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Abstract : In supervised binary classification and regression problems, it is well-known that learnability is equivalent to a
uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For
the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence
does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the
coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We
introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of
uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this
dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of
distributions.
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