Search results for: search algorithms
646 Features of Urban Planning Design of the Largest Cities Located in Areas with High Seismic (on the example of Almaty city, Republic of Kazakhstan)
Authors: Arkinzhan Mametov, Alexey Abilov
Abstract:
Strong earthquakes are dangerous natural phenomena that lead to the destruction of entire cities and the death of a large number of people. The recent strong earthquakes in Turkey and in a number of other states have shown that as a result of them, there are significant human casualties and huge destruction. The city of Almaty is located in the foothill basin of the Trans-Ili Alatau of the Tien Shan Mountain system, in a zone with 9–10-point seismicity. Almaty (formerly Verniy) was founded in 1856 and, since that period, has experienced two catastrophic earthquakes - in 1887 and 1911, which led almost to the complete destruction of the city. Since that time, according to seismologists, the city has been annually exposed to small seismic impacts of 2-3 points. This forced the subsequent search for ways to protect buildings and the public through the use of earthquake-resistant structures and materials, limiting the number of stores of buildings and increasing gaps between them, which was carried out quite consistently and since 1957. However, at present, it is necessary to state a number of violations, primarily of the urban development plan – the placement of high-density multi-stores commercial housing in the urban environment, bypassing the existing regulations and standards in the city. Their appearance contributes to a greater concentration of residents transport in a limited area, which can lead to harmful consequences during powerful earthquakes. The experience of eliminating the consequences of catastrophic earthquakes shows that an important factor in reducing human losses is timely technical and medical assistance to victims of earthquakes, the elimination of blockages, provision of temporary housing and evacuation of the population, especially in winter. In cities located in areas with high seismicity, it is necessary to ensure strict compliance with the requirements of urban development regulations, taking into account the entire complex of planning and organizational measures to minimize the destruction of buildings and human casualties.Keywords: high seismic zones, urban planning regulations, special standards for planing, minimizing the human casualties
Procedia PDF Downloads 92645 Creative Mathematically Modelling Videos Developed by Engineering Students
Authors: Esther Cabezas-Rivas
Abstract:
Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project.Keywords: active learning, contextual teaching, models in differential equations, student-produced videos
Procedia PDF Downloads 145644 Blue Finance: A Systematical Review of the Academic Literature on Investment Streams for Marine Conservation
Authors: David Broussard
Abstract:
This review article delves into the realm of marine conservation finance, addressing the inadequacies in current financial streams from the private sector and the underutilization of existing financing mechanisms. The study emphasizes the emerging field of “blue finance”, which contributes to economic growth, improved livelihoods, and marine ecosystem health. The financial burden of marine conservation projects typically falls on philanthropists and governments, contrary to the polluter-pays principle. However, the private sector’s increasing commitment to NetZero and growing environmental and social responsibility goals prompts the need for alternative funding sources for marine conservation initiatives like marine protected areas. The article explores the potential of utilizing several financing mechanisms like carbon credits and other forms of payment for ecosystem services in the marine context, providing a solution to the lack of private funding for marine conservation. The methodology employed involves a systematic and quantitative approach, combining traditional review methods and elements of meta-analysis. A comprehensive search of the years 2000 - 2023, using relevant keywords on the Scopus platform, resulted in a review of 252 articles. The temporal evolution of blue finance studies reveals a significant increase in annual articles from 2010 to 2022, with notable peaks in 2011 and 2022. Marine Policy, Ecosystem Services, and Frontiers in Marine Science are prominent journals in this field. While the majority of articles focus on payment for ecosystem services, there is a growing awareness of the need for holistic approaches in conservation finance. Utilizing bibliometric techniques, the article showcases the dominant share of payment for ecosystem services in the literature with a focus on blue carbon. The classification of articles based on various criteria, including financing mechanisms and conservation types, aids in categorizing and understanding the diversity of research objectives and perspectives in this complex field of marine conservation finance.Keywords: biodiversity offsets, carbon credits, ecosystem services, impact investment, payment for ecosystem services
Procedia PDF Downloads 84643 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 240642 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas
Authors: Anand Malik
Abstract:
The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.Keywords: debris flow, geospatial data, GIS based modeling, flow-R
Procedia PDF Downloads 273641 The Effects of Shift Work on Neurobehavioral Performance: A Meta Analysis
Authors: Thomas Vlasak, Tanja Dujlociv, Alfred Barth
Abstract:
Shift work is an essential element of modern labor, ensuring ideal conditions of service for today’s economy and society. Despite the beneficial properties, its impact on the neurobehavioral performance of exposed subjects remains controversial. This meta-analysis aims to provide first summarizing the effects regarding the association between shift work exposure and different cognitive functions. A literature search was performed via the databases PubMed, PsyINFO, PsyARTICLES, MedLine, PsycNET and Scopus including eligible studies until December 2020 that compared shift workers with non-shift workers regarding neurobehavioral performance tests. A random-effects model was carried out using Hedge’s g as a meta-analytical effect size with a restricted likelihood estimator to summarize the mean differences between the exposure group and controls. The heterogeneity of effect sizes was addressed by a sensitivity analysis using funnel plots, egger’s tests, p-curve analysis, meta-regressions, and subgroup analysis. The meta-analysis included 18 studies resulting in a total sample of 18,802 participants and 37 effect sizes concerning six different neurobehavioral outcomes. The results showed significantly worse performance in shift workers compared to non-shift workers in the following cognitive functions with g (95% CI): processing speed 0.16 (0.02 - 0.30), working memory 0.28 (0.51 - 0.50), psychomotor vigilance 0.21 (0.05 - 0.37), cognitive control 0.86 (0.45 - 1.27) and visual attention 0.19 (0.11 - 0.26). Neither significant moderating effects of publication year or study quality nor significant subgroup differences regarding type of shift or type of profession were indicated for the cognitive outcomes. These are the first meta-analytical findings that associate shift work with decreased cognitive performance in processing speed, working memory, psychomotor vigilance, cognitive control, and visual attention. Further studies should focus on a more homogenous measurement of cognitive functions, a precise assessment of experience of shift work and occupation types which are underrepresented in the current literature (e.g., law enforcement). In occupations where shift work is fundamental (e.g., healthcare, industries, law enforcement), protective countermeasures should be promoted for workers.Keywords: meta-analysis, neurobehavioral performance, occupational psychology, shift work
Procedia PDF Downloads 108640 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply
Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele
Abstract:
In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant
Procedia PDF Downloads 178639 Use of Telehealth for Facilitating the Diagnostic Assessment of Autism Spectrum Disorder: A Scoping Review
Authors: Manahil Alfuraydan, Jodie Croxall, Lisa Hurt, Mike Kerr, Sinead Brophy
Abstract:
Autism Spectrum Disorder (ASD) is a developmental condition characterised by impairment in terms of social communication, social interaction, and a repetitive or restricted pattern of interest, behaviour, and activity. There is a significant delay between seeking help and a confirmed diagnosis of ASD. This may result in delay in receiving early intervention services, which are critical for positive outcomes. The long wait times also cause stress for the individuals and their families. Telehealth potentially offers a way of improving the diagnostic pathway for ASD. This review of the literature aims to examine which telehealth approaches have been used in the diagnosis and assessment of autism in children and adults, whether they are feasible and acceptable, and how they compare with face-to-face diagnosis and assessment methods. A comprehensive search of following databases- MEDLINE, CINAHL Plus with Full text, Business Sources Complete, Web of Science, Scopus, PsycINFO and trail and systematic review databases including Cochrane Library, Health Technology Assessment, Database of Abstracts and Reviews of Effectiveness and NHS Economic Evaluation was conducted, combining the terms of autism and telehealth from 2000 to 2018. A total of 10 studies were identified for inclusion in the review. This review of the literature found there to be two methods of using telehealth: (a) video conferencing to enable teams in different areas to consult with the families and to assess the child/adult in real time and (b) a video upload to a web portal that enables the clinical assessment of behaviours in the family home. The findings were positive, finding there to be high agreement in terms of the diagnosis between remote methods and face to face methods and with high levels of satisfaction among the families and clinicians. This field is in the very early stages, and so only studies with small sample size were identified, but the findings suggest that there is potential for telehealth methods to improve assessment and diagnosis of autism used in conjunction with existing methods, especially for those with clear autism traits and adults with autism. Larger randomised controlled trials of this technology are warranted.Keywords: assessment, autism spectrum disorder, diagnosis, telehealth
Procedia PDF Downloads 128638 Analyzing the Impacts of Sustainable Tourism Development on Residents’ Well-Being Based on Stakeholder Perception: Evidence from a Coastal-Hinterland Region
Authors: Elham Falatoonitoosi, Vikki Schaffer, Don Kerr
Abstract:
Over-development for tourism and its consequences on residents’ well-being turn into a critical issue in tourism destinations. Learning about undesirable impacts of tourism has led many people to seek more sustainable and responsible tourism. The main objective of this research is to understand how and to what extent sustainable tourism development enhances locals’ well-being regarding stakeholder perception. The research was conducted in a coastal-hinterland tourism region through two sequential phases. At the first phase, a unique set of 19 sustainable tourism indicators resulted from a triplex model was used to examine the sustainability effects on the main factors of residents’ well-being including equity and living condition, life satisfaction, health condition, and education quality. The triplex model including i) systematic literature search, ii) convergent interviewing, and iii) DEMATEL aimed to develop sustainability indicators, specify them for a particular destination, and identify the dominant sustainability issues acting as key predictors in sustainable development. At the second phase, a hierarchical multiple regression was used to examine the relationship between sustainable development and local residents’ well-being. A number of 167 participants from five different groups of stakeholders perceived the importance level of each sustainability indicators regarding well-being factors on 5-point Likert scale. Results from the first phase indicated that sustainability training, government support, tourism sociocultural effects, tourism revenue, and climate change are the top dominant sustainability issues in the regional sustainable development. Results from the second phase showed that sustainable development considerably improves the overall residents’ well-being and has positive relationships with all well-being factors except life satisfaction. It explains that it was difficult for stakeholders to recognize a link between sustainable development and their overall life satisfaction and happiness. Among well-being’s factors, health condition was influenced the most by sustainability indicators that indicate stakeholders believed sustainability development can promote public health, health sector performance, quality of drinking water, and sanitation. For the future research, it is highly recommended to analysis the effects of sustainable tourism development on the other features of a tourism destination’s well-being including residents sociocultural empowerment, local economic growth, and attractiveness of the destination.Keywords: residents' well-being, stakeholder perception, sustainability indicators, sustainable tourism
Procedia PDF Downloads 265637 Molecular Insights into the 5α-Reductase Inhibitors: Quantitative Structure Activity Relationship, Pre-Absorption, Distribution, Metabolism, and Excretion and Docking Studies
Authors: Richa Dhingra, Monika, Manav Malhotra, Tilak Raj Bhardwaj, Neelima Dhingra
Abstract:
5-Alpha-reductases (5AR), a membrane bound, NADPH dependent enzyme and convert male hormone testosterone (T) into more potent androgen dihydrotestosterone (DHT). DHT is the required for the development and function of male sex organs, but its overproduction has been found to be associated with physiological conditions like Benign Prostatic Hyperplasia (BPH). Thus the inhibition of 5ARs could be a key target for the treatment of BPH. In present study, 2D and 3D Quantitative Structure Activity Relationship (QSAR) pharmacophore models have been generated for 5AR based on known inhibitory concentration (IC₅₀) values with extensive validations. The four featured 2D pharmacophore based PLS model correlated the topological interactions (–OH group connected with one single bond) (SsOHE-index); semi-empirical (Quadrupole2) and physicochemical descriptors (Mol. wt, Bromines Count, Chlorines Count) with 5AR inhibitory activity, and has the highest correlation coefficient (r² = 0.98, q² =0.84; F = 57.87, pred r² = 0.88). Internal and external validation was carried out using test and proposed set of compounds. The contribution plot of electrostatic field effects and steric interactions generated by 3D-QSAR showed interesting results in terms of internal and external predictability. The well validated 2D Partial Least Squares (PLS) and 3D k-nearest neighbour (kNN) models were used to search novel 5AR inhibitors with different chemical scaffold. To gain more insights into the molecular mechanism of action of these steroidal derivatives, molecular docking and in silico absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Studies have revealed the hydrophobic and hydrogen bonding of the ligand with residues Alanine (ALA) 63A, Threonine (THR) 60A, and Arginine (ARG) 456A of 4AT0 protein at the hinge region. The results of QSAR, molecular docking, in silico ADME studies provide guideline and mechanistic scope for the identification of more potent 5-Alpha-reductase inhibitors (5ARI).Keywords: 5α-reductase inhibitor, benign prostatic hyperplasia, ligands, molecular docking, QSAR
Procedia PDF Downloads 163636 Association between Anemia and Maternal Depression during Pregnancy: Systematic Review
Authors: Gebeyaw Molla Wondim, Damen Haile Mariam, Wubegzier Mekonnen, Catherine Arsenault
Abstract:
Introduction: Maternal depression is a common psychological disorder that mostly occurs during pregnancy and after childbirth. It affects approximately one in four women worldwide. There is inconsistent evidence regarding the association between anemia and maternal depression. The objective of this systematic review was to examine the association between anemia and depression during pregnancy. Method: A comprehensive search of articles published before March 8, 2024, was conducted in seven databases such as PubMed, Scopus, Web of Science, PsycINFO, CINAHL, Cochrane Library, and Google Scholar. The Boolean operators “AND” or “OR” and “NOT” were used to connect the MeSH terms and keywords. Rayyan software was used to screen articles for final retrieval, and the PRISMA diagram was used to show the article selection process. Data extraction and risk bias assessment were done by two reviewers independently. JBI critical appraisal tool was used to assess the methodological quality of the retrieved articles. Heterogenicity was assessed through visual inspection of the extracted result, and narrative analysis was used to synthesize the result. Result: A total of 2,413 articles were obtained from seven electronic databases. Among these articles, a total of 2,398 were removed due to duplication (702 articles), by title and abstract selection criteria (1,678 articles), and by full-text review (18 articles). Finally, in this systematic review, 15 articles with a total of 628,781 pregnant women were included: seven articles were cohort studies, two were case-control, and six studies were cross-sectional. All included studies were published between 2013 and 2022. Studies conducted in the United States, South Korea, Finland, and one in South India found no significant association between anemia and maternal depression during pregnancy. On the other hand, studies conducted in Australia, Canada, Finland, Israel, Turkey, Vietnam, Ethiopia, and South India showed a significant association between anemia and depression during pregnancy. Conclusion: The overall finding of the systematic review shows the burden of anemia and antenatal depression is much higher among pregnant women in developing countries. Around three-fourths of the studies show that anemia is positively associated with antenatal depression. Almost all studies conducted in LMICs show anemia positively associated with antenatal depression.Keywords: pregnant, women, anemia, depression
Procedia PDF Downloads 40635 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents
Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri
Abstract:
The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC
Procedia PDF Downloads 352634 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 89633 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach
Authors: Nwachukwu Ifeanyi
Abstract:
Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.Keywords: computation, robotics, mathematics, simulation
Procedia PDF Downloads 58632 Unspoken Playground Rules Prompt Adolescents to Avoid Physical Activity: A Focus Group Study of Constructs in the Prototype Willingness Model
Authors: Catherine Wheatley, Emma L. Davies, Helen Dawes
Abstract:
The health benefits of exercise are widely recognised, but numerous interventions have failed to halt a sharp decline in physical activity during early adolescence. Many such projects are underpinned by the Theory of Planned Behaviour, yet this model of rational decision-making leaves variance in behavior unexplained. This study investigated whether the Prototype Willingness Model, which proposes a second, reactive decision-making path to account for spontaneous responses to the social environment, has potential to improve understanding of adolescent exercise behaviour in school by exploring constructs in the model with young people. PE teachers in 4 Oxfordshire schools each nominated 6 pupils who were active in school, and 6 who were inactive, to participate in the study. Of these, 45 (22 male) aged 12-13 took part in 8 focus group discussions. These were transcribed and subjected to deductive thematic analysis to search for themes relating to the prototype willingness model. Participants appeared to make rational decisions about commuting to school or attending sports clubs, but spontaneous choices to be inactive during both break and PE. These reactive decisions seemed influenced by a social context described as more ‘judgmental’ than primary school, characterised by anxiety about physical competence, negative peer evaluation and inactive playground norms. Participants described their images of typical active and inactive adolescents: active images included negative social characteristics including ‘show-off’. There was little concern about the long-term risks of inactivity, although participants seemed to recognise that physical activity is healthy. The Prototype Willingness Model might more fully explain young adolescents’ physical activity in school than rational behavioural models, indicating potential for physical activity interventions that target social anxieties in response to the changing playground environment. Images of active types could be more complex than earlier research has suggested, and their negative characteristics might influence willingness to be active.Keywords: adolescence, physical activity, prototype willingness model, school
Procedia PDF Downloads 346631 Issues and Challenges of Information and Communication Technology Adoption and Application for Business-Related Performance among Agro-Based Small and Medium Entrepreneurs in the State of Selangor, Malaysia
Authors: Mohd Nizam Osman
Abstract:
This study explores issues and challenges of information and communication technology (ICT) adoption and application for business-related performance of Agro-based small and medium-scale enterprises (SMEs) in the state of Selangor, Malaysia. Globally, SMEs have championed the socio-economic development of nations across the globe, including Malaysia. Thus, the objectives of this study explore issues and challenges of agro-based SMEs' adoption and usage of ICT, the business-related performance of SMEs via the adoption of ICT, and the impact of incentives on SMEs' adoption and use of ICT. The study was conducted in Selangor, Malaysia. A qualitative research approach was deployed for the study. Data for the study emanated from semi-structured interviews and field note observation of 14 informants who are registered as small-scale business owners and operators. Based on thematic analysis, data were triangulated to ensure consistency and validation of findings for the study. Findings revealed that SMEs are faced with a lack of funding, low expertise, and lack of storage, leading to an unsustainable supply of goods and services. Although effective communication, ease of business activities/transactions, and information search by way of research were among the business performance experienced by SMEs' adoption of ICT. Further findings showed that loan conditions and personal and business interests hindered SMEs' reception and access to programs, schemes, and incentives geared at aiding the continuous growth and development of agro-based SMEs. The study suggests the need for policy change in terms of diversification of channels of funding and access to funds to enable credit guarantee schemes and peer or community-based financing. Consequently, the study recommends the engagement of SMEs in policy decision-making to ascertain the type of incentives relevant to their business operations. Likewise, from a technological standpoint, the study suggests the expansion of the framework of technology acceptance with focuses on affordability, type of users, and level of usage.Keywords: ICT adoption, business related performance, agro-based SMEs, ICT application for SMEs
Procedia PDF Downloads 76630 Orthopedic Trauma in Newborn Babies
Authors: Joanna Maj, Awais Hussain, Lyndsey Vu, Catherine Roxas
Abstract:
Background: Bone injuries in babies are common conditions that arise during delivery. Fractures of the clavicle, humerus, femur, and skull are the most common neonatal bone injuries sustained from labor and delivery. During operative deliveries, zealous tractions, ineffective delivery techniques, improper uterine incision, and inadequate relaxation of the uterus can lead to bone fractures in the newborn. Neonatal anatomy is unique. Just as children are not mini-adults, newborns are not mini children. A newborn’s anatomy and physiology are significantly different from a pediatric patient's. In this paper, we describe common orthopedic trauma in newborn babies. We provide a comprehensive overview of the different types of bone injuries in newborns. We hypothesize that the rate of bone fractures sustained at birth is higher in cases of operative deliveries. Methods: Relevant literature was selected by using the PubMed database. Search terms included orthopedic conditions in newborns, neonatal anatomy, and bone fractures in neonates during operative deliveries. Inclusion criteria included age, gender, race, type of bone injury and progression of bone injury. Exclusion criteria were limited in the medical history of cases reviewed and comorbidities. Results: This review finds that a clavicle fracture is the most common type of neonatal orthopedic injury sustained at birth in both operative and non-operative deliveries. We confirm the hypothesis that infants born via operative deliveries have a significantly higher rate of bone fractures than non-cesarean section deliveries. Conclusion: Newborn babies born via operative deliveries have a higher rate of bone fractures of the clavicle, humerus, and femur. A clavicle bone fracture in newborns is most common during emergency operative deliveries in new mothers. We conclude that infants born via an operative delivery sustained more bone injuries than infants born via non-cesarean section deliveries.Keywords: clavicle fracture, humerus fracture, neonates, newborn orthopedics, orthopedic surgery, pediatrics, orthopedic trauma, orthopedic trauma during delivery, cesarean section, obstetrics, neonatal anatomy, neonatal fractures, operative deliveries, labor and delivery, bone injuries in neonates
Procedia PDF Downloads 101629 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging
Procedia PDF Downloads 155628 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.Keywords: mathematical sciences, data analytics, advances, unveiling
Procedia PDF Downloads 93627 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 358626 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model
Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis
Abstract:
Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry
Procedia PDF Downloads 225625 Quantum Coherence Sets the Quantum Speed Limit for Mixed States
Authors: Debasis Mondal, Chandan Datta, S. K. Sazim
Abstract:
Quantum coherence is a key resource like entanglement and discord in quantum information theory. Wigner- Yanase skew information, which was shown to be the quantum part of the uncertainty, has recently been projected as an observable measure of quantum coherence. On the other hand, the quantum speed limit has been established as an important notion for developing the ultra-speed quantum computer and communication channel. Here, we show that both of these quantities are related. Thus, cast coherence as a resource to control the speed of quantum communication. In this work, we address three basic and fundamental questions. There have been rigorous attempts to achieve more and tighter evolution time bounds and to generalize them for mixed states. However, we are yet to know (i) what is the ultimate limit of quantum speed? (ii) Can we measure this speed of quantum evolution in the interferometry by measuring a physically realizable quantity? Most of the bounds in the literature are either not measurable in the interference experiments or not tight enough. As a result, cannot be effectively used in the experiments on quantum metrology, quantum thermodynamics, and quantum communication and especially in Unruh effect detection et cetera, where a small fluctuation in a parameter is needed to be detected. Therefore, a search for the tightest yet experimentally realisable bound is a need of the hour. It will be much more interesting if one can relate various properties of the states or operations, such as coherence, asymmetry, dimension, quantum correlations et cetera and QSL. Although, these understandings may help us to control and manipulate the speed of communication, apart from the particular cases like the Josephson junction and multipartite scenario, there has been a little advancement in this direction. Therefore, the third question we ask: (iii) Can we relate such quantities with QSL? In this paper, we address these fundamental questions and show that quantum coherence or asymmetry plays an important role in setting the QSL. An important question in the study of quantum speed limit may be how it behaves under classical mixing and partial elimination of states. This is because this may help us to choose properly a state or evolution operator to control the speed limit. In this paper, we try to address this question and show that the product of the time bound of the evolution and the quantum part of the uncertainty in energy or quantum coherence or asymmetry of the state with respect to the evolution operator decreases under classical mixing and partial elimination of states.Keywords: completely positive trace preserving maps, quantum coherence, quantum speed limit, Wigner-Yanase Skew information
Procedia PDF Downloads 353624 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 168623 Exercise and Geriatric Depression: a Scoping Review of the Research Evidence
Authors: Samira Mehrabi
Abstract:
Geriatric depression is a common late-life mental health disorder that increases morbidity and mortality. It has been shown that exercise is effective in alleviating symptoms of geriatric depression. However, inconsistencies across studies and lack of optimal dose-response of exercise for improving geriatric depression have made it challenging to draw solid conclusions on the effectiveness of exercise in late-life depression. Purpose: To further investigate the moderators of the effectiveness of exercise on geriatric depression across the current body of evidence. Methods: Based on the Arksey and O’Malley framework, an extensive search strategy was performed by exploring PubMed, Scopus, Sport Discus, PsycInfo, ERIC, and IBSS without limitations in the time frame. Eight systematic reviews with empirical results that evaluated the effect of exercise on depression among people aged ≥ 60 years were identified and their individual studies were screened for inclusion. One additional study was found through the hand searching of reference lists. After full-text screening and applying inclusion and exclusion criteria, 21 studies were retained for inclusion. Results: The review revealed high variability in characteristics of the exercise interventions and outcome measures. Sample characteristics, nature of comparators, main outcome assessment, and baseline severity of depression also varied notably. Mind-body and aerobic exercises were found to significantly reduce geriatric depression. However, results on the relationship between resistance training and improvements in geriatric depression were inconsistent, and results of the intensity-related antidepressant effects of exercise interventions were mixed. Extensive use of self-reported questionnaires for the main outcome assessment and lack of evidence on the relationship between depression severity and observed effects were of the other important highlights of the review. Conclusion: Several literature gaps were found regarding the potential effect modifiers of exercise and geriatric depression. While acknowledging the complexity of establishing recommendations on the exercise variables and geriatric depression, future studies are required to understand the interplay and threshold effect of exercise for treating geriatric depression.Keywords: exercise, geriatric depression, healthy aging, older adults, physical activity intervention, scoping review
Procedia PDF Downloads 107622 Human-Automation Interaction in Law: Mapping Legal Decisions and Judgments, Cognitive Processes, and Automation Levels
Authors: Dovile Petkeviciute-Barysiene
Abstract:
Legal technologies not only create new ways for accessing and providing legal services but also transform the role of legal practitioners. Both lawyers and users of legal services expect automated solutions to outperform people with objectivity and impartiality. Although fairness of the automated decisions is crucial, research on assessing various characteristics of automated processes related to the perceived fairness has only begun. One of the major obstacles to this research is the lack of comprehensive understanding of what legal actions are automated and could be meaningfully automated, and to what extent. Neither public nor legal practitioners oftentimes cannot envision technological input due to the lack of general without illustrative examples. The aim of this study is to map decision making stages and automation levels which are and/or could be achieved in legal actions related to pre-trial and trial processes. Major legal decisions and judgments are identified during the consultations with legal practitioners. The dual-process model of information processing is used to describe cognitive processes taking place while making legal decisions and judgments during pre-trial and trial action. Some of the existing legal technologies are incorporated into the analysis as well. Several published automation level taxonomies are considered because none of them fit well into the legal context, as they were all created for avionics, teleoperation, unmanned aerial vehicles, etc. From the information processing perspective, analysis of the legal decisions and judgments expose situations that are most sensitive to cognitive bias, among others, also help to identify areas that would benefit from the automation the most. Automation level analysis, in turn, provides a systematic approach to interaction and cooperation between humans and algorithms. Moreover, an integrated map of legal decisions and judgments, information processing characteristics, and automation levels all together provide some groundwork for the research of legal technology perceived fairness and acceptance. Acknowledgment: This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0116) under grant agreement with the Research Council of Lithuania (LMTLT).Keywords: automation levels, information processing, legal judgment and decision making, legal technology
Procedia PDF Downloads 142621 Comparison between RILM, JSTOR, and WorldCat Used to Search for Secondary Literature
Authors: Stacy Jarvis
Abstract:
Databases such as JSTOR, RILM and WorldCat have been the main source and storage of literature in the music orb. The Reference Index to Music Literature is a bibliographic database of over 2.6 million citations to writings about music from over 70 countries. The Research Institute produces RILM for the Study of Music at the University of Buffalo. JSTOR is an e-library of academic journals, books, and primary sources. Database JSTOR helps scholars find, utilise, and build upon a vast range of literature through a powerful teaching and research platform. Another database, WorldCat, is the world's biggest library catalogue, assisting scholars in finding library materials online. An evaluation of these databases in the music sphere is conducted by looking into the description and intended use and finding similarities and differences among them. Through comparison, it is found that these aim to serve different purposes, though they have the same goal of providing and storing literature. Also, since each database has different parts of literature that it majors on, the intended use of the three databases is evaluated. This can be found in the description, scope, and intended uses section. These areas are crucial to the research as it addresses the functional or literature differences among the three databases. It is also found that these databases have different quantitative potentials. This is determined by addressing the year each database began collecting literature and the number of articles, periodicals, albums, conference proceedings, music, dissertations, digital media, essays collections, journal articles, monographs, online resources, reviews, and reference materials that can be found in each one of them. This can be found in the sections- description, scope and intended uses and the importance of the database in identifying literature on different topics. To compare the delivery of services to the users, the importance of databases in identifying literature on different topics is also addressed in the section -the importance of databases in identifying literature on different topics. Even though these databases are used in research, they all have disadvantages and advantages. This is addressed in the sections on advantages and disadvantages. This will be significant in determining which of the three is the best. Also, it will help address how the shortcomings of one database can be addressed by utilising two databases together while conducting research. It is addressed in the section- a combination of RILM and JSTOR. All this information revolves around the idea that a huge amount of quantitative and qualitative data can be found in the presented databases on music and digital content; however, each of the given databases has a different construction and material features contributing to the musical scholarship in its way.Keywords: RILM, JSTOR, WorldCat, database, literature, research
Procedia PDF Downloads 83620 Project Work with Design Thinking and Blended Learning: A Practical Report from Teaching in Higher Education
Authors: C. Vogeler
Abstract:
Change processes such as individualization and digitalization have an impact on higher education. Graduates are expected to cooperate in creative work processes in their professional life. During their studies, they need to be prepared accordingly. This includes modern learning scenarios that integrate the benefits of digital media. Therefore, design thinking and blended learning have been combined in the project-based seminar conception introduced here. The presented seminar conception has been realized and evaluated with students of information sciences since September 2017. Within the seminar, the students learn to work on a project. They apply the methods in a problem-based learning scenario. Task of the case study is to arrange a conference on the topic gaming in libraries. In order to collaborative develop creative possibilities of realization within the group of students the design thinking method has been chosen. Design thinking is a method, used to create user-centric, problem-solving and need-driven innovation through creative collaboration in multidisciplinary teams. Central characteristics are the openness of this approach to work results and the visualization of ideas. This approach is now also accepted in the field of higher education. Especially in problem-based learning scenarios, the method offers clearly defined process steps for creative ideas and their realization. The creative process can be supported by digital media, such as search engines and tools for the documentation of brainstorming, creation of mind maps, project management etc. Because the students have to do two-thirds of the workload in their private study, design thinking has been combined with a blended learning approach. This supports students’ preparation and follow-up of the joint work in workshops (flipped classroom scenario) as well as the communication and collaboration during the entire project work phase. For this purpose, learning materials are provided on a Moodle-based learning platform as well as various tools that supported the design thinking process as described above. In this paper, the seminar conception with a combination of design thinking and blended learning is described and the potentials and limitations of the chosen strategy for the development of a course with a multimedia approach in higher education are reflected.Keywords: blended learning, design thinking, digital media tools and methods, flipped classroom
Procedia PDF Downloads 197619 Artificial Intelligence in Patient Involvement: A Comprehensive Review
Authors: Igor A. Bessmertny, Bidru C. Enkomaryam
Abstract:
Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.Keywords: artificial intelligence, patient engagement, machine learning, patient involvement
Procedia PDF Downloads 76618 Bean in Turkey: Characterization, Inter Gene Pool Hybridization Events, Breeding, Utilizations
Authors: Faheem Shahzad Baloch, Muhammad Azhar Nadeem, Muhammad Amjad Nawaz, Ephrem Habyarimana, Gonul Comertpay, Tolga Karakoy, Rustu Hatipoglu, Mehmet Zahit Yeken, Vahdettin Ciftci
Abstract:
Turkey is considered a bridge between Europe, Asia, and Africa and possibly played an important role in the distribution of many crops including common bean. Hundreds of common bean landraces can be found in Turkey, particularly in farmers’ fields, and they consistently contribute to the overall production. To investigate the existing genetic diversity and hybridization events between the Andean and Mesoamerican gene pools in the Turkish common bean, 188 common bean accessions (182 landraces and 6 modern cultivars as controls) were collected from 19 different Turkish geographic regions. These accessions were characterized using phenotypic data (growth habit and seed weight), geographic provenance, 12557 high-quality whole-genome DArTseq markers, and 3767 novel DArTseq loci were also identified. The clustering algorithms resolved the Turkish common bean landrace germplasm into the two recognized gene pools, the Mesoamerican and Andean gene pools. Hybridization events were observed in both gene pools (14.36% of the accessions) but mostly in the Mesoamerican (7.97% of the accessions), and was low relative to previous European studies. The lower level of hybridization witnessed the existence of Turkish common bean germplasm in its original form as compared to Europe. Mesoamerican gene pool reflected a higher level of diversity, while the Andean gene pool was predominant (56.91% of the accessions), but genetically less diverse and phenotypically more pure, reflecting farmers greater preference for the Andean gene pool. We also found some genetically distinct landraces and overall, a meaningful level of genetic variability which can be used by the scientific community in breeding efforts to develop superior common bean strains.Keywords: bean germplasm, DArTseq markers, genotyping by sequencing, Turkey, whole genome diversity
Procedia PDF Downloads 243617 Optical Flow Technique for Supersonic Jet Measurements
Authors: Haoxiang Desmond Lim, Jie Wu, Tze How Daniel New, Shengxian Shi
Abstract:
This paper outlines the development of a novel experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 8.2 bar and exit velocity of Mach 1.5. High-speed single-frame or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Details of the methodology employed and challenges faced will be further elaborated in the final conference paper should the abstract be accepted. Despite these challenges however, this novel supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.Keywords: Schlieren, optical flow, supersonic jets, shock shear layer
Procedia PDF Downloads 312