Search results for: measurement accuracy
2978 Simultaneous Interpreting in the European Parliament: Linguistic Quality of the Political Discourse: An Empirical Analysis
Authors: Alicja Zapolnik-Plachetka
Abstract:
The paper examines the impact of the Members’ of the European Parliament (MEPs) language choice on the linguistic quality of their political discourse as delivered by the interpreters. The study, designed by the author, who is an EU interpreter herself, consisted of three phases. First, a number of speeches of Polish and Spanish MEPs were analyzed to determine whether the incidence of use of certain figures of speech depending on whether the speech had been delivered in English or their respective mother tongue. Then the use of figures of speech was also analyzed based on speeches by some British MEPs, in order to determine what was the incidence for the native users of English. Subsequently, the speeches were compared with their interpretations to find out whether the interpreters managed to convey accurately the means of oratory used by the MEPs. The final result shows that in case of institutional environments dependant on simultaneous interpretation the speakers’ choices can, in fact, influence the linguistic quality of the political communication.Keywords: content accuracy, European Parliament, political discourse, simultaneous interpreting
Procedia PDF Downloads 1322977 Using Data Mining Techniques to Evaluate the Different Factors Affecting the Academic Performance of Students at the Faculty of Information Technology in Hashemite University in Jordan
Authors: Feras Hanandeh, Majdi Shannag
Abstract:
This research studies the different factors that could affect the Faculty of Information Technology in Hashemite University students’ accumulative average. The research paper verifies the student information, background, their academic records, and how this information will affect the student to get high grades. The student information used in the study is extracted from the student’s academic records. The data mining tools and techniques are used to decide which attribute(s) will affect the student’s accumulative average. The results show that the most important factor which affects the students’ accumulative average is the student Acceptance Type. And we built a decision tree model and rules to determine how the student can get high grades in their courses. The overall accuracy of the model is 44% which is accepted rate.Keywords: data mining, classification, extracting rules, decision tree
Procedia PDF Downloads 4182976 Automated Marker Filling System
Authors: Pinisetti Swami Sairam, Meera C. S.
Abstract:
Marker pens are widely used all over the world, mainly in educational institutions due to their neat, accurate and easily erasable nature. But refilling the ink in these pens is a tedious and time consuming job. Besides, it requires careful handling of the pens and ink bottle. A fully automated marker filling system is a solution developed to overcome this problem. The system comprises of pneumatics and electronics modules as well as PLC control. The system design is done in such a way that the empty markers are dumped in a marker container which then sent through different modules of the system in order to refill it automatically. The filled markers are then collected in a marker container. Refilling of ink takes place in different stages inside the system. An ink detecting system detects the colour of the marker which is to be filled and then refilling is done. The processes like capping and uncapping of the cap as well as screwing and unscrewing of the tip are done with the help of robotic arm and gripper. We make use of pneumatics in this system in order to get the precision while performing the capping, screwing, and refilling operations. Thus with the help of this system we can achieve cleanliness, accuracy, effective and time saving in the process of filling a marker.Keywords: automated system, market filling, information technology, control and automation
Procedia PDF Downloads 5002975 4-Channel CWDM Optical Transceiver Applying Silicon Photonics Ge-Photodiode and MZ-Modulator
Authors: Do-Won Kim, Andy Eu Jin Lim, Raja Muthusamy Kumarasamy, Vishal Vinayak, Jacky Wang Yu-Shun, Jason Liow Tsung Yang, Patrick Lo Guo Qiang
Abstract:
In this study, we demonstrate 4-channel coarse wavelength division multiplexing (CWDM) optical transceiver based on silicon photonics integrated circuits (PIC) of waveguide Ge-photodiode (Ge-PD) and Mach Zehnder (MZ)-modulator. 4-channel arrayed PICs of Ge-PD and MZ-modulator are verified to operate at 25 Gbps/ch achieving 4x25 Gbps of total data rate. 4 bare dies of single-channel commercial electronics ICs (EICs) of trans-impedance amplifier (TIA) for Ge-PD and driver IC for MZ-modulator are packaged with PIC on printed circuit board (PCB) in a chip-on-board (COB) manner. Each single-channel EIC is electrically connected to the one channel of 4-channel PICs by wire bonds to trace. The PICs have 4-channel multiplexer for MZ-modulator and 4-channel demultiplexer for Ge-PD. The 4-channel multiplexer/demultiplexer have echelle gratings for4 CWDM optic signals of which center wavelengths are 1511, 1531, 1553, and 1573 nm. Its insertion loss is around 4dB with over 15dB of extinction ratio.The dimension of 4-channel Ge-PD is 3.6x1.4x0.3mm, and its responsivity is 1A/W with dark current of less than 20 nA.Its measured 3dB bandwidth is around 20GHz. The dimension of the 4-channel MZ-modulator is 3.6x4.8x0.3mm, and its 3dB bandwidth is around 11Ghz at -2V of reverse biasing voltage. It has 2.4V•cmbyVπVL of 6V for π shift to 4 mm length modulator.5x5um of Inversed tapered mode size converter with less than 2dB of coupling loss is used for the coupling of the lensed fiber which has 5um of mode field diameter.The PCB for COB packaging and signal transmission is designed to have 6 layers in the hybrid layer structure. 0.25 mm-thick Rogers Duroid RT5880 is used as the first core dielectric layer for high-speed performance over 25 Gbps. It has 0.017 mm-thick of copper layers and its dielectric constant is 2.2and dissipation factor is 0.0009 at 10 GHz. The dimension of both single ended and differential microstrip transmission lines are calculated using full-wave electromagnetic (EM) field simulator HFSS which RF industry is using most. It showed 3dB bandwidth at around 15GHz in S-parameter measurement using network analyzer. The wire bond length for transmission line and ground connection from EIC is done to have less than 300 µm to minimize the parasitic effect to the system.Single layered capacitors (SLC) of 100pF and 1000pF are connected as close as possible to the EICs for stabilizing the DC biasing voltage by decoupling. Its signal transmission performance is under measurement at 25Gbps achieving 100Gbps by 4chx25Gbps. This work can be applied for the active optical cable (AOC) and quad small form-factor pluggable (QSFP) for high-speed optical interconnections. Its demands are quite large in data centers targeting 100 Gbps, 400 Gbps, and 1 Tbps. As the demands of high-speed AOC and QSFP for the application to intra/inter data centers increase, this silicon photonics based high-speed 4 channel CWDM scheme can have advantages not only in data throughput but also cost effectiveness since it reduces fiber cost dramatically through WDM.Keywords: active optical cable(AOC), 4-channel coarse wavelength division multiplexing (CWDM), communication system, data center, ge-photodiode, Mach Zehnder (MZ) modulator, optical interconnections, optical transceiver, photonics integrated circuits (PIC), quad small form-factor pluggable (QSFP), silicon photonics
Procedia PDF Downloads 4212974 Estimating Solar Irradiance on a Tilted Surface Using Artificial Neural Networks with Differential Outputs
Authors: Hsu-Yung Cheng, Kuo-Chang Hsu, Chi-Chang Chan, Mei-Hui Tseng, Chih-Chang Yu, Ya-Sheng Liu
Abstract:
Photovoltaics modules are usually not installed horizontally to avoid water or dust accumulation. However, the measured irradiance data on tilted surfaces are rarely available since installing pyranometers with various tilt angles induces high costs. Therefore, estimating solar irradiance on tilted surfaces is an important research topic. In this work, artificial neural networks (ANN) are utilized to construct the transfer model to estimate solar irradiance on tilted surfaces. Instead of predicting tilted irradiance directly, the proposed method estimates the differences between the horizontal irradiance and the irradiance on a tilted surface. The outputs of the ANNs in the proposed design are differential values. The experimental results have shown that the proposed ANNs with differential outputs can substantially improve the estimation accuracy compared to ANNs that estimate the titled irradiance directly.Keywords: photovoltaics, artificial neural networks, tilted irradiance, solar energy
Procedia PDF Downloads 3992973 Automatic Censoring in K-Distribution for Multiple Targets Situations
Authors: Naime Boudemagh, Zoheir Hammoudi
Abstract:
The parameters estimation of the K-distribution is an essential part in radar detection. In fact, presence of interfering targets in reference cells causes a decrease in detection performances. In such situation, the estimate of the shape and the scale parameters are far from the actual values. In the order to avoid interfering targets, we propose an Automatic Censoring (AC) algorithm of radar interfering targets in K-distribution. The censoring technique used in this work offers a good discrimination between homogeneous and non-homogeneous environments. The homogeneous population is then used to estimate the unknown parameters by the classical Method of Moment (MOM). The AC algorithm does not need any prior information about the clutter parameters nor does it require both the number and the position of interfering targets. The accuracy of the estimation parameters obtained by this algorithm are validated and compared to various actual values of the shape parameter, using Monte Carlo simulations, this latter show that the probability of censing in multiple target situations are in good agreement.Keywords: parameters estimation, method of moments, automatic censoring, K distribution
Procedia PDF Downloads 3742972 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.Keywords: rotordynamic, finite element model, timoshenko beam, 3D solid elements, Guyan reduction method
Procedia PDF Downloads 2742971 Discussing Concept Gratitude of Muslim Consumers Based on Islamic Law: A Confirmation on the Theory of Consumer Satisfaction through Imam Al-Ghazali's Thought
Authors: Suprihatin Soewarto
Abstract:
The background of writing this paper is to assess the truth of rejection of some Muslim scholars who develop Islamic economics on the concept of consumer satisfaction and replace it with the concept of maslahah. In the perspective of Islamic law, this rejection attitude needs to be verified in order to know the accuracy of the replacement of this concept of satisfaction with maslahah as part of consumer behavior. This is done so that replacement of rejection of the term satisfaction with maslahah is objective. This objective replacement of the term will surely be more enlightening and more just than the subjective substitution. Therefore the writing of this paper aims to get an answer whether the concept of satisfaction needs to be replaced? is it possible for Islamic law to confirm the theory of consumer satisfaction? The method of writing this paper using the method of literature with a critical analysis approach. The results of this study is an explanation of the similarities and differences of consumer satisfaction theory and consumer theory maslahah according to Islamic law. disclosure of the concept of consumer gratitude according to Islamic law and its implementation in Muslim consumer demand theory.Keywords: consumer's gratitude, islamic law, confirmation, satisfaction consumer's
Procedia PDF Downloads 2092970 The Analysis of Differential Item and Test Functioning between Sexes by Studying on the Scholastic Aptitude Test 2013
Authors: Panwasn Mahalawalert
Abstract:
The purposes of this research were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2013 (SWUSAT). SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was analyzed in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of DIF and DTF analysis for all 10 tests in year 2013. Gender was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF is between 6.67% - 60%. There are 5 tests that most of items favors female group and 2 tests that most of items favors male group. There are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small level.Keywords: aptitude test, differential item functioning, differential test functioning, educational measurement
Procedia PDF Downloads 4152969 Measurement and Analysis of Radiation Doses to Radiosensitive Organs from CT Examination of the Cervical Spine Using Radiochromic Films and Monte Carlo Simulation Based Software
Authors: Khaled Soliman, Abdullah Alrushoud, Abdulrahman Alkhalifah, Raed Albathi, Salman Altymiat
Abstract:
Radiation dose received by patients undergoing Computed Tomography (CT) examination of the cervical spine was evaluated using Gafchromic XR-QA2 films and CT-EXPO software (ver. 2.3), in order to document our clinical dose values and to compare our results with other benchmarks reported in the current literature. Radiochromic films were recently used as practical dosimetry tool that provides dose profile information not available using the standard ionisation chamber routinely used in CT dosimetry. We have developed an in-house program to use the films in order to calculate the Entrance Dose Length Product (EDLP) in (mGy.cm) and to relate the EDLP to various organ doses calculated using the CT-EXPO software. We also calculated conversion factor in (mSv/mGy.cm) relating the EDLP to the effective dose (ED) from the examination using CT-EXPO software. Variability among different types of CT scanners and dose modulation methods are reported from at least three major CT brands available at our medical institution. Our work describes the dosimetry method and results are reported. The method can be used as in-vivo dosimetry method. But this work only reports results obtained from adult female anthropomorphic Phantom studies.Keywords: CT dosimetry, gafchromic films, XR-QA2, CT-Expo software
Procedia PDF Downloads 4722968 Cryogenic Machining of Sawdust Incorporated Polypropylene Composites
Authors: K. N. Umesh
Abstract:
Wood Polymer Composites (WPC) were synthesized artificially by combining polypropylene, wood and resin. It is difficult to obtain a good surface finish by conventional machining on WPC because of material degradation due to excessive heat generated during the process. In order to preserve the material property and deliver a better surface finish and accuracy, a proper solution is devised for the machining of wood composites at low temperature. This research focuses on studying the effects of parameters of cryogenic machining on sawdust incorporated polypropylene composite material, in view of evolving the most suitable composition and an appropriate combination of process parameters. The machining characteristics of the six different compositions of WPC were evaluated by analyzing the trend. An attempt is made to determine proper combinations material composition and process control parameters, through process capability studies. A WPC of 80%-wood (saw dust particles), 20%-polypropylene and 0%-resin was found to be the best alternative for obtaining the best surface finish under cryogenic machining conditions.Keywords: Cryogenic Machining, Process Capability, Surface Finish, Wood Polymer Composites
Procedia PDF Downloads 2502967 Identification of Effective Factors on Marketing Performance Management in Iran’s Airports and Air Navigation Companies
Authors: Morteza Hamidpour, Kambeez Shahroudi
Abstract:
The aim of this research was to identify the factors affecting the measurement and management of marketing performance in Iran's airports and air navigation companies (Economics in Air and Airport Transport). This study was exploratory and used a qualitative content analysis technique. The study population consisted of university professors in the field of air transportation and senior airport managers, with 15 individuals selected as samples using snowball technique. Based on the results, 15 main indicators were identified for measuring the marketing performance of Iran's airports and air navigation companies. These indicators include airport staff, general and operational expenses, annual passenger reception capacity, number of counter receptions and passenger dispatches, airport runway length, airline companies' loyalty to using airport space and facilities, regional market share of transit and departure flights, claims and net profit (aviation and non-aviation). By keeping the input indicators constant, the output indicators can be improved, enhancing performance efficiency and consequently increasing the economic situation in air transportation.Keywords: air transport economics, marketing performance management, marketing performance input factors, marketing performance intermediary factors, marketing performance output factors, content analysis
Procedia PDF Downloads 682966 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 3512965 Comparison of Sedentary Behavior and Physical Activity between Children with Autism Spectrum Disorder and the Controls
Authors: Abdulrahman M. Alhowikan, Nadra E. Elamin, Sarah S. Aldayel, Sara A. AlSiddiqi, Fai S. Alrowais, Laila Y. Al-Ayadhi
Abstract:
Background: A growing body of research has suggested that physical activities (PA) have important implications for improving the performance of ASD children. They revealed that the physiological, cognitive, psychological, and behavioral functioning had improved after performing some physical activities. Methods: We compared the sedentary behavior and physical activities between children with autism spectrum disorder (n=21) and age-matched control group (n=30), using the ActiGraph GT3X+ for the assessments. Results: Our results revealed that the total time spent in sedentary activity and the total sedentary activity counts were highly significant in the control group compared to the ASD group (p < 0.001, p=0.001, respectively). ASD spent a significantly longer time than the controls engaging on vigorous physical activity (VPA) (p=0.017). The results also indicated that there were no significant differences between both groups for the total counts and time spent in light physical activity (LPA) and moderate physical activity (MPA). Conclusion: The finding highlights the importance of physical activity intervention for ASD children, using accurate and precise measurement tools to record all activities.Keywords: Autism spectrum disorders, motor skills, physical activity, ActiGraph GT3X+, moderate-to vigorous-intensity physical activity
Procedia PDF Downloads 1402964 Determination of Iron, Zinc, Copper, Cadmium and Lead in Different Cigarette Brands in Yemen by Atomic Absorption Spectrometry
Authors: Ali A. Mutair
Abstract:
The concentration levels of iron (Fe), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in different cigarette brands commonly produced and sold in Yemen were determined. Convenient sample treatment for cigarette tobacco of freshly opened packs was achieved by a sample preparation method based on dry digestion, and the concentrations of the analysed metals were measured by Flame Atomic Absorption Spectrometry (FAAS). The mean values obtained for Fe, Zn, Cu, Cd, and Pb in different Yemeni cigarette tobacco were 311, 52.2, 10.11, 1.71 and 4.06 µg/g dry weight, respectively. There is no more significant difference among cigarette brands tested. It was found that Fe was at the highest concentration, followed by Zn, Cu, Pb and Cd. The average relative standard deviation (RSD) ranged from 1.77% to 19.34%. The accuracy and precision of the results were checked by blank and recovery tests. The results show that Yemeni cigarettes contain heavy metal concentration levels that are similar to those in foreign cigarette brands reported by other studies in the worldwide.Keywords: iron, zinc, copper, lead, cadmium, tobacco, Yemeni cigarette brands, atomic absorption spectrometry
Procedia PDF Downloads 3602963 RGB-D SLAM Algorithm Based on pixel level Dense Depth Map
Authors: Hao Zhang, Hongyang Yu
Abstract:
Scale uncertainty is a well-known challenging problem in visual SLAM. Because RGB-D sensor provides depth information, RGB-D SLAM improves this scale uncertainty problem. However, due to the limitation of physical hardware, the depth map output by RGB-D sensor usually contains a large area of missing depth values. These missing depth information affect the accuracy and robustness of RGB-D SLAM. In order to reduce these effects, this paper completes the missing area of the depth map output by RGB-D sensor and then fuses the completed dense depth map into ORB SLAM2. By adding the process of obtaining pixel-level dense depth maps, a better RGB-D visual SLAM algorithm is finally obtained. In the process of obtaining dense depth maps, a deep learning model of indoor scenes is adopted. Experiments are conducted on public datasets and real-world environments of indoor scenes. Experimental results show that the proposed SLAM algorithm has better robustness than ORB SLAM2.Keywords: RGB-D, SLAM, dense depth, depth map
Procedia PDF Downloads 1432962 Percentile Reference Values of Vertical Jumping Performances and Anthropometric Characteristics in Athletic Tunisian Children and Adolescents
Authors: Chirine Aouichaoui, Mohamed Tounsi, Ines Mrizak, Zouhair Tabka, Yassine Trabelsi
Abstract:
The aim of this study was to provide percentile values for vertical jumping performances and anthropometric characteristics for athletic Tunisian children. One thousand and fifty-five athletic Tunisian children and adolescents (643 boys and 412 girls) aged 7-18 years were randomly selected to participate in our study. They were asked to perform squat jumps and countermovement jumps. For each measurement, a least square regression model with high order polynomials was fitted to predict mean and standard deviation of vertical jumping parameters and anthropometric variables. Smoothed percentile curves and percentile values for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles are presented for boys and girls. In conclusion, percentiles values of vertical jumping performances and anthropometric characteristics are provided. The new Tunisian reference charts obtained can be used as a screening tool to determine growth disorders and to estimate the proportion of adolescents with high or low muscular strength levels. This study may help in verifying the effectiveness of a specific training program and detecting highly talented athletes.Keywords: percentile values, jump height, leg muscle power, athletes, anthropometry
Procedia PDF Downloads 4292961 Effects on Spiritual Intelligence on Young Adult Muslim Female: Integration of Planned Behaviour Theory in Predicting Consumer Attitude towards Halal Cosmetic
Authors: Azreen Jihan Che Mohd Hashim, Rosidah Musa
Abstract:
Although 'Spiritual Intelligence' (SI) is hard to measure, it is impossible without a noble value that may affect the attitude in purchasing behavior process, so this paper aims to report on a pilot study analysis results in order to evaluate the degree of SI towards consumers’ attitude in purchasing halal cosmetics and, in turn, to reaffirm intention to purchase by using Theory Planned Behaviour (TPB). It is a descriptive cross-sectional study among the Muslim women as the subjects, working and staying in Klang valley area in Malaysia. The purpose of the study is to develop a new measurement scale to unravel and decompose the underlying dimensions of SI from the perspective of the Muslim deemed imperative. About 200 respondents of users and non-users of halal cosmetics are selected. The structure equation modeling (SEM) was conducted to examine the relationships among god, society and self, which are the dimensions of SI. A finding indicates that, in influencing attitude, those who obligate high spiritual intelligence have a good relationship with god, society and self which may influence them to purchase halal cosmetic product. This study offers important findings and implications for future research as it presents a framework on the importance of SI.Keywords: spiritual intelligence, god, society, self, young adult Muslim female
Procedia PDF Downloads 3722960 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1622959 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1462958 Exploring Manufacturing Competency and Strategic Success: A Review
Authors: Chandan Deep Singh, Jaimal Singh Khamba, Harleen Kaur
Abstract:
Eminence, charge, deliverance, modernism, and awareness underlie most manufacturing strategic plan today. Firms have traditionally pursued the above tasks through the implementation of advanced technologies and manufacturing practices, such as Reverse Engineering, Value Engineering, worker empowerment, etc. Recent developments in industry suggest the materialization of another route to manufacturing brilliance, that is, there is an increasing focus by industry regulators and professional bodies on the need to stimulate innovation in a broad range of manufacturing competencies. By ‘competencies’ we mean the methods, equipment and expertise that can be developed as a leading capability in one market sector or application and have real potential to be applied successfully across other sectors or applications as well. Further, competencies are the ability to apply or use a set of related knowledge, skills, and abilities to perform 'critical work functions' or tasks in a defined work setting. Competencies often serve as the basis for skill standards that specify the level of knowledge, skills, and abilities required for success in the workplace as well as potential measurement criteria for assessing competency attainment. The present research is so designed to come up to the level of the expectations of the industrialists, policy makers, designers of the competencies, specially, the manufacturing competencies upon which the whole strategic success of the industry depends.Keywords: manufacturing competency, strategic success, manufacturing excellence, competitive strategy
Procedia PDF Downloads 5722957 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based on Polarization-Holographic Grating
Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze
Abstract:
A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarization-holographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.Keywords: birefringence, linear dichroism, graded oriented polymers, optical polymers, optical anisotropy, polarization-holographic grating
Procedia PDF Downloads 4352956 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2122955 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 2552954 Behavior Study of Concrete-Filled Thin-Walled Square Hollow Steel Stub Columns
Authors: Mostefa Mimoune
Abstract:
Test results on concrete-filled steel tubular stub columns under axial compression are presented. The study was mainly focused on square hollow section SHS columns; 27 columns were tested. The main experimental parameters considered were the thickness of the tube, columns length and cross section sizes. Existing design codes and theoretical model were used to predict load-carrying capacities of composite section to compare the accuracy of the predictions by using the recommendations of DTR-BC (Algerian code), CSA (Canadian standard), AIJ, EC4, DBJ, AISC, BS and EC4. Experimental results indicate that the studied parameters have significant influence on both the compressive load capacity and the column failure mode. All codes used in the comparison, provide higher resistance compared to those of tests. Equation method has been suggested to evaluate the axial capacity of the composite section seem to be in agreement with tests.Keywords: axial loading, composite section, concrete-filled steel tubes, square hollow section
Procedia PDF Downloads 3822953 Colour Segmentation of Satellite Imagery to Estimate Total Suspended Solid at Rawa Pening Lake, Central Java, Indonesia
Authors: Yulia Chalri, E. T. P. Lussiana, Sarifuddin Madenda, Bambang Trisakti, Yuhilza Hanum
Abstract:
Water is a natural resource needed by humans and other living creatures. The territorial water of Indonesia is 81% of the country area, consisting of inland waters and the sea. The research object is inland waters in the form of lakes and reservoirs, since 90% of inland waters are in them, therefore the water quality should be monitored. One of water quality parameters is Total Suspended Solid (TSS). Most of the earlier research did direct measurement by taking the water sample to get TSS values. This method takes a long time and needs special tools, resulting in significant cost. Remote sensing technology has solved a lot of problems, such as the mapping of watershed and sedimentation, monitoring disaster area, mapping coastline change, and weather analysis. The aim of this research is to estimate TSS of Rawa Pening lake in Central Java by using the Lansat 8 image. The result shows that the proposed method successfully estimates the Rawa Pening’s TSS. In situ TSS shows normal water quality range, and so does estimation result of segmentation method.Keywords: total suspended solid (TSS), remote sensing, image segmentation, RGB value
Procedia PDF Downloads 4172952 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle
Authors: Ryan Messina, Mehedi Hasan
Abstract:
This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking
Procedia PDF Downloads 2092951 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 1482950 The Effects of Cow Manure Treated by Fruit Beetle Larvae, Waxworms and Tiger Worms on Plant Growth in Relation to Its Use as Potting Compost
Authors: Waleed S. Alwaneen
Abstract:
Dairy industry is flourishing in world to provide milk and milk products to local population. Besides milk products, dairy industries also generate a substantial amount of cow manure that significantly affects the environment. Moreover, heat produced during the decomposition of the cow manure adversely affects the crop germination. Different companies are producing vermicompost using different species of worms/larvae to overcome the harmful effects using fresh manure. Tiger worm treatment enhanced plant growth, especially in the compost-manure ratio (75% compost, 25% cow manure), followed by a ratio of 50% compost, 50% cow manure. Results also indicated that plant growth in Waxworm treated manure was weak as compared to plant growth in compost treated with Fruit Beetle (FB), Waxworms (WW), and Control (C) especially in the compost (25% compost, 75% cow manure) and 100% cow manure where there was no growth at all. Freshplant weight, fresh leaf weight and fresh root weight were significantly higher in the compost treated with Tiger worms in (75% compost, 25% cow manure); no evidence was seen for any significant differences in the dry root weight measurement between FB, Tiger worms (TW), WW, Control (C) in all composts. TW produced the best product, especially at the compost ratio of 75% compost, 25% cow manure followed by 50% compost, 50% cow manure.Keywords: fruit beetle, tiger worms, waxworms, control
Procedia PDF Downloads 1352949 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance
Authors: Ammar Alali, Mahmoud Abughaban
Abstract:
Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe
Procedia PDF Downloads 235