Search results for: science materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9065

Search results for: science materials

5915 Shear Strength Characteristics of Sand Mixed with Particulate Rubber

Authors: Firas Daghistani, Hossam Abuel Naga

Abstract:

Waste tyres is a global problem that has a negative effect on the environment, where there are approximately one billion waste tyres discarded worldwide yearly. Waste tyres are discarded in stockpiles, where they provide harm to the environment in many ways. Finding applications to these materials can help in reducing this global problem. One of these applications is recycling these waste materials and using them in geotechnical engineering. Recycled waste tyre particulates can be mixed with sand to form a lightweight material with varying shear strength characteristics. Contradicting results were found in the literature on the inclusion of particulate rubber to sand, where some experiments found that the inclusion of particulate rubber can increase the shear strength of the mixture, while other experiments stated that the addition of particulate rubber decreases the shear strength of the mixture. This research further investigates the inclusion of particulate rubber to sand and whether it can increase or decrease the shear strength characteristics of the mixture. For the experiment, a series of direct shear tests were performed on a poorly graded sand with a mean particle size of 0.32 mm mixed with recycled poorly graded particulate rubber with a mean particle size of 0.51 mm. The shear tests were performedon four normal stresses 30, 55, 105, 200 kPa at a shear rate of 1 mm/minute. Different percentages ofparticulate rubber content were used in the mixture i.e., 10%, 20%, 30% and 50% of sand dry weight at three density states, namely loose, slight dense, and dense state. The size ratio of the mixture,which is the mean particle size of the particulate rubber divided by the mean particle size of the sand, was 1.59. The results identified multiple parameters that can influence the shear strength of the mixture. The parameters were: normal stress, particulate rubber content, mixture gradation, mixture size ratio, and the mixture’s density. The inclusion of particulate rubber tosand showed a decrease to the internal friction angle and an increase to the apparent cohesion. Overall, the inclusion of particulate rubber did not have a significant influenceon the shear strength of the mixture. For all the dense states at the low normal stresses 33 and 55 kPa, the inclusion of particulate rubber showed aslight increase in the shear strength where the peak was at 20% rubber content of the sand’s dry weight. On the other hand, at the high normal stresses 105, and 200 kPa, there was a slight decrease in the shear strength.

Keywords: shear strength, direct shear, sand-rubber mixture, waste material, granular material

Procedia PDF Downloads 116
5914 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members

Authors: Sami W. Tabsh

Abstract:

The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.

Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety

Procedia PDF Downloads 419
5913 Study of Chemical Compounds of Garlic

Authors: Bazaraliyeva Aigerim Bakytzhanovna, Turgumbayeva Aknur Amanbekovna

Abstract:

The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn.

Keywords: allium sativum, bioactive compounds of garlic, carbon dioxide extraction of garlic, GS-MS method

Procedia PDF Downloads 68
5912 Knowledge Integration from Concept to Practice: An Exploratory Study of Designing a Flood Resilient Urban Park in Viet Nam

Authors: To Quyen Le, Oswald Devisch, Tu Anh Trinh, Els Hannes

Abstract:

Urban centres worldwide are affected differently by flooding. In Vietnam this impact is increasingly negative caused by a process of rapid urbanisation. Traditional spatial planning and flood mitigation planning are not able to deal with this growing threat. This article therefore proposes to focus on increasing the participation of local communities in flood control and management. It explores, on the basis of a design studio exercise, how lay knowledge on flooding can be integrated within planning processes. The article presents a theoretical basis for the structured criterion for site selection for a flood resilient urban park from the perspective of science, then discloses the tacit and explicit knowledge of the flood-prone area and finally integrates this knowledge into the design strategies for flood resilient urban park design.

Keywords: analytic hierarchy process, AHP, design resilience, flood resilient urban park, knowledge integration

Procedia PDF Downloads 160
5911 Potyviruses Genomic Analysis and Complete Evaluation

Authors: Narin Salehiyan, Ramin Ghasemi Shayan

Abstract:

The largest genus of plant viruses, the potyvirus, is responsible for significant crop losses. Potyviruses are aphid sent in a nonpersistent way, and some of them are likewise seed communicated. As significant microorganisms, potyviruses are substantially more examined than other plant infections having a place with different genera, and their review covers numerous parts of plant virology, like utilitarian portrayal of viral proteins, sub-atomic communication with hosts and vectors, structure, scientific classification, development, the study of disease transmission, and determination. Biotechnological utilizations of potyviruses are likewise being investigated. During this last ten years, significant advances have been made in the comprehension of the sub-atomic science of these infections and the elements of their different proteins. Potyvirus multiplication, movement, and transmission, as well as potyvirus/plant compatible interactions, including pathogenicity and symptom determinants, are updated following a general overview of the family Potyviridae and the potyviral proteins. it end the survey giving data on biotechnological uses of potyviruses.

Keywords: virology, poty, virus, genome, genetic

Procedia PDF Downloads 57
5910 A Meta Analysis of the Recent Work-Related Research of BEC-Teachers in the Graduate Programs of the Selected HEIs in Region I and CAR

Authors: Sherelle Lou Sumera Icutan, Sheila P. Cayabyab, Mary Jane Laruan, Paulo V. Cenas, Agustina R. Tactay

Abstract:

This study critically analyzed the recent theses and dissertations of the Basic Education Curriculum (BEC) teachers who finished their graduate programs in selected higher educational institutions in Region I and CAR to be able to come up with a unified result from the varied results of the analyzed research works. All theses and dissertations completed by the educators/teachers/school personnel in the secondary and elementary public and private schools in Region 1 and CAR from AY 2003–2004 to AY 2007–2008 were classified first–as to work or non-work related; second–as to the different aspects of the curriculum: implementation, content, instructional materials, assessment instruments, learning, teaching, and others; third–as to being eligible for meta-analysis or not. Only studies found eligible for meta-analysis were subjected to the procedure. Aside from documentary analysis, the statistical treatments used in meta-analysis include the standardized effect size, Pearson’s correlation (r), the chi-square test of homogeneity and the inverse of the Fisher transformation. This study found out that the BEC-teachers usually probe on work-related researchers with topics that are focused on the learning performances of the students and on factors related to teaching. The development of instructional materials and assessment of implemented programs are also equally explored. However, there are only few researches on content and assessment instrument. Research findings on the areas of learning and teaching are the only aspects that are meta-analyzable. The research findings across studies in Region I and CAR of BEC teachers that focused on similar variables correlated to teaching do not vary significantly. On the contrary, research findings across studies in Region I and CAR that focused on variables correlated to learning performance significantly vary. Within each region, variations on the findings of research works related to learning performance that considered similar variables still exist. The combined finding on the effect size or relationship of the variables that are correlated to learning performance are low which means that effect is small but definite while the combined findings on the relationship of the variables correlated to teaching are slight or almost negligible.

Keywords: meta-analysis, BEC teachers, work-related research,

Procedia PDF Downloads 409
5909 An Early Intervention Framework for Supporting Students’ Mathematical Development in the Transition to University STEM Programmes

Authors: Richard Harrison

Abstract:

Developing competency in mathematics and related critical thinking skills is essential to the education of undergraduate students of Science, Technology, Engineering and Mathematics (STEM). Recently, the HE sector has been impacted by a seemingly widening disconnect between the mathematical competency of incoming first-year STEM students and their entrance qualification tariffs. Despite relatively high grades in A-Level Mathematics, students may initially lack fundamental skills in key areas such as algebraic manipulation and have limited capacity to apply problem solving strategies. Compounded by compensatory measures applied to entrance qualifications during the pandemic, there has been an associated decline in student performance on introductory university mathematics modules. In the UK, a number of online resources have been developed to help scaffold the transition to university mathematics. However, in general, these do not offer a structured learning journey focused on individual developmental needs, nor do they offer an experience coherent with the teaching and learning characteristics of the destination institution. In order to address some of these issues, a bespoke framework has been designed and implemented on our VLE in the Faculty of Engineering & Physical Sciences (FEPS) at the University of Surrey. Called the FEPS Maths Support Framework, it was conceived to scaffold the mathematical development of individuals prior to entering the university and during the early stages of their transition to undergraduate studies. More than 90% of our incoming STEM students voluntarily participate in the process. Students complete a set of initial diagnostic questions in the late summer. Based on their performance and feedback on these questions, they are subsequently guided to self-select specific mathematical topic areas for review using our proprietary resources. This further assists students in preparing for discipline related diagnostic tests. The framework helps to identify students who are mathematically weak and facilitates early intervention to support students according to their specific developmental needs. This paper presents a summary of results from a rich data set captured from the framework over a 3-year period. Quantitative data provides evidence that students have engaged and developed during the process. This is further supported by process evaluation feedback from the students. Ranked performance data associated with seven key mathematical topic areas and eight engineering and science discipline areas reveals interesting patterns which can be used to identify more generic relative capabilities of the discipline area cohorts. In turn, this facilitates evidence based management of the mathematical development of the new cohort, informing any associated adjustments to teaching and learning at a more holistic level. Evidence is presented establishing our framework as an effective early intervention strategy for addressing the sector-wide issue of supporting the mathematical development of STEM students transitioning to HE

Keywords: competency, development, intervention, scaffolding

Procedia PDF Downloads 51
5908 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles

Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas

Abstract:

The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.

Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden

Procedia PDF Downloads 347
5907 Power Generation from Sewage by a Micro-Hydraulic Turbine

Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide

Abstract:

This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.

Keywords: micro-hydraulic turbine, power generation, sewage, sewer pipe

Procedia PDF Downloads 381
5906 Salient Issues in Reading Comprehension Difficulties Faced by Primary School Children

Authors: Janet Fernandez

Abstract:

Reading is both for aesthetic and efferent purposes. In order for reading comprehension to take place, the reader needs to be able to make meaningful connections and enjoy the reading process. The notion of reading comprehension is discussed along with the plausible causes of poor reading comprehension abilities among primary school children. Among the major contributing causes are imaging, lack of schemata, selection of reading materials, and habits of the readers. Instruction methods are an integral part of making reading comprehension a meaningful experience, hence several models are presented for the classroom practitioner. Suggestions on how primary school children can improve their reading comprehension skills are offered.

Keywords: children, improve, reading comprehension, meaningful strategies

Procedia PDF Downloads 452
5905 Institutional Determinants of Economic Growth in Georgia and in Other Post-Communist Economies

Authors: Nazira Kakulia, Tsotne Zhghenti

Abstract:

The institutional development is one of the actual topics in economics science. New trends and directions of institutional development mostly depend on its structure and framework. Transformation of institutions is an important problem for every economy, especially for developing countries. The first research goal is to determine the importance and interactions between different institutions in Georgia. Using World Governance Indicators and Economic Freedom indexes it can be calculated the size for each institutional group. The second aim of this research is to evaluate Georgian institutional backwardness in comparison to other post-communist economies. We use statistical and econometric methods to evaluate the difference between the levels of institutional development in Georgia and in leading post-communist economies. Within the scope of this research, major findings are coefficients which are an assessment of their deviation (i.e. lag) of institutional indicators between Georgia and leading post-communist country which should be compared. The last part of the article includes analysis around the selected coefficients.

Keywords: post-communist transition, institutions, economic growth, institutional development

Procedia PDF Downloads 175
5904 On an Experimental Method for Investigating the Dynamic Parameters of Multi-Story Buildings at Vibrating Seismic Loadings

Authors: Shakir Mamedov, Tukezban Hasanova

Abstract:

Research of dynamic properties of various materials and elements of structures at shock affecting and on the waves so many scientific works of the Azerbaijani scientists are devoted. However, Experimental definition of dynamic parameters of fluctuations of constructions and buildings while carries estimated character. The purpose of the present experimental researches is definition of parameters of fluctuations of installation of observations. In this case, a mockup of four floor buildings and sixteen floor skeleton-type buildings built in the Baku with the stiffening diaphragm at natural vibrating seismic affectings.

Keywords: fluctuations, seismoreceivers, dynamic experiments, acceleration

Procedia PDF Downloads 379
5903 Teaching for Change: Instructional Support in a Bilingual Setting

Authors: S. J. Hachar

Abstract:

The goal of this paper is to provide educators an overview of international practices supporting young learners, arming us with adequate information to lead effective change. We will report on research and observations of Service Learning Projects conducted by one South Texas University. The intent of the paper is also to provide readers an overview of service learning in the preparation of teacher candidates pursuing a Bachelor of Science in Elementary Education. The objective of noting the efficiency and effectiveness of programs leading to literacy and oral fluency in a native language and second language will be discussed. This paper also highlights experiential learning for academic credit that combines community service with student learning. Six weeks of visits to a variety of community sites, making personal observations with faculty members, conducting extensive interviews with parents and key personnel at all sites will be discussed. The culminating Service Learning Expo will be reported as well.

Keywords: elementary education, junior achievement, service learning

Procedia PDF Downloads 313
5902 Regenerating Habitats. A Housing Based on Modular Wooden Systems

Authors: Rui Pedro de Sousa Guimarães Ferreira, Carlos Alberto Maia Domínguez

Abstract:

Despite the ambitions to achieve climate neutrality by 2050, to fulfill the Paris Agreement's goals, the building and construction sector remains one of the most resource-intensive and greenhouse gas-emitting industries in the world, accounting for 40% of worldwide CO ₂ emissions. Over the past few decades, globalization and population growth have led to an exponential rise in demand in the housing market and, by extension, in the building industry. Considering this housing crisis, it is obvious that we will not stop building in the near future. However, the transition, which has already started, is challenging and complex because it calls for the worldwide participation of numerous organizations in altering how building systems, which have been a part of our everyday existence for over a century, are used. Wood is one of the alternatives that is most frequently used nowadays (under responsible forestry conditions) because of its physical qualities and, most importantly, because it produces fewer carbon emissions during manufacturing than steel or concrete. Furthermore, as wood retains its capacity to store CO ₂ after application and throughout the life of the building, working as a natural carbon filter, it helps to reduce greenhouse gas emissions. After a century-long focus on other materials, in the last few decades, technological advancements have made it possible to innovate systems centered around the use of wood. However, there are still some questions that require further exploration. It is necessary to standardize production and manufacturing processes based on prefabrication and modularization principles to achieve greater precision and optimization of the solutions, decreasing building time, prices, and waste from raw materials. In addition, this approach will make it possible to develop new architectural solutions to solve the rigidity and irreversibility of buildings, two of the most important issues facing housing today. Most current models are still created as inflexible, fixed, monofunctional structures that discourage any kind of regeneration, based on matrices that sustain the conventional family's traditional model and are founded on rigid, impenetrable compartmentalization. Adaptability and flexibility in housing are, and always have been, necessities and key components of architecture. People today need to constantly adapt to their surroundings and themselves because of the fast-paced, disposable, and quickly obsolescent nature of modern items. Migrations on a global scale, different kinds of co-housing, or even personal changes are some of the new questions that buildings have to answer. Designing with the reversibility of construction systems and materials in mind not only allows for the concept of "looping" in construction, with environmental advantages that enable the development of a circular economy in the sector but also unleashes multiple social benefits. In this sense, it is imperative to develop prefabricated and modular construction systems able to address the formalization of a reversible proposition that adjusts to the scale of time and its multiple reformulations, many of which are unpredictable. We must allow buildings to change, grow, or shrink over their lifetime, respecting their nature and, finally, the nature of the people living in them. It´s the ability to anticipate the unexpected, adapt to social factors, and take account of demographic shifts in society to stabilize communities, the foundation of real innovative sustainability.

Keywords: modular, timber, flexibility, housing

Procedia PDF Downloads 58
5901 Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of Single Cell Proteins and Polyhydroxyalkanoates From Organic Waste

Authors: P. Joris, E. Lombard, X. Cameleyre, G. Navarro, A. Paillet, N. Gorret, S. E. Guillouet

Abstract:

Today, on the international space station, multiple supplies are needed per year to supply food and spare parts and to take out waste. But as it is planned to go longer and further into space these supplies will no longer be possible. The astronaut life support system must be able of continuously transform waste into valuable compounds. Two types of production were identified as critical and could be be supplemented by microorganisms. On the one hand, since microgravity causes rapid muscle loss, single cell proteins (SCPs) could be used as protein rich feed or food. On the other hand, having enough building materials to build an advanced habitat will not be possible only by transporting space goods from earth to mars for example. The bacterium Cupriavidus. necator is well known for its ability to produce a large amount of proteins or of polyhydroxyalkanoate biopolymers (PHAs) depending on its implementation. By coupling the life support system to a 3D-printer, astronauts could be supplied with an unlimited amount of building materials. Additionally, based on the design of the life support system, waste streams have been identified: urea from the crew urine and volatile fatty acids (VFAs) from a first stage of organic waste (excrement and food waste) treatment through anaerobic digestion. Thus, the objective of this, within the Spaceship.Fr project, was to demonstrate the feasibility of producing SCPs and PHAs from VFAs and urea in bioreactor. Because life support systems operate continuously as loops, continuous culture experiments were chosen and the effect of the bioreactor dilution rate on biomass composition was investigated. Total transformation of the carbon source into biomass with high SCP or PHA content was achieved in all cases. We will present the transformation performances of VFAs and urea by the bacteria in bioreactor in terms of titers, yields and productivities but also in terms of the quality of SCP and PHA produced, nucleic acid content. We will further discuss the envisioned integration of our process within life support systems.

Keywords: life support system, space travel, waste treatment, single cell proteins, polyhydroxyalkanoates, bioreactor

Procedia PDF Downloads 98
5900 Experimental and Analytical Design of Rigid Pavement Using Geopolymer Concrete

Authors: J. Joel Bright, P. Peer Mohamed, M. Aswin SAangameshwaran

Abstract:

The increasing usage of concrete produces 80% of carbon dioxide in the atmosphere. Hence, this results in various environmental effects like global warming. The amount of the carbon dioxide released during the manufacture of OPC due to the calcination of limestone and combustion of fossil fuel is in the order of one ton for every ton of OPC produced. Hence, to minimize this Geo Polymer Concrete was introduced. Geo polymer concrete is produced with 0% cement, and hence, it is eco-friendly and it also uses waste product from various industries like thermal power plant, steel manufacturing plant, and paper waste materials. This research is mainly about using Geo polymer concrete for pavement which gives very high strength than conventional concrete and at the same time gives way for sustainable development.

Keywords: activator solution, GGBS, fly ash, metakaolin

Procedia PDF Downloads 451
5899 Structural, Optical and Electrical Properties of MnxZnO1-X Nanocrystals Synthesized by Sol-Gel Method

Authors: K. C. Gayithri, S. K. Naveen Kumar

Abstract:

ZnO is one of the most important semiconductor materials, non toxic, biocompatible, antibacterial properties for research and it is used in many biomedical applications. MnxZn1-xO nano thin films were prepared by a spin coating sol-gel method on silicon substrate. The structural, optical, electrical properties of Mn Doped ZnO are studied by using X-rd, FESEM, UV-Visible spectrophotometer. The X-rd reveals that the sample shows hexagonal wurtzits structure. Surface morphology and thickness of the sample are characterized by field emission scanning electron microscopy. Absorption and transmission spectra are studied by UV-Visible spectrophotometer. The electrical properties are measured by TCR meter.

Keywords: transition metals, Mn doped ZnO, Sol-gel, x-ray diffraction

Procedia PDF Downloads 381
5898 Aligning Informatics Study Programs with Occupational and Qualifications Standards

Authors: Patrizia Poscic, Sanja Candrlic, Danijela Jaksic

Abstract:

The University of Rijeka, Department of Informatics participated in the Stand4Info project, co-financed by the European Union, with the main idea of an alignment of study programs with occupational and qualifications standards in the field of Informatics. A brief overview of our research methodology, goals and deliverables is shown. Our main research and project objectives were: a) development of occupational standards, qualification standards and study programs based on the Croatian Qualifications Framework (CROQF), b) higher education quality improvement in the field of information and communication sciences, c) increasing the employability of students of information and communication technology (ICT) and science, and d) continuously improving competencies of teachers in accordance with the principles of CROQF. CROQF is a reform instrument in the Republic of Croatia for regulating the system of qualifications at all levels through qualifications standards based on learning outcomes and following the needs of the labor market, individuals and society. The central elements of CROQF are learning outcomes - competences acquired by the individual through the learning process and proved afterward. The place of each acquired qualification is set by the level of the learning outcomes belonging to that qualification. The placement of qualifications at respective levels allows the comparison and linking of different qualifications, as well as linking of Croatian qualifications' levels to the levels of the European Qualifications Framework and the levels of the Qualifications framework of the European Higher Education Area. This research has made 3 proposals of occupational standards for undergraduate study level (System Analyst, Developer, ICT Operations Manager), and 2 for graduate (master) level (System Architect, Business Architect). For each occupational standard employers have provided a list of key tasks and associated competencies necessary to perform them. A set of competencies required for each particular job in the workplace was defined and each set of competencies as described in more details by its individual competencies. Based on sets of competencies from occupational standards, sets of learning outcomes were defined and competencies from the occupational standard were linked with learning outcomes. For each learning outcome, as well as for the set of learning outcomes, it was necessary to specify verification method, material, and human resources. The task of the project was to suggest revision and improvement of the existing study programs. It was necessary to analyze existing programs and determine how they meet and fulfill defined learning outcomes. This way, one could see: a) which learning outcomes from the qualifications standards are covered by existing courses, b) which learning outcomes have yet to be covered, c) are they covered by mandatory or elective courses, and d) are some courses unnecessary or redundant. Overall, the main research results are: a) completed proposals of qualification and occupational standards in the field of ICT, b) revised curricula of undergraduate and master study programs in ICT, c) sustainable partnership and association stakeholders network, d) knowledge network - informing the public and stakeholders (teachers, students, and employers) about the importance of CROQF establishment, and e) teachers educated in innovative methods of teaching.

Keywords: study program, qualification standard, occupational standard, higher education, informatics and computer science

Procedia PDF Downloads 130
5897 The Development of Fiscal Policy in Light of Economic Systems

Authors: Djehich Mohamed Yousri

Abstract:

This research tries to highlight the different stages and developments of financial policy which has evolved significantly in its means and mechanism, goals as well, according to the successful developments of the society, in addition to that, the role of the country has been developed from custody to intervening country, that evolution does not impact only on financial science but it was reflected on financial system concepts, that helped fr transport it from neutral financial policy to intervening policy, since each stage was characterized by a set of characteristics, financial policy considers like reflective mirror to the role of state in all times, when the state has been absent as an organized authority to society, the role of financial policy was weakened and has been limited under the impact of ideology which exists at all time, financial role has was limited until the state intervened in all aspects of life, the state role is also influential in economic, social, and political life, this study highlighting the most important developments of financial policy under successful economic systems.

Keywords: public expenditure, government spending, taxes, revenues public, economics

Procedia PDF Downloads 102
5896 Flexible Current Collectors for Printed Primary Batteries

Authors: Vikas Kumar

Abstract:

Portable batteries are reliable source of mobile energy to power smart wearable electronics, medical devices, communications, and others internet of thing (IoT) devices. There is a continuous increase in demand for thinner, more flexible battery with high energy density and reliability to meet the requirement. For a flexible battery, factors that affect these properties are the stability of current collectors, electrode materials and their interfaces with the corrosive electrolytes. State-of-the-art conventional and flexible batteries utilise carbon as an electrode and current collectors which cause high internal resistance (~100 ohms) and limit the peak current to ~1mA. This makes them unsuitable for a wide range of applications. Replacing the carbon parts with metallic components would reduce the internal resistance (and hence reduce parasitic loss), but significantly increases the risk of corrosion due to galvanic interactions within the battery. To overcome these challenges, low cost electroplated nickel (Ni) on copper (Cu) was studied as a potential anode current collector for a zinc-manganese oxide primary battery with different concentration of NH4Cl/ZnCl2 electrolyte. Using electrical impedance spectroscopy (EIS), we monitored the open circuit potential (OCP) of electroplated nickel (different thicknesses) in different concentration of electrolytes to optimise the thickness of Ni coating. Our results show that electroless Ni coating suffer excessive corrosion in these electrolytes. Corrosion rates of Ni coatings for different concentrations of electrolytes have been calculated with Tafel analysis. These results suggest that for electroplated Ni, channelling and/or open porosity is a major issue, which was confirmed by morphological analysis. These channels are an easy pathway for electrolyte to penetrate thorough Ni to corrode the Ni/Cu interface completely. We further investigated the incorporation of a special printed graphene layer on Ni to provide corrosion protection in this corrosive electrolyte medium. We find that the incorporation of printed graphene layer provides the corrosion protection to the Ni and enhances the chemical bonding between the active materials and current collector and also decreases the overall internal resistance of the battery system.

Keywords: corrosion, electrical impedance spectroscopy, flexible battery, graphene, metal current collector

Procedia PDF Downloads 113
5895 The Predictive Power of Successful Scientific Theories: An Explanatory Study on Their Substantive Ontologies through Theoretical Change

Authors: Damian Islas

Abstract:

Debates on realism in science concern two different questions: (I) whether the unobservable entities posited by theories can be known; and (II) whether any knowledge we have of them is objective or not. Question (I) arises from the doubt that since observation is the basis of all our factual knowledge, unobservable entities cannot be known. Question (II) arises from the doubt that since scientific representations are inextricably laden with the subjective, idiosyncratic, and a priori features of human cognition and scientific practice, they cannot convey any reliable information on how their objects are in themselves. A way of understanding scientific realism (SR) is through three lines of inquiry: ontological, semantic, and epistemological. Ontologically, scientific realism asserts the existence of a world independent of human mind. Semantically, scientific realism assumes that theoretical claims about reality show truth values and, thus, should be construed literally. Epistemologically, scientific realism believes that theoretical claims offer us knowledge of the world. Nowadays, the literature on scientific realism has proceeded rather far beyond the realism versus antirealism debate. This stance represents a middle-ground position between the two according to which science can attain justified true beliefs concerning relational facts about the unobservable realm but cannot attain justified true beliefs concerning the intrinsic nature of any objects occupying that realm. That is, the structural content of scientific theories about the unobservable can be known, but facts about the intrinsic nature of the entities that figure as place-holders in those structures cannot be known. There are two possible versions of SR: Epistemological Structural Realism (ESR) and Ontic Structural Realism (OSR). On ESR, an agnostic stance is preserved with respect to the natures of unobservable entities, but the possibility of knowing the relations obtaining between those entities is affirmed. OSR includes the rather striking claim that when it comes to the unobservables theorized about within fundamental physics, relations exist, but objects do not. Focusing on ESR, questions arise concerning its ability to explain the empirical success of a theory. Empirical success certainly involves predictive success, and predictive success implies a theory’s power to make accurate predictions. But a theory’s power to make any predictions at all seems to derive precisely from its core axioms or laws concerning unobservable entities and mechanisms, and not simply the sort of structural relations often expressed in equations. The specific challenge to ESR concerns its ability to explain the explanatory and predictive power of successful theories without appealing to their substantive ontologies, which are often not preserved by their successors. The response to this challenge will depend on the various and subtle different versions of ESR and OSR stances, which show a sort of progression through eliminativist OSR to moderate OSR of gradual increase in the ontological status accorded to objects. Knowing the relations between unobserved entities is methodologically identical to assert that these relations between unobserved entities exist.

Keywords: eliminativist ontic structural realism, epistemological structuralism, moderate ontic structural realism, ontic structuralism

Procedia PDF Downloads 105
5894 Wireless Sensor Anomaly Detection Using Soft Computing

Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh

Abstract:

We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.

Keywords: IDS, Machine learning, WSN, ZigBee technology

Procedia PDF Downloads 527
5893 Enhanced Dielectric and Ferroelectric Properties in Holmium Substituted Stoichiometric and Non-Stoichiometric SBT Ferroelectric Ceramics

Authors: Sugandha Gupta, Arun Kumar Jha

Abstract:

A large number of ferroelectric materials have been intensely investigated for applications in non-volatile ferroelectric random access memories (FeRAMs), piezoelectric transducers, actuators, pyroelectric sensors, high dielectric constant capacitors, etc. Bismuth layered ferroelectric materials such as Strontium Bismuth Tantalate (SBT) has attracted a lot of attention due to low leakage current, high remnant polarization and high fatigue endurance up to 1012 switching cycles. However, pure SBT suffers from various major limitations such as high dielectric loss, low remnant polarization values, high processing temperature, bismuth volatilization, etc. Significant efforts have been made to improve the dielectric and ferroelectric properties of this compound. Firstly, it has been reported that electrical properties vary with the Sr/ Bi content ratio in the SrBi2Ta2O9 compsition i.e. non-stoichiometric compositions with Sr-deficient / Bi excess content have higher remnant polarization values than stoichiometic SBT compositions. With the objective to improve structural, dielectric, ferroelectric and piezoelectric properties of SBT compound, rare earth holmium (Ho3+) was chosen as a donor cation for substitution onto the Bi2O2 layer. Moreover, hardly any report on holmium substitution in stoichiometric SrBi2Ta2O9 and non-stoichiometric Sr0.8Bi2.2Ta2O9 compositions were available in the literature. The holmium substituted SrBi2-xHoxTa2O9 (x= 0.00-2.0) and Sr0.8Bi2.2Ta2O9 (x=0.0 and 0.01) compositions were synthesized by the solid state reaction method. The synthesized specimens were characterized for their structural and electrical properties. X-ray diffractograms reveal single phase layered perovskite structure formation for holmium content in stoichiometric SBT samples up to x ≤ 0.1. The granular morphology of the samples was investigated using scanning electron microscope (Hitachi, S-3700 N). The dielectric measurements were carried out using a precision LCR meter (Agilent 4284A) operating at oscillation amplitude of 1V. The variation of dielectric constant with temperature shows that the Curie temperature (Tc) decreases on increasing the holmium content. The specimen with x=2.0 i.e. the bismuth free specimen, has very low dielectric constant and does not show any appreciable variation with temperature. The dielectric loss reduces significantly with holmium substitution. The polarization–electric field (P–E) hysteresis loops were recorded using a P–E loop tracer based on Sawyer–Tower circuit. It is observed that the ferroelectric property improve with Ho substitution. Holmium substituted specimen exhibits enhanced value of remnant polarization (Pr= 9.22 μC/cm²) as compared to holmium free specimen (Pr= 2.55 μC/cm²). Piezoelectric co-efficient (d33 values) was measured using a piezo meter system (Piezo Test PM300). It is observed that holmium substitution enhances piezoelectric coefficient. Further, the optimized holmium content (x=0.01) in stoichiometric SrBi2-xHoxTa2O9 composition has been substituted in non-stoichiometric Sr0.8Bi2.2Ta2O9 composition to obtain further enhanced structural and electrical characteristics. It is expected that a new class of ferroelectric materials i.e. Rare Earth Layered Structured Ferroelectrics (RLSF) derived from Bismuth Layered Structured Ferroelectrics (BLSF) will generate which can be used to replace static (SRAM) and dynamic (DRAM) random access memories with ferroelectric random access memories (FeRAMS).

Keywords: dielectrics, ferroelectrics, piezoelectrics, strontium bismuth tantalate

Procedia PDF Downloads 190
5892 In-Vitro Evaluation of the Long-Term Stability of PEDOT:PSS Coated Microelectrodes for Chronic Recording and Electrical Stimulation

Authors: A. Schander, T. Tessmann, H. Stemmann, S. Strokov, A. Kreiter, W. Lang

Abstract:

For the chronic application of neural prostheses and other brain-computer interfaces, long-term stable microelectrodes for electrical stimulation are essential. In recent years many developments were done to investigate different appropriate materials for these electrodes. One of these materials is the electrical conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT), which has lower impedance and higher charge injection capacity compared to noble metals like gold and platinum. However the long-term stability of this polymer is still unclear. Thus this paper reports on the in-vitro evaluation of the long-term stability of PEDOT coated gold microelectrodes. For this purpose a highly flexible electrocorticography (ECoG) electrode array, based on the polymer polyimide, is used. This array consists of circular gold electrodes with a diameter of 560 µm (0.25 mm2). In total 25 electrodes of this array were coated simultaneously with the polymer PEDOT:PSS in a cleanroom environment using a galvanostatic electropolymerization process. After the coating the array is additionally sterilized using a steam sterilization process (121°C, 1 bar, 20.5 min) to simulate autoclaving prior to the implantation of such an electrode array. The long-term measurements were performed in phosphate-buffered saline solution (PBS, pH 7.4) at the constant body temperature of 37°C. For the in-vitro electrical stimulation a one channel bipolar current stimulator is used. The stimulation protocol consists of a bipolar current amplitude of 5 mA (cathodal phase first), a pulse duration of 100 µs per phase, a pulse pause of 50 µs and a frequency of 1 kHz. A PEDOT:PSS coated gold electrode with an area of 1 cm2 serves as the counter electrode. The electrical stimulation is performed continuously with a total amount of 86.4 million bipolar current pulses per day. The condition of the PEDOT coated electrodes is monitored in between with electrical impedance spectroscopy measurements. The results of this study demonstrate that the PEDOT coated electrodes are stable for more than 3.6 billion bipolar current pulses. Also the unstimulated electrodes show currently no degradation after the time period of 5 months. These results indicate an appropriate long-term stability of this electrode coating for chronic recording and electrical stimulation. The long-term measurements are still continuing to investigate the life limit of this electrode coating.

Keywords: chronic recording, electrical stimulation, long-term stability, microelectrodes, PEDOT

Procedia PDF Downloads 572
5891 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 45
5890 Using Blackboard to Enhance Academic Writing Classes

Authors: Laurence Craven

Abstract:

Academic writing is one of the most important class a freshman will take, as it provides the skill needed to formulate an academic essay in any discipline. Written assignments are the most common form of assessment in higher education and thus it is of paramount importance for students to master the skill of academic writing. This presentation aims to give practitioners multiple ways to enhance their academic writing classes using the Blackboard environment, with a view to improving student performance. The presentation will include ways to improve assessment and give corrective feedback. It will also provide ideas on how to increase variety in teaching lessons, assigning homework and on organizing materials.

Keywords: academic writing, assessment, e-learning, technology

Procedia PDF Downloads 335
5889 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises

Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto

Abstract:

The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.

Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel

Procedia PDF Downloads 340
5888 Nutritional Genomics Profile Based Personalized Sport Nutrition

Authors: Eszter Repasi, Akos Koller

Abstract:

Our genetic information determines our look, physiology, sports performance and all our features. Maximizing the performances of athletes have adopted a science-based approach to the nutritional support. Nowadays genetics studies have blended with nutritional sciences, and a dynamically evolving, new research field have appeared. Nutritional genomics is needed to be used by nutritional experts. This is a recent field of nutritional science, which can provide a solution to reach the best sport performance using correlations between the athlete’s genome, nutritions, molecules, included human microbiome (links between food, microbiome and epigenetics), nutrigenomics and nutrigenetics. Nutritional genomics has a tremendous potential to change the future of dietary guidelines and personal recommendations. Experts need to use new technology to get information about the athletes, like nutritional genomics profile (included the determination of the oral and gut microbiome and DNA coded reaction for food components), which can modify the preparation term and sports performance. The influence of nutrients on the genes expression is called Nutrigenomics. The heterogeneous response of gene variants to nutrients, dietary components is called Nutrigenetics. The human microbiome plays a critical role in the state of health and well-being, and there are more links between food or nutrition and the human microbiome composition, which can develop diseases and epigenetic changes as well. A nutritional genomics-based profile of athletes can be the best technic for a dietitian to make a unique sports nutrition diet plan. Using functional food and the right food components can be effected on health state, thus sports performance. Scientists need to determine the best response, due to the effect of nutrients on health, through altering genome promote metabolites and result changes in physiology. Nutritional biochemistry explains why polymorphisms in genes for the absorption, circulation, or metabolism of essential nutrients (such as n-3 polyunsaturated fatty acids or epigallocatechin-3-gallate), would affect the efficacy of that nutrient. Controlled nutritional deficiencies and failures, prevented the change of health state or a newly discovered food intolerance are observed by a proper medical team, can support better sports performance. It is important that the dietetics profession informed on gene-diet interactions, that may be leading to optimal health, reduced risk of injury or disease. A special medical application for documentation and monitoring of data of health state and risk factors can uphold and warn the medical team for an early action and help to be able to do a proper health service in time. This model can set up a personalized nutrition advice from the status control, through the recovery, to the monitoring. But more studies are needed to understand the mechanisms and to be able to change the composition of the microbiome, environmental and genetic risk factors in cases of athletes.

Keywords: gene-diet interaction, multidisciplinary team, microbiome, diet plan

Procedia PDF Downloads 157
5887 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs

Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.

Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT

Procedia PDF Downloads 220
5886 Creativity and Stereotype Threat: Analysis of the Impact of Creativity on Eliminating the Stereotype Threat in the Educational Setting

Authors: Aleksandra Gajda

Abstract:

Among students between 12 and 13, the probability of activating the stereotype threat increases noticeably. Girls consider themselves weaker in science, while boys consider themselves weaker in the field of language skills. This phenomenon is disturbing because it may result in wrong choices of the further path of education, not consistent with the actual competences of the students. Meanwhile, negative effects of the stereotype threat, observable in the loss of focus on the task and transferring it to dealing with fear of failure, can be reduced by various factors. The study examined the impact of creativity on eliminating the stereotype threat. The experiment in the form of a 2 (gender: male vs. female) x 3 (traditional gender roles: neutral version vs. nontraditional gender roles) x 2 (creativity: low vs. high) factorial design was conducted. The results showed that a high level of creative abilities may reduce the negative effects of stereotype threat in educational setting.

Keywords: creativity, education, language skills, mathematical skills, stereotype threat

Procedia PDF Downloads 100