Search results for: mechanical efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9828

Search results for: mechanical efficiency

6678 Analyzing the Efficiency of Initiatives Taken against Disinformation during Election Campaigns: Case Study of Young Voters

Authors: Fatima-Zohra Ghedir

Abstract:

Social media platforms have been actively working on solutions and combined their efforts with media, policy makers, educators and researchers to protect citizens and prevent interferences in information, political discourses and elections. Facebook, for instance, deleted fake accounts, implemented fake accounts and fake content detection algorithms, partnered with news agencies to manually fact check content and changed its newsfeeds display. Twitter and Instagram regularly communicate on their efforts and notify their users of improvements and safety guidelines. More funds have been allocated to media literacy programs to empower citizens in prevision of the coming elections. This paper investigates the efficiency of these initiatives and analyzes the metrics to measure their success or failure. The objective is also to determine the segments of population more prone to fall in disinformation traps during the elections despite the measures taken over the last four years. This study will also examine the groups who were positively impacted by these measures. This paper relies on both desk and field methodologies. For this study, a survey was administered to French students aged between 17 and 29 years old. Semi-guided interviews were conducted on a similar audience. The analysis of the survey and of the interviews show that respondents were exposed to the initiatives described above and are aware of the existence of disinformation issues. However, they do not understand what disinformation really entails or means. For instance, for most of them, disinformation is synonymous of the opposite point of view without taking into account the truthfulness of the content. Besides, they still consume and believe the information shared by their friends and family, with little questioning about the ways their closed ones get informed.

Keywords: democratic elections, disinformation, foreign interference, social media, success metrics

Procedia PDF Downloads 103
6677 Production, Extraction and Purification of Fungal Chitosan and Its Modification for Medical Applications

Authors: Debajyoti Bose

Abstract:

Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Chitosan is a positively charged natural biodegradable and biocompatible polymer. It is a linear polysaccharide consisting of β-1,4 linked monomers of glucosamine and N-acetylglucosamine. Chitosan can be mainly obtained from fungal sources during large fermentation process. In this study,three different fungal strains Aspergillus niger NCIM 1045, Aspergillus oryzae NCIM 645 and Mucor indicus MTCC 3318 were used for the production of chitosan. The growth mediums were optimized for maximum fungal production. The produced chitosan was characterized by determining degree of deacetylation. Chitosan possesses one reactive amino at the C-2 position of the glucosamine residue, and these amines confer important functional properties to chitosan which can be exploited for biofabrication to generate various chemically modified derivatives and explore their potential for pharmaceutical field. Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein (e.g. enzyme diastase) in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. It was noted that the chitosan loading and releasing efficiency as a nanocapsule, obtained from different fungal sources was almost near to initial enzyme activity(12026 U/ml) with a negligible loss. This signify, chitosan can be used as a polymeric drug as well as active component or protein carrier material in dosage by design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. Based upon these initial experiments, studies were also carried out on modification of chitosan based nanocapsules incorporated with physiologically important enzymes and nutraceuticals for target delivery.

Keywords: fungi, chitosan, enzyme, nanocapsule

Procedia PDF Downloads 494
6676 Soil Salinity Mapping using Electromagnetic Induction Measurements

Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri

Abstract:

Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinization

Keywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable

Procedia PDF Downloads 180
6675 Gastrointestinal Manifestations and Outcomes in Hospitalized COVID-19 Patients: A Retrospective Study

Authors: Jaylo Abalos, Sophia Zamora

Abstract:

BACKGROUND: Various gastrointestinal (GI) symptoms, including diarrhea, nausea/vomiting and abdominal pain, have been reported in patients with Coronavirus disease 2019 (COVID-19). In this context, the presence of GI symptoms is variably associated with poor clinical outcomes in COVID-19. We aim to determine the outcomes of hospitalized COVID-19 patients with gastrointestinal symptoms. METHODOLOGY: This is a retrospective cohort study that used medical records of admitted COVID-19 patients from March 2020- March 2021 in a tertiary hospital in Pangasinan. Data records were evaluated for the presence of gastrointestinal manifestations, including diarrhea, nausea, vomiting and abdominal pain at the time of admission. Comparison between cases or COVID-19 patients presenting with GI manifestations to controls or COVID-19 patients without GI manifestation was made. RESULTS: Four hundred three patients were included in the study. Of these, 22.3% presented with gastrointestinal symptoms, while 77.7% comprised the study controls. Diarrhea was the most common GI symptom (10.4%). No statistically significant difference was observed in comorbidities and laboratory findings. Mortality was the primary outcome of the study that did not reach statistical significance between cases and controls (13.33% vs. 16.30%, p =0.621). There were also no significant differences observed in the secondary outcomes, mean length of stay, (14 [12-18 days] in cases vs 14 [12- 17.5 days] in controls, p = 0.716) and need for mechanical ventilation (12.22% vs 16.93%, p = 0.329). CONCLUSION: The results of the study revealed no association of the GI symptoms to poor outcomes, including a high rate of mortality, prolonged length of stay and increased need for mechanical ventilation.

Keywords: gastrointestinal symptoms, COVID-19, outcomes, mortality, length of stay

Procedia PDF Downloads 135
6674 Si Doped HfO₂ Anti-Ferroelectric Thin Films for Energy Storage and Solid State Cooling Applications

Authors: Faizan Ali, Dayu Zhou, Xiaohua Liu, Tony Schenk, Johannes Muller, Uwe Schroeder

Abstract:

Recently, the ferroelectricity (FE) and anti-ferroelectricity (AFE) introduced in so-called 'high-k dielectric' HfO₂ material incorporated with various dopants (Si, Gd, Y, Sr, Gd, Al, and La, etc.), HfO₂-ZrO₂ solid-solution, Al or Si-doped Hf₀.₅Zr₀.₅O₂ and even undoped HfO₂ thin films. The origin of FE property was attributed to the formation of a non-centrosymmetric orthorhombic (o) phase of space group Pbc2₁. To the author’s best knowledge, AFE property was observed only in HfO₂ doped with a certain amount of Si, Al, HfₓZr₁₋ₓO₂ (0 ≤ x < 0.5), and in Si or Al-doped Hf₀.₅Zr₀.₅O₂. The origin of the anti-ferroelectric behavior is an electric field induced phase transition between the non-polar tetragonal (t) and the polar ferroelectric orthorhombic (o) phase. Compared with the significant amount of studies for the FE properties in the context of non-volatile memories, AFE properties of HfO₂-based and HfₓZr₁₋ₓO₂ (HZO) thin films have just received attention recently for energy-related applications such as electrocaloric cooling, pyroelectric energy harvesting, and electrostatic energy storage. In this work, energy storage and solid state cooling properties of Si-doped HfO₂ AFE thin films are investigated. Owing to the high field-induced polarization and slim double hysteresis, an extremely large Energy storage density (ESD) value of 61.2 J cm⁻³ is achieved at 4.5 MV cm⁻¹ with high efficiency of ~65%. In addition, the ESD and efficiency exhibit robust thermal stability in 210-400 K temperature range and excellent endurance up to 10⁹ times of charge/discharge cycling at a very high electric field of 4.0 MV cm⁻¹. Similarly, for solid-state cooling, the maximum adiabatic temperature change (

Keywords: thin films, energy storage, endurance, solid state cooling, anti-ferroelectric

Procedia PDF Downloads 122
6673 Rapid Degradation of High-Concentration Methylene Blue in the Combined System of Plasma-Enhanced Photocatalysis Using TiO₂-Carbon

Authors: Teguh Endah Saraswati, Kusumandari Kusumandari, Candra Purnawan, Annisa Dinan Ghaisani, Aufara Mahayum

Abstract:

The present study aims to investigate the degradation of methylene blue (MB) using TiO₂-carbon (TiO₂-C) photocatalyst combined with dielectric discharge (DBD) plasma. The carbon materials used in the photocatalyst were activated carbon and graphite. The thin layer of TiO₂-C photocatalyst was prepared by ball milling method which was then deposited on the plastic sheet. The characteristic of TiO₂-C thin layer was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, and UV-Vis diffuse reflectance spectrophotometer. The XRD diffractogram patterns of TiO₂-G thin layer in various weight compositions of 50:1, 50:3, and 50:5 show the 2θ peaks found around 25° and 27° are the main characteristic of TiO₂ and carbon. SEM analysis shows spherical and regular morphology of the photocatalyst. Analysis using UV-Vis diffuse reflectance shows TiO₂-C has narrower band gap energy. The DBD plasma reactor was generated using two electrodes of Cu tape connected with stainless steel mesh and Fe wire separated by a glass dielectric insulator, supplied by a high voltage 5 kV with an air flow rate of 1 L/min. The optimization of the weight composition of TiO₂-C thin layer was studied based on the highest reduction of the MB concentration achieved, examined by UV-Vis spectrophotometer. The changes in pH values and color of MB indicated the success of MB degradation. Moreover, the degradation efficiency of MB was also studied in various higher concentrations of 50, 100, 200, 300 ppm treated for 0, 2, 4, 6, 8, 10 min. The degradation efficiency of MB treated in combination system of photocatalysis and DBD plasma reached more than 99% in 6 min, in which the greater concentration of methylene blue dye, the lower degradation rate of methylene blue dye would be achieved.

Keywords: activated carbon, DBD plasma, graphite, methylene blue, photocatalysis

Procedia PDF Downloads 119
6672 Preliminary Flow Sheet for Recycling of Spent Lithium-Ion Batteries

Authors: Mohammad Ali Rajaeifar, Oliver Heidrich

Abstract:

Nowadays, Li-ion batteries are vastly disseminated and the battery market is expected to experience a huge growth during next decade especially in terms of traction batteries. As the automotive industry moving towards the electrification of the powertrain, more raw/critical materials and energy are extracted while on the other hand, concerns are made regarding the scarcity of the materials as well as environmental issues regarding the destiny of the spent batteries. In this regards, recycling could play a vital role in the supply chain, leading reutilization of key battery materials and also reducing environmental burden related to the use of batteries. The aim of this paper is to review the previous and state-of-the-art treatments for recycling of Li-ion batteries. All the treatments method from mechanical, mild-thermal, pyrometallurgical and hydrometallurgical as well as combined methods for recycling of Li-ion batteries were considered in the study. There are various treatment methods that are economical, but they are not environmentally friendly or vice versa. This is due to the fact that the benefits of the Li-ion batteries recycling could be affected by different factors such as the amount of spent batteries available, the quality of the recovered material, the energy and material consumption by the process itself and environmental burdens caused by required logistics. Finally, a preliminary work sheet of possible route for recycling of spent Li-ion batteries was presented through the course of this study. Overall, it is worth quoting that recycling processes generally consumes a great deal of energy and auxiliary materials. Moreover, the collection of spent products from waste streams represents additional environmental efforts. Therefore, developing and optimizing efficient collection and separation technologies is essential to achieve sustainability goals.

Keywords: hydrometallurgical treatment, Li-ion batteries, mild-thermal treatment, mechanical treatment, recycling, pyrometallurgical treatment

Procedia PDF Downloads 105
6671 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide

Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh

Abstract:

Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.

Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration

Procedia PDF Downloads 138
6670 The Analgesic Effect of Electroacupuncture in a Murine Fibromyalgia Model

Authors: Bernice Jeanne Lottering, Yi-Wen Lin

Abstract:

Introduction: Chronic pain has a definitive lack of objective parameters in the measurement and treatment efficacy of diseases such as Fibromyalgia (FM). Persistent widespread pain and generalized tenderness are the characteristic symptoms affecting a large majority of the global population, particularly females. This disease has indicated a refractory tendency to conventional treatment ventures, largely resultant from a lack of etiological and pathogenic understanding of the disease development. Emerging evidence indicates that the central nervous system (CNS) plays a critical role in the amplification of pain signals and the neurotransmitters associated therewith. Various stimuli have been found to activate the channels existent on nociceptor terminals, thereby actuating nociceptive impulses along the pain pathways. The transient receptor potential vanalloid 1 (TRPV1) channel functions as a molecular integrator for numerous sensory inputs, such as nociception, and was explored in the current study. Current intervention approaches face a multitude challenges, ranging from effective therapeutic interventions to the limitation of pathognomonic criteria resultant from incomplete understanding and partial evidence on the mechanisms of action of FM. It remains unclear whether electroacupuncture (EA) plays an integral role in the functioning of the TRPV1 pathway, and whether or not it can reduce the chronic pain induced by FM. Aims: The aim of this study was to explore the mechanisms underlying the activation and modulation of the TRPV1 channel pathway in a cold stress model of FM applied to a murine model. Furthermore, the effect of EA in the treatment of mechanical and thermal pain, as expressed in FM was also to be investigated. Methods: 18 C57BL/6 wild type and 6 TRPV1 knockout (KO) mice, aged 8-12 weeks, were exposed to an intermittent cold stress-induced fibromyalgia-like pain model, with or without EA treatment at ZusanLi ST36 (2Hz/20min) on day 3 to 5. Von Frey and Hargreaves behaviour tests were implemented in order to analyze the mechanical and thermal pain thresholds on day 0, 3 and 5 in control group (C), FM group (FM), FM mice with EA treated group (FM + EA) and FM in KO group. Results: An increase in mechanical and thermal hyperalgesia was observed in the FM, EA and KO groups when compared to the control group. This initial increase was reduced in the EA group, which directs focus at the treatment efficacy of EA in nociceptive sensitization, and the analgesic effect EA has attenuating FM associated pain. Discussion: An increase in the nociceptive sensitization was observed through higher withdrawal thresholds in the von Frey mechanical test and the Hargreaves thermal test. TRPV1 function in mice has been scientifically associated with these nociceptive conduits, and the increased behaviour test results suggest that TRPV1 upregulation is central to the FM induced hyperalgesia. This data was supported by the decrease in sensitivity observed in results of the TRPV1 KO group. Moreover, the treatment of EA showed a decrease in this FM induced nociceptive sensitization, suggesting TRPV1 upregulation and overexpression can be attenuated by EA at bilateral ST36. This evidence compellingly implies that the analgesic effect of EA is associated with TRPV1 downregulation.

Keywords: fibromyalgia, electroacupuncture, TRPV1, nociception

Procedia PDF Downloads 135
6669 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050

Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva

Abstract:

Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.

Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta

Procedia PDF Downloads 75
6668 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber

Authors: Sharmili Routray, Kishor Chandra Biswal

Abstract:

The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.

Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening

Procedia PDF Downloads 284
6667 Optimization for Guide RNA and CRISPR/Cas9 System Nanoparticle Mediated Delivery into Plant Cell for Genome Editing

Authors: Andrey V. Khromov, Antonida V. Makhotenko, Ekaterina A. Snigir, Svetlana S. Makarova, Natalia O. Kalinina, Valentin V. Makarov, Mikhail E. Taliansky

Abstract:

Due to its simplicity, CRISPR/Cas9 has become widely used and capable of inducing mutations in the genes of organisms of various kingdoms. The aim of this work was to develop applications for the efficient modification of DNA coding sequences of phytoene desaturase (PDS), coilin and vacuolar invertase (Solanum tuberosum) genes, and to develop a new nanoparticles carrier efficient technology to deliver the CRISPR/Cas9 system for editing the plant genome. For each of the genes - coilin, PDS and vacuolar invertase, five single RNA guide (sgRNAs) were synthesized. To determine the most suitable nanoplatform, two types of NP platforms were used: magnetic NPs (MNPS) and gold NPs (AuNPs). To test the penetration efficiency, they were functionalized with fluorescent agents - BSA * FITS and GFP, as well as labeled Cy3 small-sized RNA. To measure the efficiency, a fluorescence and confocal microscopy were used. It was shown that the best of these options were AuNP - both in the case of proteins and in the case of RNA. The next step was to check the possibility of delivering components of the CRISPR/Cas9 system to plant cells for editing target genes. AuNPs were functionalized with a ribonucleoprotein complex consisting of Cas9 and corresponding to target genes sgRNAs, and they were biolistically bombarded to axillary buds and apical meristems of potato plants. After the treatment by the best NP carrier, potato meristems were grown to adult plants. DNA isolated from this plants was sent to a preliminary fragment of the analysis to screen out the non-transformed samples, and then to the NGS. The present work was carried out with the financial support from the Russian Science Foundation (grant No. 16-16-04019).

Keywords: biobombardment, coilin, CRISPR/Cas9, nanoparticles, NPs, PDS, sgRNA, vacuolar invertase

Procedia PDF Downloads 308
6666 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat

Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar

Abstract:

One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.

Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency

Procedia PDF Downloads 238
6665 Assessment of Soil Quality Indicators in Rice Soils Under Rainfed Ecosystem

Authors: R. Kaleeswari

Abstract:

An investigation was carried out to assess the soil biological quality parameters in rice soils under rainfed and to compare soil quality indexing methods viz., Principal component analysis, Minimum data set and Indicator scoring method and to develop soil quality indices for formulating soil and crop management strategies.Soil samples were collected and analyzed for soil biological properties by adopting standard procedure. Biological indicators were determined for soil quality assessment, viz., microbial biomass carbon and nitrogen (MBC and MBN), potentially mineralizable nitrogen (PMN) and soil respiration and dehydrogenease activity. Among the methods of rice cultivation, Organic nutrition, Integrated Nutrient Management (INM) and System of Rice Intensification (SRI ), rice cultivation registered higher values of MBC, MBN and PMN. Mechanical and conventional rice cultivation registered lower values of biological quality indicators. Organic nutrient management and INM enhanced the soil respiration rate. SRI and aerobic rice cultivation methods increased the rate of soil respiration, while conventional and mechanical rice farming lowered the soil respiration rate. Dehydrogenase activity (DHA) was registered to be higher in soils under organic nutrition and Integrated Nutrient Management INM. System of Rice Intensification SRI and aerobic rice cultivation enhanced the DHA; while conventional and mechanical rice cultivation methods reduced DHA. The microbial biomass carbon (MBC) of the rice soils varied from 65 to 244 mg kg-1. Among the nutrient management practices, INM registered the highest available microbial biomass carbon of 285 mg kg-1.Potentially mineralizable N content of the rice soils varied from 20.3 to 56.8 mg kg-1. Aerobic rice farming registered the highest potentially mineralizable N of 78.9 mg kg-1..The soil respiration rate of the rice soils varied from 60 to 125 µgCO2 g-1. Nutrient management practices ofINM practice registered the highest. soil respiration rate of 129 µgCO2 g-1.The dehydrogenase activity of the rice soils varied from 38.3 to 135.3µgTPFg-1 day-1. SRI method of rice cultivation registered the highest dehydrogenase activity of 160.2 µgTPFg-1 day-1. Soil variables from each PC were considered for minimum soil data set (MDS). Principal component analysis (PCA) was used to select the representative soil quality indicators. In intensive rice cultivating regions, soil quality indicators were selected based on factor loading value and contribution percentage value using principal component analysis (PCA).Variables having significant difference within production systems were used for the preparation of minimum data set (MDS).

Keywords: soil quality, rice, biological properties, PCA analysis

Procedia PDF Downloads 99
6664 Theoretical Evaluation of Minimum Superheat, Energy and Exergy in a High-Temperature Heat Pump System Operating with Low GWP Refrigerants

Authors: Adam Y. Sulaiman, Donal F. Cotter, Ming J. Huang, Neil J. Hewitt

Abstract:

Suitable low global warming potential (GWP) refrigerants that conform to F-gas regulations are required to extend the operational envelope of high-temperature heat pumps (HTHPs) used for industrial waste heat recovery processes. The thermophysical properties and characteristics of these working fluids need to be assessed to provide a comprehensive understanding of operational effectiveness in HTHP applications. This paper presents the results of a theoretical simulation to investigate a range of low-GWP refrigerants and their suitability to supersede refrigerants HFC-245fa and HFC-365mfc. A steady-state thermodynamic model of a single-stage HTHP with an internal heat exchanger (IHX) was developed to assess system cycle characteristics at temperature ranges between 50 to 80 °C heat source and 90 to 150 °C heat sink. A practical approach to maximize the operational efficiency was examined to determine the effects of regulating minimum superheat within the process and subsequent influence on energetic and exergetic efficiencies. A comprehensive map of minimum superheat across the HTHP operating variables were used to assess specific tipping points in performance at 30 and 70 K temperature lifts. Based on initial results, the refrigerants HCFO-1233zd(E) and HFO-1336mzz(Z) were found to be closely aligned matches for refrigerants HFC-245fa and HFC-365mfc. The overall results show effective performance for HCFO-1233zd(E) occurs between 5-7 K minimum superheat, and HFO-1336mzz(Z) between 18-21 K dependant on temperature lift. This work provides a method to optimize refrigerant selection based on operational indicators to maximize overall HTHPs system performance.

Keywords: high-temperature heat pump, minimum superheat, energy & exergy efficiency, low GWP refrigerants

Procedia PDF Downloads 165
6663 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost

Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku

Abstract:

Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.

Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost

Procedia PDF Downloads 103
6662 Effect of B2O3 Addition on Sol-gel Synthesized 45S5 Bioglass

Authors: P. Dey, S. K. Pal

Abstract:

Ceramics or glass ceramics with the property of bone bonding at the nearby tissues and producing possible bone in growth are known to be bioactive. The most extensively used glass in this context is 45S5 which is a silica based bioglass mostly explored in the field of tissue engineering as scaffolds for bone repair. Nowadays, the borate based bioglass are being utilized in orthopedic area largely due to its superior bioactivity with the formation of bone bonding. An attempt has been made, in the present study, to observe the effect of B2O3 addition in 45S5 glass and perceive its consequences on the thermal, mechanical and biological properties. The B2O3 was added in 1, 2.5, and 5 wt% with simultaneous reduction in the silica content of the 45S5 composition. The borate based bioglass has been synthesized by the means of sol-gel route. The synthesized powders were then thermally analyzed by DSC-TG. The as synthesized powders were then calcined at 600ºC for 2hrs. The calcined powders were then pressed into pellets followed by sintering at 850ºC with a holding time of 2hrs. The phase analysis and the microstructural analysis of the as synthesized and calcined powder glass samples and the sintered glass samples were being carried out using XRD and FESEM respectively. The formation of hydroxyapatite layer was performed by immersing the sintered samples in the simulated body fluid (SBF) and mechanical property has been tested for the sintered samples by universal testing machine (UTM). The sintered samples showed the presence of sodium calcium silicate phase while the formation of hydroxyapaptite takes place for SBF immersed samples. The formation of hydroxyapatite is more pronounced in case of borated based glass samples instead of 45S5.

Keywords: 45S5 bioglass, bioactive, borate, hydroxyapatite, sol-gel synthesis

Procedia PDF Downloads 252
6661 Large-Area Film Fabrication for Perovskite Solar Cell via Scalable Thermal-Assisted and Meniscus-Guided Bar Coating

Authors: Gizachew Belay Adugna

Abstract:

Scalable and cost-effective device fabrication techniques are urgent to commercialize the perovskite solar cells (PSCs) for the next photovoltaic (PV) technology. Herein, large-area films of perovskite and hole-transporting materials (HTMs) were developed via a rapid and scalable thermal-assisting bar-coating process in the open air. High-quality and large crystalline grains of MAPbI₃ with homogenous morphology and thickness were obtained on a large-area (10 cm×10 cm) solution-sheared mp-TiO₂/c-TiO₂/FTO substrate. Encouraging photovoltaic performance of 19.02% was achieved for devices fabricated from the bar-coated perovskite film compared to that from the small-scale spin-coated film (17.27%) with 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as an HTM whereas a higher power conversion efficiency of 19.89% with improved device stability was achieved by capping a fluorinated (HYC-2) HTM as an alternative to the traditional spiro-OMeTAD. The fluorinated exhibited better molecular packing in the HTM film and deeper HOMO level compared to the nonfluorinated counterpart; thus, improved hole mobility and overall charge extraction in the device were demonstrated. Furthermore, excellent film processability and an impressive PCE of 18.52% were achieved in the large area bar-coated HYC-2 prepared sequentially on the perovskite underlayer in the open atmosphere, compared to the bar-coated spiro-OMeTAD/perovskite (17.51%). This all-solution approach demonstrated the feasibility of high-quality films on a large-area substrate for PSCs, which is a vital step toward industrial-scale PV production.

Keywords: perovskite solar cells, hole transporting materials, up-scaling process, power conversion efficiency

Procedia PDF Downloads 58
6660 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review

Authors: Anicet Dansou

Abstract:

Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.

Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete

Procedia PDF Downloads 102
6659 An Assessment of Airport Collaborative Decision-Making System Using Predictive Maintenance

Authors: Faruk Aras, Melih Inal, Tansel Cinar

Abstract:

The coordination of airport staff especially in the operations and maintenance departments is important for the airport operation. As a result, this coordination will increase the efficiency in all operation. Therefore, a Collaborative Decision-Making (CDM) system targets on improving the overall productivity of all operations by optimizing the use of resources and improving the predictability of actions. Enlarged productivity can be of major benefit for all airport operations. It also increases cost-efficiency. This study explains how predictive maintenance using IoT (Internet of Things), predictive operations and the statistical data such as Mean Time To Failure (MTTF) improves airport terminal operations and utilize airport terminal equipment in collaboration with collaborative decision making system/Airport Operation Control Center (AOCC). Data generated by the predictive maintenance methods is retrieved and analyzed by maintenance managers to predict when a problem is about to occur. With that information, maintenance can be scheduled when needed. As an example, AOCC operator would have chance to assign a new gate that towards to this gate all the equipment such as travellator, elevator, escalator etc. are operational if the maintenance team is in collaboration with AOCC since maintenance team is aware of the health of the equipment because of predictive maintenance methods. Applying predictive maintenance methods based on analyzing the health of airport terminal equipment dramatically reduces the risk of downtime by on time repairs. We can classify the categories as high priority calls for urgent repair action, as medium priority requires repair at the earliest opportunity, and low priority allows maintenance to be scheduled when convenient. In all cases, identifying potential problems early resulted in better allocation airport terminal resources by AOCC.

Keywords: airport, predictive maintenance, collaborative decision-making system, Airport Operation Control Center (AOCC)

Procedia PDF Downloads 357
6658 Total Life Cycle Cost and Life Cycle Assessment of Mass Timber Buildings in the US

Authors: Hongmei Gu, Shaobo Liang, Richard Bergman

Abstract:

With current worldwide trend in designs to have net-zero emission buildings to mitigate climate change, widespread use of mass timber products, such as Cross Laminated Timber (CLT), or Nail Laminated Timber (NLT) or Dowel Laminated Timber (DLT) in buildings have been proposed as one approach in reducing Greenhouse Gas (GHG) emissions. Consequentially, mass timber building designs are being adopted more and more by architectures in North America, especially for mid- to high-rise buildings where concrete and steel buildings are currently prevalent, but traditional light-frame wood buildings are not. Wood buildings and their associated wood products have tended to have lower environmental impacts than competing energy-intensive materials. It is common practice to conduct life cycle assessments (LCAs) and life cycle cost analyses on buildings with traditional structural materials like concrete and steel in the building design process. Mass timber buildings with lower environmental impacts, especially GHG emissions, can contribute to the Net Zero-emission goal for the world-building sector. However, the economic impacts from CLT mass timber buildings still vary from the life-cycle cost perspective and environmental trade-offs associated with GHG emissions. This paper quantified the Total Life Cycle Cost and cradle-to-grave GHG emissions of a pre-designed CLT mass timber building and compared it to a functionally-equivalent concrete building. The Total life cycle Eco-cost-efficiency is defined in this study and calculated to discuss the trade-offs for the net-zero emission buildings in a holistic view for both environmental and economic impacts. Mass timber used in buildings for the United States is targeted to the materials from the nation’s sustainable managed forest in order to benefit both national and global environments and economies.

Keywords: GHG, economic impact, eco-cost-efficiency, total life-cycle costs

Procedia PDF Downloads 129
6657 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates

Authors: J. Iwaro, A. Mwasha, K. Ramsubhag

Abstract:

Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.

Keywords: building envelope, roof, energy consumption, thermal comfort

Procedia PDF Downloads 265
6656 Feasibility of Solar Distillation as Household Water Supply in Saline Zones of Bangladesh

Authors: Md. Rezaul Karim, Md. Ashikur Rahman, Dewan Mahmud Mim

Abstract:

Scarcity of potable water as the result of rapid climate change and saltwater intrusion in groundwater has been a major problem in the coastal regions over the world. In equinoctial countries like Bangladesh, where sunlight is available for more than 10 hours a day, Solar Distillation provides a promising sustainable way for safe drinking water supply in coastal poor households with negligible major cost and difficulty of construction and maintenance. In this paper, two passive type solar stills- a Conventional Single Slope Solar still (CSS) and a Pyramid Solar Sill (PSS) is used and relationship is established between distill water output corresponding to four different factors- temperature, solar intensity, relative humidity and wind speed for Gazipur, Bangladesh. Comparison is analyzed between the two different still outputs for nine months period (January- September) and efficiency is calculated. Later a thermal mathematical model is developed and the distilled water output for Khulna, Bangladesh is computed. Again, difference between the output of the two cities- Gazipur and Khulna is demonstrated and finally an economic analysis is prepared. The distillation output has a positive correlation with temperature and solar intensity, inverse relation with relative humidity and wind speed has nugatory consequence. The maximum output of Conventional Solar Still is obtained 3.8 L/m2/day and Pyramid still is 4.3 L/m2/day for Gazipur and almost 15% more efficiency is found for Pyramid still. Productivity in Khulna is found almost 20% more than Gazipur. Based on economic analysis, taking 10 BDT, per liter, the net profit, benefit cost ratio, payback period all indicates that both stills are feasible but pyramid still is more feasible than Conventional Still. Finally, for a 3-4 member family, area of 4 m2 is suggested for Conventional Still and 3m2 for Pyramid Solar Still.

Keywords: solar distillation, household water supply, saline zones, Bangladesh

Procedia PDF Downloads 267
6655 Design Optimization of Miniature Mechanical Drive Systems Using Tolerance Analysis Approach

Authors: Eric Mxolisi Mkhondo

Abstract:

Geometrical deviations and interaction of mechanical parts influences the performance of miniature systems.These deviations tend to cause costly problems during assembly due to imperfections of components, which are invisible to a naked eye.They also tend to cause unsatisfactory performance during operation due to deformation cause by environmental conditions.One of the effective tools to manage the deviations and interaction of parts in the system is tolerance analysis.This is a quantitative tool for predicting the tolerance variations which are defined during the design process.Traditional tolerance analysis assumes that the assembly is static and the deviations come from the manufacturing discrepancies, overlooking the functionality of the whole system and deformation of parts due to effect of environmental conditions. This paper presents an integrated tolerance analysis approach for miniature system in operation.In this approach, a computer-aided design (CAD) model is developed from system’s specification.The CAD model is then used to specify the geometrical and dimensional tolerance limits (upper and lower limits) that vary component’s geometries and sizes while conforming to functional requirements.Worst-case tolerances are analyzed to determine the influenced of dimensional changes due to effects of operating temperatures.The method is used to evaluate the nominal conditions, and worse case conditions in maximum and minimum dimensions of assembled components.These three conditions will be evaluated under specific operating temperatures (-40°C,-18°C, 4°C, 26°C, 48°C, and 70°C). A case study on the mechanism of a zoom lens system is used to illustrate the effectiveness of the methodology.

Keywords: geometric dimensioning, tolerance analysis, worst-case analysis, zoom lens mechanism

Procedia PDF Downloads 162
6654 Study and Evaluation of Occupational Health and Safety in Power Plant in Pakistan

Authors: Saira Iqbal

Abstract:

Occupational Health and Safety issues nowadays have become an important esteem in the context of Industrial Production. This study is designed to measure the workplace hazards at Kohinoor Energy Limited. Mainly focused hazards were Heat Stress, Noise Level, Light Level and Ergonomics. Measurements for parameters like Wet, Dry, Globe, WBGTi and RH% were taken directly by visiting the Study Area. The temperature in Degrees was recoded at Control Room and Engine Hall. Highest Temperature was recoded in Engine Hall which was about 380C. Efforts were made to record emissions of Noise Levels from the main area of concern like Engines in Engine hall, parking area, and mechanical workshop. Permissible level for measuring Noise is 85 and its Unit of Measurement is dB (A). In Engine Hall Noise was very high which was about 109.6 dB (A) and that level was exceeding the limits. Illumination Level was also recorded at different areas of Power Plant. The light level was though under permissible limits but in some areas like Engine Hall and Boiler Room, level of light was very low especially in Engine Hall where the level was 29 lx. Practices were performed for measuring hazards in context of ergonomics like extended reaching, deviated body postures, mechanical stress, and vibration exposures of the worker at different units of plants by just observing workers during working hours. Since KEL is ISO 8000 and 14000 certified, the researcher found no serious problems in the parameter Ergonomics however it was a common scenario that workers were reluctant to apply PPEs.

Keywords: workplace hazards, heat hazard, noise hazard, illumination, ergonomics

Procedia PDF Downloads 314
6653 Financial Management Performance in Organization Profitability

Authors: Adekunle Olakunle Felix

Abstract:

Research will be based on the financial management importance within organization and its important role in non-economic and economic activities that provide us the useful information about the efficient procurement and utilization of finance in a profitable manner. Due to industrialization, financial management become a vital part of business and it is very important for the business concern that with a good financial management to earn maximum profit.

Keywords: management, business, profitability, organization, financial, efficiency

Procedia PDF Downloads 348
6652 Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application

Authors: M. Rahou, A. J. Andrews, G. Rosengarten

Abstract:

One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre.

Keywords: concentrated radiation, fibre bundle, parabolic dish, fresnel lens, transmission

Procedia PDF Downloads 559
6651 Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra, and NMR Investigation of 4-Amino-3-Phenyl-1H-1,2,4-Triazole-5(4H)-Thione by Ab Initio HF and DFT Method

Authors: Khaled Bahgat

Abstract:

In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000–400 cm_1) and FT-Raman (4000–100 cm_1) spectra of APTT were recorded in solid phase. The UV–Vis absorption spectrum of the APTT was recorded in the range of 200–400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

Keywords: 4-amino-3-phenyl-1H-1, 2, 4-triazole-5(4H)-thione, vibrational assignments, normal coordinate analysis, quantum mechanical calculations

Procedia PDF Downloads 467
6650 Performance of Autoclaved Aerated Concrete Containing Recycled Ceramic and Gypsum Waste as Partial Replacement for Sand

Authors: Efil Yusrianto, Noraini Marsi, Noraniah Kassim, Izzati Abdul Manaf, Hafizuddin Hakim Shariff

Abstract:

Today, municipal solid waste (MSW), noise pollution, and attack fire are three ongoing issues for inhabitants of urban including in Malaysia. To solve these issues, eco-friendly autoclaved aerated concrete (AAC) containing recycled ceramic and gypsum waste (CGW) as a partial replacement for sand with different ratios (0%, 5%, 10%, 15%, 20%, and 25% wt) has been prepared. The performance of samples, such as the physical, mechanical, sound absorption coefficient, and direct fire resistance, has been investigated. All samples showed normal color behavior, i.e., grey and free crack. The compressive strength was increased in the range of 6.10% to 29.88%. The maximum value of compressive strength was 2.13MPa for 15% wt of CGW. The positive effect of CGW on the compressive strength of AAC has also been confirmed by crystalline phase and microstructure analysis. The acoustic performances, such as sound absorption coefficients of samples at low frequencies (500Hz), are higher than the reference sample (RS). AAC-CGW samples are categorized as AAC material classes B and C. The fire resistance results showed the physical surface of the samples had a free crack and was not burned during the direct fire at 950ºC for 300s. The results showed that CGW succeeded in enhancing the performance of fresh AAC, such as compressive strength, crystalline phase, sound absorption coefficient, and fire resistance of samples.

Keywords: physical, mechanical, acoustic, direct fire resistance performance, autoclaved aerated concrete, recycled ceramic-gypsum waste

Procedia PDF Downloads 130
6649 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 148