Search results for: quantum speed limit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4841

Search results for: quantum speed limit

4841 Quantum Coherence Sets the Quantum Speed Limit for Mixed States

Authors: Debasis Mondal, Chandan Datta, S. K. Sazim

Abstract:

Quantum coherence is a key resource like entanglement and discord in quantum information theory. Wigner- Yanase skew information, which was shown to be the quantum part of the uncertainty, has recently been projected as an observable measure of quantum coherence. On the other hand, the quantum speed limit has been established as an important notion for developing the ultra-speed quantum computer and communication channel. Here, we show that both of these quantities are related. Thus, cast coherence as a resource to control the speed of quantum communication. In this work, we address three basic and fundamental questions. There have been rigorous attempts to achieve more and tighter evolution time bounds and to generalize them for mixed states. However, we are yet to know (i) what is the ultimate limit of quantum speed? (ii) Can we measure this speed of quantum evolution in the interferometry by measuring a physically realizable quantity? Most of the bounds in the literature are either not measurable in the interference experiments or not tight enough. As a result, cannot be effectively used in the experiments on quantum metrology, quantum thermodynamics, and quantum communication and especially in Unruh effect detection et cetera, where a small fluctuation in a parameter is needed to be detected. Therefore, a search for the tightest yet experimentally realisable bound is a need of the hour. It will be much more interesting if one can relate various properties of the states or operations, such as coherence, asymmetry, dimension, quantum correlations et cetera and QSL. Although, these understandings may help us to control and manipulate the speed of communication, apart from the particular cases like the Josephson junction and multipartite scenario, there has been a little advancement in this direction. Therefore, the third question we ask: (iii) Can we relate such quantities with QSL? In this paper, we address these fundamental questions and show that quantum coherence or asymmetry plays an important role in setting the QSL. An important question in the study of quantum speed limit may be how it behaves under classical mixing and partial elimination of states. This is because this may help us to choose properly a state or evolution operator to control the speed limit. In this paper, we try to address this question and show that the product of the time bound of the evolution and the quantum part of the uncertainty in energy or quantum coherence or asymmetry of the state with respect to the evolution operator decreases under classical mixing and partial elimination of states.

Keywords: completely positive trace preserving maps, quantum coherence, quantum speed limit, Wigner-Yanase Skew information

Procedia PDF Downloads 318
4840 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism

Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin

Abstract:

In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.

Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation

Procedia PDF Downloads 30
4839 Using Squeezed Vacuum States to Enhance the Sensitivity of Ground Based Gravitational Wave Interferometers beyond the Standard Quantum Limit

Authors: Giacomo Ciani

Abstract:

This paper reviews the impact of quantum noise on modern gravitational wave interferometers and explains how squeezed vacuum states are used to push the noise below the standard quantum limit. With the first detection of gravitational waves from a pair of colliding black holes in September 2015 and subsequent detections including that of gravitational waves from a pair of colliding neutron stars, the ground-based interferometric gravitational wave observatories LIGO and VIRGO have opened the era of gravitational-wave and multi-messenger astronomy. Improving the sensitivity of the detectors is of paramount importance to increase the number and quality of the detections, fully exploiting this new information channel about the universe. Although still in the commissioning phase and not at nominal sensitivity, these interferometers are designed to be ultimately limited by a combination of shot noise and quantum radiation pressure noise, which define an envelope known as the standard quantum limit. Despite the name, this limit can be beaten with the use of advanced quantum measurement techniques, with the use of squeezed vacuum states being currently the most mature and promising. Different strategies for implementation of the technology in the large-scale detectors, in both their frequency-independent and frequency-dependent variations, are presented, together with an analysis of the main technological issues and expected sensitivity gain.

Keywords: gravitational waves, interferometers, squeezed vacuum, standard quantum limit

Procedia PDF Downloads 124
4838 Locating Speed Limit Signs for Highway Tunnel Entrance and Exit

Authors: Han Bai, Lemei Yu, Tong Zhang, Doudou Xie, Liang Zhao

Abstract:

The brightness changes at highway tunnel entrance and exit have an effect on the physical and psychological conditions of drivers. It is more conducive for examining driving safety with quantitative analysis of the physical and psychological characteristics of drivers to determine the speed limit sign locations at the tunnel entrance and exit sections. In this study, the physical and psychological effects of tunnels on traffic sign recognition of drivers are analyzed; subsequently, experiments with the assistant of Eyelink-II Type eye movement monitoring system are conducted in the typical tunnels in Ji-Qing freeway and Xi-Zha freeway, to collect the data of eye movement indexes “Fixation Duration” and “Eyeball Rotating Speed”, which typically represent drivers' mental load and visual characteristics. On this basis, the paper establishes a visual recognition model for the speed limit signs at the highway tunnel entrances and exits. In combination with related standards and regulations, it further presents the recommended values for locating speed limit signs under different tunnel conditions. A case application on Panlong tunnel in Ji-Qing freeway is given to generate the helpful improvement suggestions.

Keywords: driver psychological load, eye movement index, speed limit sign location, tunnel entrance and exit

Procedia PDF Downloads 253
4837 Ergonomic Design of Speed Control Humps/Dips

Authors: Emad Khorshid, Habib Awada

Abstract:

Newly developed Ergonomic speed control hump/Dip designs are conducted. The numerical simulation for the driver-vehicle-hump dynamic system will be performed using computer software. The design problem for which the speed hump or dip should provide: (1) discomfort feeling to the driver if speed is over the specified limit, and (2) normal/good comfort level to the driver (and or other passengers) if the speed is within the limit. For comparison reasons, different vehicles suspension systems (active, semi-active and non-active suspension) are used in the simulation. The measuring of the acceptable range of vibration will be referenced to the British standard BS6841, ISO 2631/1 and the new ISO 2631/5. All these standards are related to human health and comfort level in terms of acceptable range of whole body vibration exposure.

Keywords: speed hump, speed dip, ergonomic design, human health, vehicle modeling

Procedia PDF Downloads 340
4836 Quantum Engine Proposal using Two-level Atom Like Manipulation and Relativistic Motoring Control

Authors: Montree Bunruangses, Sonath Bhattacharyya, Somchat Sonasang, Preecha Yupapin

Abstract:

A two-level system is manipulated by a microstrip add-drop circuit configured as an atom like system for wave-particle behavior investigation when its traveling speed along the circuit perimeter is the speed of light. The entangled pair formed by the upper and lower sideband peaks is bound by the angular displacement, which is given by 0≤θ≤π/2. The control signals associated with 3-peak signal frequencies are applied by the external inputs via the microstrip add-drop multiplexer ports, where they are time functions without the space term involved. When a system satisfies the speed of light conditions, the mass term has been changed to energy based on the relativistic limit described by the Lorentz factor and Einstein equation. The different applied frequencies can be utilized to form the 3-phase torques that can be applied for quantum engines. The experiment will use the two-level system circuit and be conducted in the laboratory. The 3-phase torques will be recorded and investigated for quantum engine driving purpose. The obtained results will be compared to the simulation. The optimum amplification of torque can be obtained by the resonant successive filtering operation. Torque will be vanished when the system is balanced at the stopped position, where |Time|=0, which is required to be a system stability condition. It will be discussed for future applications. A larger device may be tested in the future for realistic use. A synchronous and asynchronous driven motor is also discussed for the warp drive use.

Keywords: quantum engine, relativistic motor, 3-phase torque, atomic engine

Procedia PDF Downloads 31
4835 The Ultimate Scaling Limit of Monolayer Material Field-Effect-Transistors

Authors: Y. Lu, L. Liu, J. Guo

Abstract:

Monolayer graphene and dichaclogenide semiconductor materials attract extensive research interest for potential nanoelectronics applications. The ultimate scaling limit of double gate MoS2 Field-Effect-Transistors (FETs) with a monolayer thin body is examined and compared with ultra-thin-body Si FETs by using self-consistent quantum transport simulation in the presence of phonon scattering. Modelling of phonon scattering, quantum mechanical effects, and self-consistent electrostatics allows us to accurately assess the performance potential of monolayer MoS2 FETs. The results revealed that monolayer MoS2 FETs show 52% smaller Drain Induced Barrier Lowering (DIBL) and 13% Smaller Sub-Threshold Swing (SS) than 3 nm-thick-body Si FETs at a channel length of 10 nm with the same gating. With a requirement of SS<100mV/dec, the scaling limit of monolayer MoS2 FETs is assessed to be 5 nm, comparing with 8nm of the ultra-thin-body Si counterparts due to the monolayer thin body and higher effective mass which reduces direct source-to-drain tunnelling. By comparing with the ITRS target for high performance logic devices of 2023; double gate monolayer MoS2 FETs can fulfil the ITRS requirements.

Keywords: nanotransistors, monolayer 2D materials, quantum transport, scaling limit

Procedia PDF Downloads 205
4834 Monitor Vehicle Speed Using Internet of Things Based Wireless Sensor Network System

Authors: Akber Oumer Abdurezak

Abstract:

Road traffic accident is a major problem in Ethiopia, resulting in the deaths of many people and potential injuries and crash every year and loss of properties. According to the Federal Transport Authority, one of the main causes of traffic accident and crash in Ethiopia is over speeding. Implementation of different technologies is used to monitor the speed of vehicles in order to minimize accidents and crashes. This research aimed at designing a speed monitoring system to monitor the speed of travelling vehicles and movements, reporting illegal speeds or overspeeding vehicles to the concerned bodies. The implementation of the system is through a wireless sensor network. The proposed system can sense and detect the movement of vehicles, process, and analysis the data obtained from the sensor and the cloud system. The data is sent to the central controlling server. The system contains accelerometer and gyroscope sensors to sense and collect the data of the vehicle. Arduino to process the data and Global System for Mobile Communication (GSM) module for communication purposes to send the data to the concerned body. When the speed of the vehicle exceeds the allowable speed limit, the system sends a message to database as “over speeding”. Both accelerometer and gyroscope sensors are used to collect acceleration data. The acceleration data then convert to speed, and the corresponding speed is checked with the speed limit, and those above the speed limit are reported to the concerned authorities to avoid frequent accidents. The proposed system decreases the occurrence of accidents and crashes due to overspeeding and can be used as an eye opener for the implementation of other intelligent transport system technologies. This system can also integrate with other technologies like GPS and Google Maps to obtain better output.

Keywords: accelerometer, IOT, GSM, gyroscope

Procedia PDF Downloads 44
4833 Effectiveness of Variable Speed Limit Signs in Reducing Crash Rates on Roadway Construction Work Zones in Alaska

Authors: Osama Abaza, Tanay Datta Chowdhury

Abstract:

As a driver's speed increases, so do the probability of an incident and likelihood of injury. The presence of equipment, personnel, and a changing landscape in construction zones create greater potential for incident. This is especially concerning in Alaska, where summer construction activity, coinciding with the peak annual traffic volumes, cannot be avoided. In order to reduce vehicular speeding in work zones, and therefore the probability of crash and incident occurrence, variable speed limit (VSL) systems can be implemented in the form of radar speed display trailers since the radar speed display trailers were shown to be effective at reducing vehicular speed in construction zones. Allocation of VSL not only help reduce the 85th percentile speed but also it will predominantly reduce mean speed as well. Total of 2147 incidents along with 385 crashes occurred only in one month around the construction zone in the Alaska which seriously requires proper attention. This research provided a thorough crash analysis to better understand the cause and provide proper countermeasures. Crashes were predominantly recoded as vehicle- object collision and sideswipe type and thus significant amount of crashes fall in the group of no injury to minor injury type in the severity class. But still, 35 major crashes with 7 fatal ones in a one month period require immediate action like the implementation of the VSL system as it proved to be a speed reducer in the construction zone on Alaskan roadways.

Keywords: speed, construction zone, crash, severity

Procedia PDF Downloads 210
4832 Quantum Mechanics as A Limiting Case of Relativistic Mechanics

Authors: Ahmad Almajid

Abstract:

The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation.

Keywords: lorentz quantum factor, new, planck’s energy as a limiting case of einstein’s energy, real quantum mechanics, new equations for quantum mechanics

Procedia PDF Downloads 50
4831 Analysis of Network Performance Using Aspect of Quantum Cryptography

Authors: Nisarg A. Patel, Hiren B. Patel

Abstract:

Quantum cryptography is described as a point-to-point secure key generation technology that has emerged in recent times in providing absolute security. Researchers have started studying new innovative approaches to exploit the security of Quantum Key Distribution (QKD) for a large-scale communication system. A number of approaches and models for utilization of QKD for secure communication have been developed. The uncertainty principle in quantum mechanics created a new paradigm for QKD. One of the approaches for use of QKD involved network fashioned security. The main goal was point-to-point Quantum network that exploited QKD technology for end-to-end network security via high speed QKD. Other approaches and models equipped with QKD in network fashion are introduced in the literature as. A different approach that this paper deals with is using QKD in existing protocols, which are widely used on the Internet to enhance security with main objective of unconditional security. Our work is towards the analysis of the QKD in Mobile ad-hoc network (MANET).

Keywords: cryptography, networking, quantum, encryption and decryption

Procedia PDF Downloads 139
4830 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 136
4829 Design of Speedy, Scanty Adder for Lossy Application Using QCA

Authors: T. Angeline Priyanka, R. Ganesan

Abstract:

Recent trends in microelectronics technology have gradually changed the strategies used in very large scale integration (VLSI) circuits. Complementary Metal Oxide Semiconductor (CMOS) technology has been the industry standard for implementing VLSI device for the past two decades, but due to scale-down issues of ultra-low dimension achievement is not achieved so far. Hence it paved a way for Quantum Cellular Automata (QCA). It is only one of the many alternative technologies proposed as a replacement solution to the fundamental limit problem that CMOS technology will impose in the years to come. In this brief, presented a new adder that possesses high speed of operation occupying less area is proposed. This adder is designed especially for error tolerant application. Hence in the proposed adder, the overall area (cell count) and simulation time are reduced by 88 and 73 percent respectively. Various results of the proposed adder are shown and described.

Keywords: quantum cellular automata, carry look ahead adder, ripple carry adder, lossy application, majority gate, crossover

Procedia PDF Downloads 528
4828 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory

Authors: Damir Latypov

Abstract:

A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.

Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory

Procedia PDF Downloads 116
4827 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines

Authors: Mustafa Sahin, İlkay Yavrucuk

Abstract:

This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.

Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control

Procedia PDF Downloads 104
4826 Stern-Gerlach Force in Quantum Magnetic Field and Schrodinger's Cat

Authors: Mandip Singh

Abstract:

Quantum entanglement plays a fundamental role in our understanding of counter-intuitive aspects of quantum reality. If classical physics is an approximation of quantum physics, then quantum entanglement should persist at a macroscopic scale. In this paper, a thought experiment is presented where a free falling spin polarized Bose-Einstein condensate interacts with a quantum superimposed magnetic field of nonzero gradient. In contrast to the semiclassical Stern-Gerlach experiment, the magnetic field and the spin degrees of freedom both are considered to be quantum mechanical in a generalized scenario. As a consequence, a Bose-Einstein condensate can be prepared at distinct locations in space in a sense of quantum superposition. In addition, the generation of Schrodinger-cat like quantum states shall be presented.

Keywords: Schrodinger-cat quantum states, macroscopic entanglement, macroscopic quantum fields, foundations of quantum physics

Procedia PDF Downloads 155
4825 Science behind Quantum Teleportation

Authors: Ananya G., B. Varshitha, Shwetha S., Kavitha S. N., Praveen Kumar Gupta

Abstract:

Teleportation is the ability to travel by just reappearing at some other spot. Though teleportation has never been achieved, quantum teleportation is possible. Quantum teleportation is a process of transferring the quantum state of a particle onto another particle, under the circumstance that one does not get to know any information about the state in the process of transformation. This paper presents a brief overview of quantum teleportation, discussing the topics like Entanglement, EPR Paradox, Bell's Theorem, Qubits, elements for a successful teleport, some examples of advanced teleportation systems (also covers few ongoing experiments), applications (that includes quantum cryptography), and the current hurdles for future scientists interested in this field. Finally, major advantages and limitations to the existing teleportation theory are discussed.

Keywords: teleportation, quantum teleportation, quantum entanglement, qubits, EPR paradox, bell states, quantum particles, spooky action at a distance

Procedia PDF Downloads 83
4824 Aperiodic and Asymmetric Fibonacci Quasicrystals: Next Big Future in Quantum Computation

Authors: Jatindranath Gain, Madhumita DasSarkar, Sudakshina Kundu

Abstract:

Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. Topological quantum computation is concerned with two-dimensional many body systems that support excitations. Anyons are elementary building block of quantum computations. When anyons tunneling in a double-layer system can transition to an exotic non-Abelian state and produce Fibonacci anyons, which are powerful enough for universal topological quantum computation (TQC).Here the exotic behavior of Fibonacci Superlattice is studied by using analytical transfer matrix methods and hence Fibonacci anyons. This Fibonacci anyons can build a quantum computer which is very emerging and exciting field today’s in Nanophotonics and quantum computation.

Keywords: quantum computing, quasicrystals, Multiple Quantum wells (MQWs), transfer matrix method, fibonacci anyons, quantum hall effect, nanophotonics

Procedia PDF Downloads 345
4823 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: the linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure

Procedia PDF Downloads 261
4822 Quantum Entanglement and Thermalization in Superconducting Two-Qubit Systems

Authors: E. Karami, M. Bohloul, P. Najmadi

Abstract:

The superconducting system is a suitable system for quantum computers. Quantum entanglement is a fundamental phenomenon that is key to the power of quantum computers. Quantum entanglement has been studied in different superconducting systems. In this paper, we are investigating a superconducting two-qubit system as a macroscopic system. These systems include two coupled Quantronium circuits. We calculate quantum entanglement and thermalization for system evolution and compare them. We observe, thermalization and entanglement have different behavior, and equilibrium thermal state has maximum entanglement.

Keywords: macroscopic system, quantum entanglement, thermalization, superconducting system

Procedia PDF Downloads 122
4821 Reinforcement Learning the Born Rule from Photon Detection

Authors: Rodrigo S. Piera, Jailson Sales Ara´ujo, Gabriela B. Lemos, Matthew B. Weiss, John B. DeBrota, Gabriel H. Aguilar, Jacques L. Pienaar

Abstract:

The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3].

Keywords: quantum Bayesianism, quantum theory, quantum information, quantum measurement

Procedia PDF Downloads 48
4820 Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement

Authors: Yun Sun, Meng Xun, Jingtao Zhou, Ming Li, Qiang Kan, Zhi Jin, Xinyu Liu, Dexin Wu

Abstract:

Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time.

Keywords: vertical cavity surface emitting lasers, high speed modulation, optical interconnects, semiconductor lasers

Procedia PDF Downloads 88
4819 Classification of Sturm-Liouville Problems at Infinity

Authors: Kishor J. shinde

Abstract:

We determine the values of k and p such that the Sturm-Liouville differential operator τu=-(d^2 u)/(dx^2) + kx^p u is in limit point case or limit circle case at infinity. In particular it is shown that τ is in the limit point case when (i) for p=2 and ∀k, (ii) for ∀p and k=0, (iii) for all p and k>0, (iv) for 0≤p≤2 and k<0, (v) for p<0 and k<0. τ is in the limit circle case when (i) for p>2 and k<0.

Keywords: limit point case, limit circle case, Sturm-Liouville, infinity

Procedia PDF Downloads 333
4818 Contribution of Exchange-correlation Effects on Weakly Relativistic Plasma Expansion

Authors: Rachid Fermous, Rima Mebrek

Abstract:

Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamic multi-fluid equations, we investigated the expansion of dense plasma. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. It is shown that dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

Keywords: plasma expansion, quantum degeneracy, weakly relativistic, under-dense plasma

Procedia PDF Downloads 49
4817 Quantum Dots with Microwave Propagation in Future Quantum Internet Protocol for Mobile Telephony

Authors: A. B. R. Hazarika

Abstract:

In the present paper, Quantum dots of ZnS are used to study the faster microwave propagation in space and on earth which will be difficult to bypass as quantum key encryption-decryption is difficult to decode. The present study deals with Quantum internet protocol which is much faster, safer and secure in microwave propagation than the present Internet Protocol v6, which forms the aspect of our study. Assimilation of hardware, Quantum dots with Quantum protocol theory beautifies the aspect of the study. So far to author’s best knowledge, the study on mobile telephony with Quantum dots long-term evolution (QDLTE) has not been studied earlier, which forms the aspect of the study found that the Bitrate comes out to be 102.4 Gbps.

Keywords: encryption, decryption, internet protocol, microwave, mobile telephony, quantum key encryption, quantum dots

Procedia PDF Downloads 139
4816 Secure Optical Communication System Using Quantum Cryptography

Authors: Ehab AbdulRazzaq Hussein

Abstract:

Quantum cryptography (QC) is an emerging technology for secure key distribution with single-photon transmissions. In contrast to classical cryptographic schemes, the security of QC schemes is guaranteed by the fundamental laws of nature. Their security stems from the impossibility to distinguish non-orthogonal quantum states with certainty. A potential eavesdropper introduces errors in the transmissions, which can later be discovered by the legitimate participants of the communication. In this paper, the modeling approach is proposed for QC protocol BB84 using polarization coding. The single-photon system is assumed to be used in the designed models. Thus, Eve cannot use beam-splitting strategy to eavesdrop on the quantum channel transmission. The only eavesdropping strategy possible to Eve is the intercept/resend strategy. After quantum transmission of the QC protocol, the quantum bit error rate (QBER) is estimated and compared with a threshold value. If it is above this value the procedure must be stopped and performed later again.

Keywords: security, key distribution, cryptography, quantum protocols, Quantum Cryptography (QC), Quantum Key Distribution (QKD).

Procedia PDF Downloads 371
4815 Using Wavelet Uncertainty Relations in Quantum Mechanics: From Trajectories Foam to Newtonian Determinism

Authors: Paulo Castro, J. R. Croca, M. Gatta, R. Moreira

Abstract:

Owing to the development of quantum mechanics, we will contextualize the foundations of the theory on the Fourier analysis framework, thus stating the unavoidable philosophical conclusions drawn by Niels Bohr. We will then introduce an alternative way of describing the undulatory aspects of quantum entities by using gaussian Morlet wavelets. The description has its roots in de Broglie's realistic program for quantum physics. It so happens that using wavelets it is possible to formulate a more general set of uncertainty relations. A set from which it is possible to theoretically describe both ends of the behavioral spectrum in reality: the indeterministic quantum trajectorial foam and the perfectly drawn Newtonian trajectories.

Keywords: philosophy of quantum mechanics, quantum realism, morlet wavelets, uncertainty relations, determinism

Procedia PDF Downloads 129
4814 Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers

Authors: Nivedha Rajaram

Abstract:

Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers.

Keywords: quantum computing, hybrid quantum solver, DWave annealing, network knowledge graph

Procedia PDF Downloads 86
4813 Effect of Wetting Layer on the Energy Spectrum of One-Electron Non-Uniform Quantum Ring

Authors: F. A. Rodríguez-Prada, W Gutierrez, I. D. Mikhailov

Abstract:

We study the spectral properties of one-electron non-uniform crater-shaped quantum dot whose thickness is increased linearly with different slopes in different radial directions between the central hole and the outer border and which is deposited over thin wetting layer in the presence of the external vertically directed magnetic field. We show that in the adiabatic limit, when the crater thickness is much smaller than its lateral dimension, the one-particle wave functions of the electron confined in such structure in the zero magnetic field case can be found exactly in an analytical form and they can be used subsequently as the base functions in framework of the exact diagonalization method to study the effect of the wetting layer and an external magnetic field applied along of the grown axis on energy levels of one-electron non-uniform quantum dot. It is shown that both the structural non-uniformity and the increase of the thickness of the wetting layer provide a quenching of the Aharonov-Bohm oscillations of the lower energy levels.

Keywords: electronic properties, quantum rings, volcano shaped, wetting layer

Procedia PDF Downloads 363
4812 Quantum Entangled States and Image Processing

Authors: Sanjay Singh, Sushil Kumar, Rashmi Jain

Abstract:

Quantum registering is another pattern in computational hypothesis and a quantum mechanical framework has a few helpful properties like Entanglement. We plan to store data concerning the structure and substance of a basic picture in a quantum framework. Consider a variety of n qubits which we propose to use as our memory stockpiling. In recent years classical processing is switched to quantum image processing. Quantum image processing is an elegant approach to overcome the problems of its classical counter parts. Image storage, retrieval and its processing on quantum machines is an emerging area. Although quantum machines do not exist in physical reality but theoretical algorithms developed based on quantum entangled states gives new insights to process the classical images in quantum domain. Here in the present work, we give the brief overview, such that how entangled states can be useful for quantum image storage and retrieval. We discuss the properties of tripartite Greenberger-Horne-Zeilinger and W states and their usefulness to store the shapes which may consist three vertices. We also propose the techniques to store shapes having more than three vertices.

Keywords: Greenberger-Horne-Zeilinger, image storage and retrieval, quantum entanglement, W states

Procedia PDF Downloads 274