoneim Abdulhakam, Azza Al-Mujalli, Mark Opler, Samer Hammoudeh, Yahya Hani, Sundus Mari, Reem Elsherbiny, Ziyad Mahfoud, Hassen Al-Amin

Abstract:

Introduction: The Positive and Negative Syndrome Scale (PANSS) is a valid instrument developed by Kay and colleagues6 to assess symptoms of patients with schizophrenia. It consists of 30 items that factor the symptoms into three subscales: positive, negative and general psychopathology. This scale has been translated and validated in several languages. Objective: This study aims to determine the validity and psychometric properties of the Arabic version of the PANSS. Methods: A standardized translation and cultural adaptation method was adopted. Patients diagnosed with schizophrenia (n=98), according to psychiatrist’s diagnosis based on DSM-IV criteria, were recruited from the Psychiatry Department at Rumailah Hospital, Qatar. A first rater confirmed the diagnosis using the Arabic version of Mini International Neuropsychiatric Interview (MINI 6). A second and independent rater-administered the Arabic version of PANSS. Also, a control group (n=101), with no history of psychiatric disorder was recruited from the family and friends of the patients and from primary health care centers in Qatar. Results: There were more males than females in our sample of patients with schizophrenia (68.9% and 31.6%, respectively). On the other hand, in the control group the number of females outweighed that of males (58.4% and 41.6% respectively). The scale had a good internal consistency with Cronbach’s alpha 0.91. There was a significant difference between the scores on the three subscales of the PANSS. Patients with schizophrenia scored significantly higher (p<.0001) than the control subjects on subscales for positive symptoms 20.01(SD=7.21) and 7.30(SD=1.38), negative symptoms 18.89(SD=8.88) and 7.37(SD=2.38) and general psychopathology 34.41 (SD=11.56) and 16.93 (SD=3.93), respectively. Factor analysis and ROC curve were carried out to further test the psychometrics of the scale. Conclusions: The Arabic version of PANSS is a reliable and valid tool to assess both positive and negative symptoms of patients with schizophrenia in a balanced manner. In addition to providing the Arab population with a standardized tool to monitor symptoms of schizophrenia, this version provides a gateway to compare the prevalence of positive and negative symptoms in the Arab world which can be compared to others done elsewhere.

Keywords: Arabic version, assessment, diagnosis, schizophrenia, validation

Procedia PDF Downloads 635
3963 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 633
3962 Redefining Infrastructure as Code Orchestration Using AI

Authors: Georges Bou Ghantous

Abstract:

This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.

Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making

Procedia PDF Downloads 34
3961 Reactivity Study on South African Calcium Based Material Using a pH-Stat and Citric Acid: A Statistical Approach

Authors: Hilary Rutto, Mbali Chiliza, Tumisang Seodigeng

Abstract:

The study on reactivity of calcined calcium-based material is very important in dry flue gas desulphurisation (FGD) process, so as to produce absorbent with high sulphur dioxide capture capacity during the hydration process. The effect of calcining temperature and time on the reactivity of calcined limestone material were investigated. In this study, the reactivity was measured using a pH stat apparatus and also confirming the result by performing citric acid reactivity test. The reactivity was calculated using the shrinking core model. Based on the experiments, a mathematical model is developed to correlate the effect of time and temperature to the reactivity of absorbent. The calcination process variables were temperature (700 -1000°C) and time (1-6 hrs). It was found that reactivity increases with an increase in time and temperature.

Keywords: reactivity, citric acid, calcination, time

Procedia PDF Downloads 220
3960 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.

Keywords: authentication, gesture-based passwords, shoulder-surfing attacks, usability

Procedia PDF Downloads 139
3959 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 359
3958 Future Metro Station: Remodeling Underground Environment Based on Experience Scenarios and IoT Technology

Authors: Joo Min Kim, Dongyoun Shin

Abstract:

The project Future Station (FS) seek for a deeper understanding of metro station. The main idea of the project is enhancing the underground environment by combining new architectural design with IoT technology. This research shows the understanding of the metro environment giving references regarding traditional design approaches and IoT combined space design. Based on the analysis, this research presents design alternatives in two metro stations those are chosen for a testbed. It also presents how the FS platform giving a response to travelers and deliver the benefit to metro operators. In conclusion, the project describes methods to build future metro service and platform that understand traveler’s intentions and giving appropriate services back for enhancing travel experience. It basically used contemporary technology such as smart sensing grid, big data analysis, smart building, and machine learning technology.

Keywords: future station, digital lifestyle experience, sustainable metro, smart metro, smart city

Procedia PDF Downloads 299
3957 Structure Modification of Leonurine to Improve Its Potency as Aphrodisiac

Authors: Ruslin, R. E. Kartasasmita, M. S. Wibowo, S. Ibrahim

Abstract:

An aphrodisiac is a substance contained in food or drug that can arouse sexual instinct and increase pleasure while working, these substances derived from plants, animals, and minerals. When consuming substances that have aphrodisiac activity and duration can improve the sexual instinct. The natural aphrodisiac effect can be obtained through plants, animals, and minerals. Leonurine compound has aphrodisiac activity, these compounds can be isolated from plants of Leonurus Sp, Sundanese people is known as deundereman, this plant is empirical has aphrodisiac activity and based on the isolation of active compounds from plants known to contain compounds leonurine, so that the compound is expected to have activity aphrodisiac. Leonurine compound can be isolated from plants or synthesized chemically with material dasa siringat acid. Leonurine compound can be obtained commercial and derivatives of these compounds can be synthesized in an effort to increase its activity. This study aims to obtain derivatives leonurine better aphrodisiac activity compared with the parent compound, modified the structure of the compounds in the form leonurin guanidino butyl ester group with butyl amin and bromoetanol. ArgusLab program version 4.0.1 is used to determine the binding energy, hydrogen bonds and amino acids involved in the interaction of the compound PDE5 receptor. The in vivo test leonurine compounds and derivatives as an aphrodisiac ingredients and hormone testosterone levels using 27 male rats Wistar strain and 9 female mice of the same species, ages ranged from 12 weeks rats weighing + 200 g / tail. The test animal is divided into 9 groups according to the type of compounds and the dose given. Each treatment group was orally administered 2 ml per day for 5 days. On the sixth day was observed male rat sexual behavior and taking blood from the heart to measure testosterone levels using ELISA technique. Statistical analysis was performed in this study is the ANOVA test Least Square Differences (LSD) using the program Statistical Product and Service Solutions (SPSS). Aphrodisiac efficacy of the leonurine compound and its derivatives have proven in silico and in vivo test, the in silico testing leonurine derivatives have smaller binding energy derivatives leonurine so that activity better than leonurine compounds. Testing in vivo using rats of wistar strain that better leonurine derivative of this compound shows leonurine that in silico studies in parallel with in vivo tests. Modification of the structure in the form of guanidine butyl ester group with butyl amin and bromoethanol increase compared leonurine compound for aphrodisiac activity, testosterone derivatives of compounds leonurine experienced a significant improvement especial is 1RD compounds especially at doses of 100 and 150 mg/bb. The results showed that the compound leonurine and its compounds contain aphrodisiac activity and increase the amount of testosterone in the blood. The compound test used in this study acts as a steroid precursor resulting in increased testosterone.

Keywords: aphrodisiac dysfunction erectile leonurine 1-RD 2-RD, dysfunction, erectile leonurine, 1-RD 2-RD

Procedia PDF Downloads 279
3956 An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy

Authors: Rajveer, Abhinav Saxena, Sanjeev Das

Abstract:

The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy.

Keywords: aluminum alloy 6082, strength, forging, age hardening

Procedia PDF Downloads 433
3955 Wear and Fraction Behavior of Porcelain Coated with Polyurethane/SiO2 Coating Layer

Authors: Ching Yern Chee

Abstract:

Various loading of nano silica is added into polyurethane (PU) and then coated on porcelain substrate. The wear and friction properties of the porcelain substrates coated with polyurethane/nano silica nano composite coatings were investigated using the reciprocating wear testing machine. The friction and wear test of polyurethane/nano silica coated porcelain substrate was studied at different sliding speed and applied load. It was found that the optimum composition of nano silica is 3 wt% which gives the lowest friction coefficient and wear rate in all applied load ranges and sliding speeds. For 3 wt% nano silica filled PU coated porcelain substrate, the increment of sliding speed caused higher wear rates but lower frictions coefficient. Besides, the friction coefficient of nano silica filled PU coated porcelain substrate decreased but the wear rate increased with the applied load.

Keywords: porcelain, nanocomposite coating, morphology, friction, wear behavior

Procedia PDF Downloads 528
3954 An Evaluation Model for Enhancing Flexibility in Production Systems through Additive Manufacturing

Authors: Angela Luft, Sebastian Bremen, Nicolae Balc

Abstract:

Additive manufacturing processes have entered large parts of the industry and their range of application have progressed and grown significantly in the course of time. A major advantage of additive manufacturing is the innate flexibility of the machines. This corelates with the ongoing demand of creating highly flexible production environments. However, the potential of additive manufacturing technologies to enhance the flexibility of production systems has not yet been truly considered and quantified in a systematic way. In order to determine the potential of additive manufacturing technologies with regards to the strategic flexibility design in production systems, an integrated evaluation model has been developed, that allows for the simultaneous consideration of both conventional as well as additive production resources. With the described model, an operational scope of action can be identified and quantified in terms of mix and volume flexibility, process complexity, and machine capacity that goes beyond the current cost-oriented approaches and offers a much broader and more holistic view on the potential of additive manufacturing. A respective evaluation model is presented this paper.

Keywords: additive manufacturing, capacity planning, production systems, strategic production planning, flexibility enhancement

Procedia PDF Downloads 157
3953 The Effect of Precipitation on Weed Infestation of Spring Barley under Different Tillage Conditions

Authors: J. Winkler, S. Chovancová

Abstract:

The article deals with the relation between rainfall in selected months and subsequent weed infestation of spring barley. The field experiment was performed at Mendel University agricultural enterprise in Žabčice, Czech Republic. Weed infestation was measured in spring barley vegetation in years 2004 to 2012. Barley was grown in three tillage variants: conventional tillage technology (CT), minimization tillage technology (MT), and no tillage (NT). Precipitation was recorded in one-day intervals. Monthly precipitation was calculated from the measured values in the months of October through to April. The technique of canonical correspondence analysis was applied for further statistical processing. 41 different species of weeds were found in the course of the 9-year monitoring period. The results clearly show that precipitation affects the incidence of most weed species in the selected months, but acts differently in the monitored variants of tillage technologies.

Keywords: weeds, precipitation, tillage, weed infestation forecast

Procedia PDF Downloads 499
3952 Testing the Simplification Hypothesis in Constrained Language Use: An Entropy-Based Approach

Authors: Jiaxin Chen

Abstract:

Translations have been labeled as more simplified than non-translations, featuring less diversified and more frequent lexical items and simpler syntactic structures. Such simplified linguistic features have been identified in other bilingualism-influenced language varieties, including non-native and learner language use. Therefore, it has been proposed that translation could be studied within a broader framework of constrained language, and simplification is one of the universal features shared by constrained language varieties due to similar cognitive-physiological and social-interactive constraints. Yet contradicting findings have also been presented. To address this issue, this study intends to adopt Shannon’s entropy-based measures to quantify complexity in language use. Entropy measures the level of uncertainty or unpredictability in message content, and it has been adapted in linguistic studies to quantify linguistic variance, including morphological diversity and lexical richness. In this study, the complexity of lexical and syntactic choices will be captured by word-form entropy and pos-form entropy, and a comparison will be made between constrained and non-constrained language use to test the simplification hypothesis. The entropy-based method is employed because it captures both the frequency of linguistic choices and their evenness of distribution, which are unavailable when using traditional indices. Another advantage of the entropy-based measure is that it is reasonably stable across languages and thus allows for a reliable comparison among studies on different language pairs. In terms of the data for the present study, one established (CLOB) and two self-compiled corpora will be used to represent native written English and two constrained varieties (L2 written English and translated English), respectively. Each corpus consists of around 200,000 tokens. Genre (press) and text length (around 2,000 words per text) are comparable across corpora. More specifically, word-form entropy and pos-form entropy will be calculated as indicators of lexical and syntactical complexity, and ANOVA tests will be conducted to explore if there is any corpora effect. It is hypothesized that both L2 written English and translated English have lower entropy compared to non-constrained written English. The similarities and divergences between the two constrained varieties may provide indications of the constraints shared by and peculiar to each variety.

Keywords: constrained language use, entropy-based measures, lexical simplification, syntactical simplification

Procedia PDF Downloads 94
3951 Unravelling of the TOR Signaling Pathway in Human Fungal Pathogen Cryptococcus neoformans

Authors: Yee-Seul So, Guiseppe Ianiri, Alex Idnurm, Yong-Sun Bahn

Abstract:

Tor1 is a serine/threonine protein kinase that is widely conserved across eukaryotic species. Tor1 was first identified in Saccharomyces cerevisiae as a target of rapamycin (TOR). The TOR pathway has been implicated in regulating cellular responses to nutrients, proliferation, translation, transcription, autophagy, and ribosome biogenesis. Here we identified two homologues of S. cerevisiae Tor proteins, CNAG_06642 (Tor1) and CNAG_05220 (Tlk1, TOR-like kinase 1), in Cryptococcus neoformans causing a life-threatening fungal meningoencephalitis. Both Tor1 and Tlk1 have rapamycin-binding (RB) domains but Tlk1 has truncated RB form. To study the TOR-signaling pathway in the fungal pathogen, we attempt to construct the tor1Δ and tlk1Δ mutants and phenotypically analyze them. Although we failed to construct the tor1Δ mutant, we successfully construct the tlk1Δ mutant. The tlk1Δ mutant does not exhibit any discernable phenotypes, suggesting that Tlk1 is dispensable in C. neoformans. The essentiality of TOR1 is independently confirmed by constructing the TOR1 promoter replacement strain by using a copper transporter 4 (CTR4) promoter and the TOR1/tor1 heterozygous mutant in diploid C. neoformans strain background followed by sporulation analysis. To further analyze the function of Tor1, we construct TOR1 overexpression mutant using a constitutively active histone H3 in C. neoformans. We find that the Tor1 overexpression mutant is resistant to rapamycin but the tlk1Δ mutant does not exhibit any altered resistance to rapamycin, further confirming that Tor1, but not Tlk1, is critical for TOR signaling. Furthermore, we found that Tor1 is involved in response to diverse stresses, including genotoxic stress, oxidative stress, thermo-stress, antifungal drug treatment, and production of melanin. To identify any TOR-related transcription factors, we screened C. neoformans transcription factor library that we constructed in our previous study and identified several potential downstream factors of Tor1, including Atf1, Crg1 and Bzp3. In conclusion, the current study provides insight into the role of the TOR signaling pathway in human fungal pathogens as well as C. neoformans.

Keywords: fungal pathogen, serine/threonine kinase, target of rapamycin, transcription factor

Procedia PDF Downloads 221
3950 Emerging Threats and Adaptive Defenses: Navigating the Future of Cybersecurity in a Hyperconnected World

Authors: Olasunkanmi Jame Ayodeji, Adebayo Adeyinka Victor

Abstract:

In a hyperconnected world, cybersecurity faces a continuous evolution of threats that challenge traditional defence mechanisms. This paper explores emerging cybersecurity threats like malware, ransomware, phishing, social engineering, and the Internet of Things (IoT) vulnerabilities. It delves into the inadequacies of existing cybersecurity defences in addressing these evolving risks and advocates for adaptive defence mechanisms that leverage AI, machine learning, and zero-trust architectures. The paper proposes collaborative approaches, including public-private partnerships and information sharing, as essential to building a robust defence strategy to address future cyber threats. The need for continuous monitoring, real-time incident response, and adaptive resilience strategies is highlighted to fortify digital infrastructures in the face of escalating global cyber risks.

Keywords: cybersecurity, hyperconnectivity, malware, adaptive defences, zero-trust architecture, internet of things vulnerabilities

Procedia PDF Downloads 22
3949 Assessing Relationships between Glandularity and Gray Level by Using Breast Phantoms

Authors: Yun-Xuan Tang, Pei-Yuan Liu, Kun-Mu Lu, Min-Tsung Tseng, Liang-Kuang Chen, Yuh-Feng Tsai, Ching-Wen Lee, Jay Wu

Abstract:

Breast cancer is predominant of malignant tumors in females. The increase in the glandular density increases the risk of breast cancer. BI-RADS is a frequently used density indicator in mammography; however, it significantly overestimates the glandularity. Therefore, it is very important to accurately and quantitatively assess the glandularity by mammography. In this study, 20%, 30% and 50% glandularity phantoms were exposed using a mammography machine at 28, 30 and 31 kVp, and 30, 55, 80 and 105 mAs, respectively. The regions of interest (ROIs) were drawn to assess the gray level. The relationship between the glandularity and gray level under various compression thicknesses, kVp, and mAs was established by the multivariable linear regression. A phantom verification was performed with automatic exposure control (AEC). The regression equation was obtained with an R-square value of 0.928. The average gray levels of the verification phantom were 8708, 8660 and 8434 for 0.952, 0.963 and 0.985 g/cm3, respectively. The percent differences of glandularity to the regression equation were 3.24%, 2.75% and 13.7%. We concluded that the proposed method could be clinically applied in mammography to improve the glandularity estimation and further increase the importance of breast cancer screening.

Keywords: mammography, glandularity, gray value, BI-RADS

Procedia PDF Downloads 493
3948 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies

Abstract:

With the world climate projected to warm and major cities in developing countries becoming increasingly populated and polluted, governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of an adaptable model of these risks. Simulations are performed using the EnergyPlus building physics software. An accurate metamodel is formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) are compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Keywords: neural networks, radial basis functions, metamodelling, python machine learning libraries

Procedia PDF Downloads 447
3947 Brand Extension and Customer WOM: Evidence from the Sports Industry

Authors: Jim Shih-Chiao Chin, Yu Ting Yeh, Shui Lien Chen, Yi-Fen Tsai

Abstract:

his study is taking Adidas Company as the object, explored the brand awareness directly or indirectly affects brand affect and word of mouth. First, explored the brand awareness on category fit and image fit, and examined the influence of category fit and image fit on extension attitude. This study then designates the effect of extension attitude on brand affect and word-of-mouth. The relationship of brand awareness on brand affect and word-of-mouth was also explored. The study participants are people who have purchased Adidas extension products. A total of 700 valid questionnaires were collected and statistical software AMOS 20.0 was used to examine the research hypotheses by using structural equation modeling (SEM). Finally, theoretical implications and research directions are provided for future studies.

Keywords: brand extension, brand awareness, product category fit, brand image fit, brand affect, word-of-mouth (WOM)

Procedia PDF Downloads 333
3946 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 17
3945 SVID: Structured Vulnerability Intelligence for Building Deliberated Vulnerable Environment

Authors: Wenqing Fan, Yixuan Cheng, Wei Huang

Abstract:

The diversity and complexity of modern IT systems make it almost impossible for internal teams to find vulnerabilities in all software before the software is officially released. The emergence of threat intelligence and vulnerability reporting policy has greatly reduced the burden on software vendors and organizations to find vulnerabilities. However, to prove the existence of the reported vulnerability, it is necessary but difficult for security incident response team to build a deliberated vulnerable environment from the vulnerability report with limited and incomplete information. This paper presents a structured, standardized, machine-oriented vulnerability intelligence format, that can be used to automate the orchestration of Deliberated Vulnerable Environment (DVE). This paper highlights the important role of software configuration and proof of vulnerable specifications in vulnerability intelligence, and proposes a triad model, which is called DIR (Dependency Configuration, Installation Configuration, Runtime Configuration), to define software configuration. Finally, this paper has also implemented a prototype system to demonstrate that the orchestration of DVE can be automated with the intelligence.

Keywords: DIR triad model, DVE, vulnerability intelligence, vulnerability recurrence

Procedia PDF Downloads 121
3944 Modelling of Powered Roof Supports Work

Authors: Marcin Michalak

Abstract:

Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.

Keywords: machine modelling, underground mining, coal mining, structure

Procedia PDF Downloads 368
3943 Effect of Cost Control and Cost Reduction Techniques in Organizational Performance

Authors: Babatunde Akeem Lawal

Abstract:

In any organization, the primary aim is to maximize profit, but the major challenges facing them is the increase in cost of operation because of this there is increase in cost of production that could lead to inevitable cost control and cost reduction scheme which make it difficult for most organizations to operate at the cost efficient frontier. The study aims to critically examine and evaluate the application of cost control and cost reduction in organization performance and also to review budget as an effective tool of cost control and cost reduction. A descriptive survey research was adopted. A total number of 40 respondent retrieved were used for the study. The analysis of data collected was undertaken by applying appropriate statistical tools. Regression analysis was used to test the hypothesis with the use of SPSS. Based on the findings; it was evident that cost control has a positive impact on organizational performance and also the style of management has a positive impact on organizational performance.

Keywords: organization, cost reduction, cost control, performance, budget, profit

Procedia PDF Downloads 604
3942 The Impact of Artificial Intelligence on Autism Attitude and Skills

Authors: Sara Fayez Fawzy Mikhael

Abstract:

Inclusive education services for students with autism are still developing in Thailand. Although many more children with intellectual disabilities have been attending school since the Thai government enacted the Education for Persons with Disabilities Act in 2008, facilities for students with disabilities and their families are generally inadequate. This comprehensive study used the Attitudes and Preparedness for Teaching Students with Autism Scale (APTSAS) to examine the attitudes and preparedness of 110, elementary teachers in teaching students with autism in the general education setting. Descriptive statistical analyzes showed that the most important factor in the formation of a negative image of teachers with autism is student attitudes. Most teachers also stated that their pre-service training did not prepare them to meet the needs of children with special needs who cannot speak. The study is important and provides directions for improving non-formal teacher education in Thailand.

Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills

Procedia PDF Downloads 67