Search results for: practical approach to reducing insecurity
15888 Towards a Robust Patch Based Multi-View Stereo Technique for Textureless and Occluded 3D Reconstruction
Authors: Ben Haines, Li Bai
Abstract:
Patch based reconstruction methods have been and still are one of the top performing approaches to 3D reconstruction to date. Their local approach to refining the position and orientation of a patch, free of global minimisation and independent of surface smoothness, make patch based methods extremely powerful in recovering fine grained detail of an objects surface. However, patch based approaches still fail to faithfully reconstruct textureless or highly occluded surface regions thus though performing well under lab conditions, deteriorate in industrial or real world situations. They are also computationally expensive. Current patch based methods generate point clouds with holes in texturesless or occluded regions that require expensive energy minimisation techniques to fill and interpolate a high fidelity reconstruction. Such shortcomings hinder the adaptation of the methods for industrial applications where object surfaces are often highly textureless and the speed of reconstruction is an important factor. This paper presents on-going work towards a multi-resolution approach to address the problems, utilizing particle swarm optimisation to reconstruct high fidelity geometry, and increasing robustness to textureless features through an adapted approach to the normalised cross correlation. The work also aims to speed up the reconstruction using advances in GPU technologies and remove the need for costly initialization and expansion. Through the combination of these enhancements, it is the intention of this work to create denser patch clouds even in textureless regions within a reasonable time. Initial results show the potential of such an approach to construct denser point clouds with a comparable accuracy to that of the current top-performing algorithms.Keywords: 3D reconstruction, multiview stereo, particle swarm optimisation, photo consistency
Procedia PDF Downloads 20315887 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S
Authors: Mohammad Javad Mollakazemi, Farhad Asadi
Abstract:
In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, safety margin
Procedia PDF Downloads 44315886 An Online Priority-Configuration Algorithm for Obstacle Avoidance of the Unmanned Air Vehicles Swarm
Authors: Lihua Zhu, Jianfeng Du, Yu Wang, Zhiqiang Wu
Abstract:
Collision avoidance problems of a swarm of unmanned air vehicles (UAVs) flying in an obstacle-laden environment are investigated in this paper. Given that the UAV swarm needs to adapt to the obstacle distribution in dynamic operation, a priority configuration is designed to guide the UAVs to pass through the obstacles in turn. Based on the collision cone approach and the prediction of the collision time, a collision evaluation model is established to judge the urgency of the imminent collision of each UAV, and the evaluation result is used to assign the priority of each UAV to further instruct them going through the obstacles in descending order. At last, the simulation results provide the promising validation in terms of the efficiency and scalability of the proposed approach.Keywords: UAV swarm, collision avoidance, complex environment, online priority design
Procedia PDF Downloads 21415885 Fuzzy Linear Programming Approach for Determining the Production Amounts in Food Industry
Abstract:
In recent years, rapid and correct decision making is crucial for both people and enterprises. However, uncertainty makes decision-making difficult. Fuzzy logic is used for coping with this situation. Thus, fuzzy linear programming models are developed in order to handle uncertainty in objective function and the constraints. In this study, a problem of a factory in food industry is investigated, required data is obtained and the problem is figured out as a fuzzy linear programming model. The model is solved using Zimmerman approach which is one of the approaches for fuzzy linear programming. As a result, the solution gives the amount of production for each product type in order to gain maximum profit.Keywords: food industry, fuzzy linear programming, fuzzy logic, linear programming
Procedia PDF Downloads 65015884 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection
Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman
Abstract:
The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture
Procedia PDF Downloads 58315883 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 17015882 Green Housing Projects in Egypt: A Futuristic Approach
Authors: Shimaa Mahmoud Ali Ahmed, Boshra Tawfek El-Shreef
Abstract:
Sustainable development has become an important concern worldwide, and climate change has become a global threat. Some of these affect how we approach environmental issues — and how we should approach them. Environmental aspects have an important impact on the built environment, that’s why knowledge about Green Building and Green Construction become a vital dimension of urban sustainable development to face the challenges of climate change. There are several levels of green buildings, from energy-efficient lighting to 100% eco-friendly construction; the concept of green buildings in Egypt is still a rare occurrence, with the concept being relatively new to the market. There are several projects on the ground that currently employing sustainable and green solutions to some extent, some of them achieve a limit of success and others fail to employ the new solutions. The market and the cost as well, are great factors. From the last century, green architecture and environmental sustainability become a famous trend that all the researchers like to follow. Nowadays, the trend towards green has shifted to housing and real estate projects. While the environmental aspects are the key to achieve green buildings, the economic benefits, and the market forces are considered as big challenges. The paper assumes that some appropriate environmental treatments could be added to the applied prototype of the governmental social housing projects in Egypt to achieve better environmental solutions. The aim of the research is to get housing projects in Egypt closer to the track of sustainable and green buildings, through making a local future proposal to be integrated into the current policies. The proposed model is based upon adding some appropriate, cheap environmental modifications to the prototype of the Ministry of Housing, Infrastructure, and New Urban Communities. The research is based on an analytical, comparative analytical, and inductive approach to study and analyze the housing projects in Egypt and the possibilities of integrating green techniques into it.Keywords: green buildings, urban sustainability, housing projects, sustainable development goals, Egypt 2030
Procedia PDF Downloads 13715881 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 16915880 Sustainable Treatment of Vegetable Oil Industry Wastewaters by Xanthomonas campestris
Authors: Bojana Ž. Bajić, Siniša N. Dodić, Vladimir S. Puškaš, Jelena M. Dodić
Abstract:
Increasing industrialization as a response to the demands of the consumer society greatly exploits resources and generates large amounts of waste effluents in addition to the desired product. This means it is a priority to implement technologies with the maximum utilization of raw materials and energy, minimum generation of waste effluents and/or their recycling (secondary use). Considering the process conditions and the nature of the raw materials used by the vegetable oil industry, its wastewaters can be used as substrates for the biotechnological production which requires large amounts of water. This way the waste effluents of one branch of industry become raw materials for another branch which produces a new product while reducing wastewater pollution and thereby reducing negative environmental impacts. Vegetable oil production generates wastewaters during the process of rinsing oils and fats which contain mainly fatty acid pollutants. The vegetable oil industry generates large amounts of waste effluents, especially in the processes of degumming, deacidification, deodorization and neutralization. Wastewaters from the vegetable oil industry are generated during the whole year in significant amounts, based on the capacity of the vegetable oil production. There are no known alternative applications for these wastewaters as raw materials for the production of marketable products. Since the literature has no data on the potential negative impact of fatty acids on the metabolism of the bacterium Xanthomonas campestris, these wastewaters were considered as potential raw materials for the biotechnological production of xanthan. In this research, vegetable oil industry wastewaters were used as the basis for the cultivation media for xanthan production with Xanthomonas campestris ATCC 13951. Examining the process of biosynthesis of xanthan on vegetable oil industry wastewaters as the basis for the cultivation media was performed to obtain insight into the possibility of its use in the aforementioned biotechnological process. Additionally, it was important to experimentally determine the absence of substances that have an inhibitory effect on the metabolism of the production microorganism. Xanthan content, rheological parameters of the cultivation media, carbon conversion into xanthan and conversions of the most significant nutrients for biosynthesis (carbon, nitrogen and phosphorus sources) were determined as indicators of the success of biosynthesis. The obtained results show that biotechnological production of the biopolymer xanthan by bacterium Xanthomonas campestris on vegetable oil industry wastewaters based cultivation media simultaneously provides preservation of the environment and economic benefits which is a sustainable solution to the problem of wastewater treatment.Keywords: biotechnology, sustainable bioprocess, vegetable oil industry wastewaters, Xanthomonas campestris
Procedia PDF Downloads 15015879 Virtual Reference Service as a Space for Communication and Interaction: Providing Infrastructure for Learning in Times of Crisis at Uppsala University
Authors: Nadja Ylvestedt
Abstract:
Uppsala University Library is a geographically dispersed research library consisting of nine subject libraries located in different campus areas throughout the city of Uppsala. Despite the geographical dispersion, it is the library's ambition to be perceived as a cohesive library with consistently high service and quality. A key factor to being one cohesive library is the library's online services, especially the virtual reference service. E-mail, chat and phone are answered by a team of specially trained staff under the supervision of a team leader. When covid-19 hit, well-established routines and processes to provide an infrastructure for students and researchers at the university changed radically. The strong connection between services provided at the library locations as well as at the VRS has been one of the key components of the library’s success in providing patrons with the help they need. With radically minimized availability at the physical locations, the infrastructure was at risk of collapsing. Objectives:- The objective of this project has been to evaluate the consequences of the sudden change in the organization of the library. The focus of this evaluation is the library’s VRS as an important space for learning, interaction and communication between the library and the community when other traditional spaces were not available. The goal of this evaluation is to capture the lessons learned from providing infrastructure for learning and research in times of crisis both on a practical, user-centered level but also to stress the importance of leadership in ever-changing environments that supports and creates agile, flexible services and teams instead of rigid processes adhering to obsolete goals. Results:- Reduced availability at the physical library locations was one of the strategies to prevent the spread of the covid-19 virus. The library staff was encouraged to work from home, so student workers staffed the library’s physical locations during that time, leaving the VRS to be the only place where patrons could get expert help. The VRS had an increase of 65% of questions asked between spring term 2019 and spring term 2020. The VRS team had to navigate often complicated and fast-changing new routines depending on national guidelines. The VRS team has a strong emphasis on agility in their approach to the challenges and opportunities, with methods to evaluate decisions regularly with user experience in mind. Fast decision-making, collecting feedback, an open-minded approach to reviewing rules and processes with both a short-term and a long-term focus and providing a healthy work environment have been key factors in managing this crisis and learn from it. This was resting on a strong sense of ownership regarding the VRS, well-working communication tools and agile and active communication between team members, as well as between the team and the rest of the organization who served as a second-line support system to aid the VRS team. Moving forward, the VRS has become an important space for communication, interaction and provider of infrastructure, implementing new routines and more extensive availability due to the lessons learned during crisis. The evaluation shows that the virtual environment has become an important addition to the physical spaces, existing in its own right but always in connection with and in relationship with the library structure as a whole. Thereby showing that the basis of human interaction stays the same while its form morphs and adapts to changes, thus leaving the virtual environment as a space of communication and infrastructure with unique opportunities for outreach and the potential to become a staple in patron’s education and learning.Keywords: virtual reference service, leadership, digital infrastructure, research library
Procedia PDF Downloads 17115878 Robust Noisy Speech Identification Using Frame Classifier Derived Features
Authors: Punnoose A. K.
Abstract:
This paper presents an approach for identifying noisy speech recording using a multi-layer perception (MLP) trained to predict phonemes from acoustic features. Characteristics of the MLP posteriors are explored for clean speech and noisy speech at the frame level. Appropriate density functions are used to fit the softmax probability of the clean and noisy speech. A function that takes into account the ratio of the softmax probability density of noisy speech to clean speech is formulated. These phoneme independent scoring is weighted using a phoneme-specific weightage to make the scoring more robust. Simple thresholding is used to identify the noisy speech recording from the clean speech recordings. The approach is benchmarked on standard databases, with a focus on precision.Keywords: noisy speech identification, speech pre-processing, noise robustness, feature engineering
Procedia PDF Downloads 12715877 Analyzing Tensile Strength in Different Composites at High Temperatures: Insights from 761 Tests
Authors: Milad Abolfazli, Milad Bazli
Abstract:
In this critical review, the topic of how composites maintain their tensile strength when exposed to elevated temperatures will be studied. A comprehensive database of 761 tests have been analyzed and closely examined to study the various factors that affect the strength retention. Conclusions are drawn from the collective research efforts of numerous scholars who have investigated this subject. Through the analysis of these tests, the relationships between the tensile strength retention and various effective factors are investigated. This review is meant to be a practical resource for researchers and engineers. It provides valuable information that can guide the development of composites tailored for high-temperature applications. By offering a deeper understanding of how composites behave in extreme heat, the paper contributes to the advancement of materials science and engineering.Keywords: tesnile tests, high temperatures, FRP composites, mechanical perfomance
Procedia PDF Downloads 7115876 A Firefly Based Optimization Technique for Optimal Planning of Voltage Controlled Distributed Generators
Authors: M. M. Othman, Walid El-Khattam, Y. G. Hegazy, A. Y. Abdelaziz
Abstract:
This paper presents a method for finding the optimal location and capacity of dispatchable DGs connected to the distribution feeders for optimal planning for a specified power loss without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37-nodes feeder. The results that are validated by comparing it with results obtained from other competing methods show the effectiveness, accuracy and speed of the proposed method.Keywords: distributed generators, firefly technique, optimization, power loss
Procedia PDF Downloads 53315875 System Devices to Reduce Particulate Matter Concentrations in Railway Metro Systems
Authors: Armando Cartenì
Abstract:
Within the design of sustainable transportation engineering, the problem of reducing particulate matter (PM) concentrations in railways metro system was not much discussed. It is well known that PM levels in railways metro system are mainly produced by mechanical friction at the rail-wheel-brake interactions and by the PM re-suspension caused by the turbulence generated by the train passage, which causes dangerous problems for passenger health. Starting from these considerations, the aim of this research was twofold: i) to investigate the particulate matter concentrations in a ‘traditional’ railways metro system; ii) to investigate the particulate matter concentrations of a ‘high quality’ metro system equipped with design devices useful for reducing PM concentrations: platform screen doors, rubber-tyred and an advanced ventilation system. Two measurement surveys were performed: one in the ‘traditional’ metro system of Naples (Italy) and onother in the ‘high quality’ rubber-tyred metro system of Turin (Italy). Experimental results regarding the ‘traditional’ metro system of Naples, show that the average PM10 concentrations measured in the underground station platforms are very high and range between 172 and 262 µg/m3 whilst the average PM2,5 concentrations range between 45 and 60 µg/m3, with dangerous problems for passenger health. By contrast the measurements results regarding the ‘high quality’ metro system of Turin show that: i) the average PM10 (PM2.5) concentrations measured in the underground station platform is 22.7 µg/m3 (16.0 µg/m3) with a standard deviation of 9.6 µg/m3 (7.6 µg/m3); ii) the indoor concentrations (both for PM10 and for PM2.5) are statistically lower from those measured in outdoors (with a ratio equal to 0.9-0.8), meaning that the indoor air quality is greater than those in urban ambient; iii) that PM concentrations in underground stations are correlated to the trains passage; iv) the inside trains concentrations (both for PM10 and for PM2.5) are statistically lower from those measured at station platform (with a ratio equal to 0.7-0.8), meaning that inside trains the use of air conditioning system could promote a greater circulation that clean the air. The comparison among the two case studies allow to conclude that the metro system designed with PM reduction devices allow to reduce PM concentration up to 11 times against a ‘traditional’ one. From these results, it is possible to conclude that PM concentrations measured in a ‘high quality’ metro system are significantly lower than the ones measured in a ‘traditional’ railway metro systems. This result allows possessing the bases for the design of useful devices for retrofitting metro systems all around the world.Keywords: air quality, pollutant emission, quality in public transport, underground railway, external cost reduction, transportation planning
Procedia PDF Downloads 21015874 Artificial Intelligence in Ethiopian Universities: The Influence of Technological Readiness, Acceptance, Perceived Risk, and Trust on Implementation - An Integrative Research Approach
Authors: Merih Welay Welesilassie
Abstract:
Understanding educators' readiness to incorporate AI tools into their teaching methods requires comprehensively examining the influencing factors. This understanding is crucial, given the potential of these technologies to personalise learning experiences, improve instructional effectiveness, and foster innovative pedagogical approaches. This study evaluated factors affecting teachers' adoption of AI tools in their English language instruction by extending the Technology Acceptance Model (TAM) to encompass digital readiness support, perceived risk, and trust. A cross-sectional quantitative survey was conducted with 128 English language teachers, supplemented by qualitative data collection from 15 English teachers. The structural mode analysis indicated that implementing AI tools in Ethiopian higher education was notably influenced by digital readiness support, perceived ease of use, perceived usefulness, perceived risk, and trust. Digital readiness support positively impacted perceived ease of use, usefulness, and trust while reducing safety and privacy risks. Perceived ease of use positively correlated with perceived usefulness but negatively influenced trust. Furthermore, perceived usefulness strengthened trust in AI tools, while perceived safety and privacy risks significantly undermined trust. Trust was crucial in increasing educators' willingness to adopt AI technologies. The qualitative analysis revealed that the teachers exhibited strong content and pedagogical knowledge but needed more technology-related knowledge. Moreover, It was found that the teachers did not utilise digital tools to teach English. The study identified several obstacles to incorporating digital tools into English lessons, such as insufficient digital infrastructure, a shortage of educational resources, inadequate professional development opportunities, and challenging policies and governance. The findings provide valuable guidance for educators, inform policymakers about creating supportive digital environments, and offer a foundation for further investigation into technology adoption in educational settings in Ethiopia and similar contexts.Keywords: digital readiness support, AI acceptance, risk, trust
Procedia PDF Downloads 1515873 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 10415872 Contemplation of Thermal Characteristics by Filling Ratio of Aluminium Oxide Nano Fluid in Wire Mesh Heat Pipe
Authors: D. Mala, S. Sendhilnathan, D. Ratchagaraja
Abstract:
In this paper, the performance of heat pipe in terms of overall heat transfer coefficient and thermal resistance is quantified by varying the volume of working fluid and the performance parameters are contemplated. For this purpose Al2O3 nano particles with a density of 9.8 gm/cm3 and a volume concentration of 1% is used as the working fluid in experimental heat pipe. The performance of heat pipe was evaluated by conducting experiments with different thermal loads and different angle of inclinations. Thermocouples are used to record the temperature distribution across the experiment. The results provide evidence that the suspension of Al2O3 nano particles in the base fluid increases the thermal efficiency of heat pipe and can be used in practical heat exchange applications.Keywords: heat pipe, angle of inclination, thermal resistance, thermal efficiency
Procedia PDF Downloads 56215871 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants
Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver
Abstract:
This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants
Procedia PDF Downloads 35215870 Network Based Speed Synchronization Control for Multi-Motor via Consensus Theory
Authors: Liqin Zhang, Liang Yan
Abstract:
This paper addresses the speed synchronization control problem for a network-based multi-motor system from the perspective of cluster consensus theory. Each motor is considered as a single agent connected through fixed and undirected network. This paper presents an improved control protocol from three aspects. First, for the purpose of improving both tracking and synchronization performance, this paper presents a distributed leader-following method. The improved control protocol takes the importance of each motor’s speed into consideration, and all motors are divided into different groups according to speed weights. Specifically, by using control parameters optimization, the synchronization error and tracking error can be regulated and decoupled to some extent. The simulation results demonstrate the effectiveness and superiority of the proposed strategy. In practical engineering, the simplified models are unrealistic, such as single-integrator and double-integrator. And previous algorithms require the acceleration information of the leader available to all followers if the leader has a varying velocity, which is also difficult to realize. Therefore, the method focuses on an observer-based variable structure algorithm for consensus tracking, which gets rid of the leader acceleration. The presented scheme optimizes synchronization performance, as well as provides satisfactory robustness. What’s more, the existing algorithms can obtain a stable synchronous system; however, the obtained stable system may encounter some disturbances that may destroy the synchronization. Focus on this challenging technological problem, a state-dependent-switching approach is introduced. In the presence of unmeasured angular speed and unknown failures, this paper investigates a distributed fault-tolerant consensus tracking algorithm for a group non-identical motors. The failures are modeled by nonlinear functions, and the sliding mode observer is designed to estimate the angular speed and nonlinear failures. The convergence and stability of the given multi-motor system are proved. Simulation results have shown that all followers asymptotically converge to a consistent state when one follower fails to follow the virtual leader during a large enough disturbance, which illustrates the good performance of synchronization control accuracy.Keywords: consensus control, distributed follow, fault-tolerant control, multi-motor system, speed synchronization
Procedia PDF Downloads 12515869 Implications of Circular Economy on Users Data Privacy: A Case Study on Android Smartphones Second-Hand Market
Authors: Mariia Khramova, Sergio Martinez, Duc Nguyen
Abstract:
Modern electronic devices, particularly smartphones, are characterised by extremely high environmental footprint and short product lifecycle. Every year manufacturers release new models with even more superior performance, which pushes the customers towards new purchases. As a result, millions of devices are being accumulated in the urban mine. To tackle these challenges the concept of circular economy has been introduced to promote repair, reuse and recycle of electronics. In this case, electronic devices, that previously ended up in landfills or households, are getting the second life, therefore, reducing the demand for new raw materials. Smartphone reuse is gradually gaining wider adoption partly due to the price increase of flagship models, consequently, boosting circular economy implementation. However, along with reuse of communication device, circular economy approach needs to ensure the data of the previous user have not been 'reused' together with a device. This is especially important since modern smartphones are comparable with computers in terms of performance and amount of data stored. These data vary from pictures, videos, call logs to social security numbers, passport and credit card details, from personal information to corporate confidential data. To assess how well the data privacy requirements are followed on smartphones second-hand market, a sample of 100 Android smartphones has been purchased from IT Asset Disposition (ITAD) facilities responsible for data erasure and resell. Although devices should not have stored any user data by the time they leave ITAD, it has been possible to retrieve the data from 19% of the sample. Applied techniques varied from manual device inspection to sophisticated equipment and tools. These findings indicate significant barrier in implementation of circular economy and a limitation of smartphone reuse. Therefore, in order to motivate the users to donate or sell their old devices and make electronic use more sustainable, data privacy on second-hand smartphone market should be significantly improved. Presented research has been carried out in the framework of sustainablySMART project, which is part of Horizon 2020 EU Framework Programme for Research and Innovation.Keywords: android, circular economy, data privacy, second-hand phones
Procedia PDF Downloads 12815868 The Thoughts and Feelings Associated with Goal Achievement
Authors: Lindsay Foreman
Abstract:
Introduction: Goals have become synonymous with the quest for the good life and the pursuit of happiness, with coaching and positive psychology gaining popularity as an approach in recent decades. And yet mental health is on the rise and the leading cause of disability, wellbeing is on the decline, stress is leading to 50-60% of workday absences and the need for action is indisputable and urgent. Purpose: The purpose of this study is to better understand two things we cannot see, but that play the most significant role in these outcomes - what we think and how we feel. With many working on the assumption that positive thinking and an optimistic outlook are necessary or valuable components of goal pursuit, this study uncovers the reality of the ‘inner-game’ from the coachee's perspective. Method: With a mixed methods design using a Q Method study of subjectivity to ‘make the unseen seen’. First, a wide-ranging universe of subjective thoughts and feelings experienced during goal pursuit are explored. These are generated from literature and a Qualtrics survey to create a Q-Set of 40 statements. Then 19 participants in professional and organisational settings offer their perspectives on these 40 Q-Set statements. Each rank them in a semi-forced distribution from ‘most like me’ to ‘least like me’ using Q-Sort software. From these individual perspectives, clusters of perspectives are identified using factor analysis and four distinct viewpoints have emerged. Findings: These Goal Pursuit Viewpoints offer insight into the states and self-talk experienced by coachees and may not reflect the assumption of positive thinking associated with achieving goals. The four Viewpoints are 1) the Optimistic View, 2) the Realistic View 3) The Dreamer View and 4) The Conflicted View. With only a quarter of the Dreamer View, and a third of the Optimistic view going on to achieve their goals, these assumptions need review. And with all the Realistic Views going on to achieve their goals, the role of self-doubt, overwhelm and anxiousness in goal achievement cannot be overlooked. Contribution: This study offers greater insight and understanding of people's inner experiences as they pursue goals and highlights the necessary and normal negative states associated with goal achievement. It also offers a practical tool of the Q-set statements to help coaches and coachees explore the current state and help navigate the journey towards goal achievement. It calls into question whether goals should always be part of coaching and if values, identity, and purpose may play a greater role than goals.Keywords: coaching, goals, positive psychology, mindset, leadership, mental health, beliefs, cognition, emotional intelligence
Procedia PDF Downloads 11315867 Dynamic Pricing With Demand Response Managment in Smart Grid: Stackelberg Game Approach
Authors: Hasibe Berfu Demi̇r, Şakir Esnaf
Abstract:
In the past decade, extensive improvements have been done in electrical grid infrastructures. It is very important to make plans on supply, demand, transmission, distribution and pricing for the development of the electricity energy sector. Based on this perspective, in this study, Stackelberg game approach is proposed for demand participation management (DRM), which has become an important component in the smart grid to effectively reduce power generation costs and user bills. The purpose of this study is to examine electricity consumption from a dynamic pricing perspective. The results obtained were compared with the current situation and the results were interpreted.Keywords: lectricity, stackelberg, smart grid, demand response managment, dynamic pricing
Procedia PDF Downloads 9815866 Universal Screening for GBS and Efficacy of GBS Intrapartum Antibiotic Prophylaxis [IAP] an Al Rahba Experience
Authors: Ritu Nambiar, Shazia Tariq, Sumaira Jamil, Farida Munawar, Imelda Israell
Abstract:
GBS has emerged as a leading cause of neonatal infections worldwide and clinical trials have demonstrated that giving IAP was effective in reducing early onset GBS (EOGBS) disease of the newborn. There is no available data on the prevalence of GBS in the UAE, therefore, a retrospective chart analysis of our parturients were done to look at our prevalence. The aim of this study is: 1. To study the prevalence of GBS colonization of parturients at al Rahba Hospital following universal screening between 35-37 week. 2. To look at efficacy of GBS intrapartum antibiotic prophylaxis by NICU admission for EO GBS disease of the newborn. 1) The prevalence of GBS in our patient population is 24.15%. 2) Incidence of EO GBS disease of the newborn was 0.6%.Keywords: GBS Screening, universal intrapartum antibiotic prophylaxis, parturients, newborn
Procedia PDF Downloads 39915865 Applications of Building Information Modeling (BIM) in Knowledge Sharing and Management in Construction
Authors: Shu-Hui Jan, Shih-Ping Ho, Hui-Ping Tserng
Abstract:
Construction knowledge can be referred to and reused among involved project managers and job-site engineers to alleviate problems on a construction job-site and reduce the time and cost of solving problems related to constructability. This paper proposes a new methodology to provide sharing of construction knowledge by using the Building Information Modeling (BIM) approach. The main characteristics of BIM include illustrating 3D CAD-based presentations and keeping information in a digital format, and facilitation of easy updating and transfer of information in the 3D BIM environment. Using the BIM approach, project managers and engineers can gain knowledge related to 3D BIM and obtain feedback provided by job-site engineers for future reference. This study addresses the application of knowledge sharing management in the construction phase of construction projects and proposes a BIM-based Knowledge Sharing Management (BIMKSM) system for project managers and engineers. The BIMKSM system is then applied in a selected case study of a construction project in Taiwan to verify the proposed methodology and demonstrate the effectiveness of sharing knowledge in the BIM environment. The combined results demonstrate that the BIMKSM system can be used as a visual BIM-based knowledge sharing management platform by utilizing the BIM approach and web technology.Keywords: construction knowledge management, building information modeling, project management, web-based information system
Procedia PDF Downloads 35215864 The Learning Impact of a 4-Dimensional Digital Construction Learning Environment
Authors: Chris Landorf, Stephen Ward
Abstract:
This paper addresses a virtual environment approach to work integrated learning for students in construction-related disciplines. The virtual approach provides a safe and pedagogically rigorous environment where students can apply theoretical knowledge in a simulated real-world context. The paper describes the development of a 4-dimensional digital construction environment and associated learning activities funded by the Australian Office for Learning and Teaching. The environment was trialled with over 1,300 students and evaluated through questionnaires, observational studies and coursework analysis. Results demonstrate a positive impact on students’ technical learning and collaboration skills, but there is need for further research in relation to critical thinking skills and work-readiness.Keywords: architectural education, construction industry, digital learning environments, immersive learning
Procedia PDF Downloads 41115863 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 29215862 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks
Authors: Zongyan Li, Matt Best
Abstract:
This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation
Procedia PDF Downloads 37215861 Secure Bio Semantic Computing Scheme
Authors: Hiroshi Yamaguchi, Phillip C. Y. Sheu, Ryo Fujita, Shigeo Tsujii
Abstract:
In this paper, the secure BioSemantic Scheme is presented to bridge biological/biomedical research problems and computational solutions via semantic computing. Due to the diversity of problems in various research fields, the semantic capability description language (SCDL) plays and important role as a common language and generic form for problem formalization. SCDL is expected the essential for future semantic and logical computing in Biosemantic field. We show several example to Biomedical problems in this paper. Moreover, in the coming age of cloud computing, the security problem is considered to be crucial issue and we presented a practical scheme to cope with this problem.Keywords: biomedical applications, private information retrieval (PIR), semantic capability description language (SCDL), semantic computing
Procedia PDF Downloads 39015860 An Integrated DEMATEL-QFD Model for Medical Supplier Selection
Authors: Mehtap Dursun, Zeynep Şener
Abstract:
Supplier selection is considered as one of the most critical issues encountered by operations and purchasing managers to sharpen the company’s competitive advantage. In this paper, a novel fuzzy multi-criteria group decision making approach integrating quality function deployment (QFD) and decision making trial and evaluation laboratory (DEMATEL) method is proposed for supplier selection. The proposed methodology enables to consider the impacts of inner dependence among supplier assessment criteria. A house of quality (HOQ) which translates purchased product features into supplier assessment criteria is built using the weights obtained by DEMATEL approach to determine the desired levels of supplier assessment criteria. Supplier alternatives are ranked by a distance-based method.Keywords: DEMATEL, group decision making, QFD, supplier selection
Procedia PDF Downloads 43615859 Quality and Coverage Assessment in Software Integration Based On Mutation Testing
Authors: Iyad Alazzam, Kenneth Magel, Izzat Alsmadi
Abstract:
The different activities and approaches in software testing try to find the most possible number of errors or failures with the least amount of possible effort. Mutation is a testing approach that is used to discover possible errors in tested applications. This is accomplished through changing one aspect of the software from its original and writes test cases to detect such change or mutation. In this paper, we present a mutation approach for testing software components integration aspects. Several mutation operations related to components integration are described and evaluated. A test case study of several open source code projects is collected. Proposed mutation operators are applied and evaluated. Results showed some insights and information that can help testing activities in detecting errors and improving coverage.Keywords: software testing, integration testing, mutation, coverage, software design
Procedia PDF Downloads 427