Search results for: computer anxiety
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3276

Search results for: computer anxiety

156 Phylogenetic Analysis of Georgian Populations of Potato Cyst Nematodes Globodera Rostochiensis

Authors: Dali Gaganidze, Ekaterine Abashidze

Abstract:

Potato is one of the main agricultural crops in Georgia. Georgia produces early and late potato varieties in almost all regions. In traditional potato growing regions (Svaneti, Samckhet javaheti and Tsalka), the yield is higher than 30-35 t/ha. Among the plant pests that limit potato production and quality, the potato cyst nematodes (PCN) are harmful around the world. Yield losses caused by PCN are estimated up to 30%. Rout surveys conducted in two geographically distinct regions of Georgia producing potatoes - Samtskhe - Javakheti and Svaneti revealed potato cyst nematode Globodera rostochiensi. The aim of the study was the Phylogenetic analyses of Globodera rostochiensi revealed in Georgia by the amplification and sequencing of 28S gen in the D3 region and intergenic ITS1-15.8S-ITS2 region. Identification of all the samples from the two Globodera populations (Samtskhe - Javakheti and Svaneti), i.e., G. rostochiensis (20 isolates) were confirmed by conventional multiplex PCR with ITS 5 universal and PITSp4, PITSr3 specific primers of the cyst nematodes’ (G. pallida, G. rostochiensis). The size of PCR fragment 434 bp confirms that PCN samples from two populations, Samtskhe- Javakheti and Svaneti, belong to G. rostochiensi . The ITS1–5.8S-ITS2 regions were amplified using prime pairs: rDNA1 ( 5’ -TTGATTACGTCCCTGCCCTTT-3’ and rDNA2( 5’ TTTCACTCGCCGTTACTAAGG-3’), D3 expansion regions were amplified using primer pairs: D3A (5’ GACCCCTCTTGAAACACGGA-3’) and D3B (5’-TCGGAAGGAACCAGCTACTA-3’. PCR products of each region were cleaned up and sequenced using an ABI 3500xL Genetic Analyzer. Obtained sequencing results were analyzed by computer program BLASTN (https://blast.ncbi.nlm.nih.gov/Blast.cg). Phylogenetic analyses to resolve the relationships between the isolates were conducted in MEGA7 using both distance- and character-based methods. Based on analysis of G.rostochiensis isolate`s D3 expansion regions are grouped in three major clades (A, B and C) on the phylogenetic tree. Clade A is divided into three subclades; clade C is divided into two subclades. Isolates from the Samtckhet-javakheti population are in subclade 1 of clade A and isolates in subclade 1 of clade C. Isolates) from Svaneti populations are in subclade 2 of clade A and in clad B. In Clade C, subclade two is presented by three isolates from Svaneti and by one isolate (GL17) from Samckhet-Javakheti. . Based on analysis of G.rostochiensis isolate`s ITS1–5.8S-ITS2 regions are grouped in two main clades, the first contained 20 Georgian isolates of Globodera rostochiensis from Svaneti . The second clade contained 15 isolates of Globodera rostochiensis from Samckhet javakheti. Our investigation showed of high genetic variation of D3 and ITS1–5.8S-ITS2 region of rDNA of the isolates of G. rostochiensis from different geographic origins (Svameti, Samckhet-Javakheti) of Georgia. Acknowledgement: The research has been supported by the Shota Rustaveli National Scientific Foundation of Georgia : Project # FR17_235

Keywords: globodera rostochiensi, PCR, phylogenetic tree, sequencing

Procedia PDF Downloads 195
155 Investigation of a Technology Enabled Model of Home Care: the eShift Model of Palliative Care

Authors: L. Donelle, S. Regan, R. Booth, M. Kerr, J. McMurray, D. Fitzsimmons

Abstract:

Palliative home health care provision within the Canadian context is challenged by: (i) a shortage of registered nurses (RN) and RNs with palliative care expertise, (ii) an aging population, (iii) reliance on unpaid family caregivers to sustain home care services with limited support to conduct this ‘care work’, (iv) a model of healthcare that assumes client self-care, and (v) competing economic priorities. In response, an interprofessional team of service provider organizations, a software/technology provider, and health care providers developed and implemented a technology-enabled model of home care, the eShift model of palliative home care (eShift). The eShift model combines communication and documentation technology with non-traditional utilization of health human resources to meet patient needs for palliative care in the home. The purpose of this study was to investigate the structure, processes, and outcomes of the eShift model of care. Methodology: Guided by Donebedian’s evaluation framework for health care, this qualitative-descriptive study investigated the structure, processes, and outcomes care of the eShift model of palliative home care. Interviews and focus groups were conducted with health care providers (n= 45), decision-makers (n=13), technology providers (n=3) and family care givers (n=8). Interviews were recorded, transcribed, and a deductive analysis of transcripts was conducted. Study Findings (1) Structure: The eShift model consists of a remotely-situated RN using technology to direct care provision virtually to patients in their home. The remote RN is connected virtually to a health technician (an unregulated care provider) in the patient’s home using real-time communication. The health technician uses a smartphone modified with the eShift application and communicates with the RN who uses a computer with the eShift application/dashboard. Documentation and communication about patient observations and care activities occur in the eShift portal. The RN is typically accountable for four to six health technicians and patients over an 8-hour shift. The technology provider was identified as an important member of the healthcare team. Other members of the team include family members, care coordinators, nurse practitioners, physicians, and allied health. (2) Processes: Conventionally, patient needs are the focus of care; however within eShift, the patient and the family caregiver were the focus of care. Enhanced medication administration was seen as one of the most important processes, and family caregivers reported high satisfaction with the care provided. There was perceived enhanced teamwork among health care providers. (3) Outcomes: Patients were able to die at home. The eShift model enabled consistency and continuity of care, and effective management of patient symptoms and caregiver respite. Conclusion: More than a technology solution, the eShift model of care was viewed as transforming home care practice and an innovative way to resolve the shortage of palliative care nurses within home care.

Keywords: palliative home care, health information technology, patient-centred care, interprofessional health care team

Procedia PDF Downloads 418
154 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients

Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho

Abstract:

Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).

Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper

Procedia PDF Downloads 146
153 The Solid-Phase Sensor Systems for Fluorescent and SERS-Recognition of Neurotransmitters for Their Visualization and Determination in Biomaterials

Authors: Irina Veselova, Maria Makedonskaya, Olga Eremina, Alexandr Sidorov, Eugene Goodilin, Tatyana Shekhovtsova

Abstract:

Such catecholamines as dopamine, norepinephrine, and epinephrine are the principal neurotransmitters in the sympathetic nervous system. Catecholamines and their metabolites are considered to be important markers of socially significant diseases such as atherosclerosis, diabetes, coronary heart disease, carcinogenesis, Alzheimer's and Parkinson's diseases. Currently, neurotransmitters can be studied via electrochemical and chromatographic techniques that allow their characterizing and quantification, although these techniques can only provide crude spatial information. Besides, the difficulty of catecholamine determination in biological materials is associated with their low normal concentrations (~ 1 nM) in biomaterials, which may become even one more order lower because of some disorders. In addition, in blood they are rapidly oxidized by monoaminooxidases from thrombocytes and, for this reason, the determination of neurotransmitter metabolism indicators in an organism should be very rapid (15—30 min), especially in critical states. Unfortunately, modern instrumental analysis does not offer a complex solution of this problem: despite its high sensitivity and selectivity, HPLC-MS cannot provide sufficiently rapid analysis, while enzymatic biosensors and immunoassays for the determination of the considered analytes lack sufficient sensitivity and reproducibility. Fluorescent and SERS-sensors remain a compelling technology for approaching the general problem of selective neurotransmitter detection. In recent years, a number of catecholamine sensors have been reported including RNA aptamers, fluorescent ribonucleopeptide (RNP) complexes, and boronic acid based synthetic receptors and the sensor operated in a turn-off mode. In this work we present the fluorescent and SERS turn-on sensor systems based on the bio- or chemorecognizing nanostructured films {chitosan/collagen-Tb/Eu/Cu-nanoparticles-indicator reagents} that provide the selective recognition, visualization, and sensing of the above mentioned catecholamines on the level of nanomolar concentrations in biomaterials (cell cultures, tissue etc.). We have (1) developed optically transparent porous films and gels of chitosan/collagen; (2) ensured functionalization of the surface by molecules-'recognizers' (by impregnation and immobilization of components of the indicator systems: biorecognizing and auxiliary reagents); (3) performed computer simulation for theoretical prediction and interpretation of some properties of the developed materials and obtained analytical signals in biomaterials. We are grateful for the financial support of this research from Russian Foundation for Basic Research (grants no. 15-03-05064 a, and 15-29-01330 ofi_m).

Keywords: biomaterials, fluorescent and SERS-recognition, neurotransmitters, solid-phase turn-on sensor system

Procedia PDF Downloads 406
152 Beginning Physics Experiments Class Using Multi Media in National University of Laos

Authors: T. Nagata, S. Xaphakdy, P. Souvannavong, P. Chanthamaly, K. Sithavong, C. H. Lee, S. Phommathat, V. Srithilat, P. Sengdala, B. Phetarnousone, B. Siharath, X. Chemcheng, T. Yamaguchi, A. Suenaga, S. Kashima

Abstract:

National University of Laos (NUOL) requested Japan International Cooperation Agency (JICA) volunteers to begin a physics experiments class using multi media. However, there are issues. NUOL had no physics experiment class, no space for physics experiments, experiment materials were not used for many years and were scattered in various places, and there is no projector and laptop computer in the unit. This raised the question: How do authors begin the physics experiments class using multimedia? To solve this problem, the JICA took some steps, took stock of what was available and reviewed the syllabus. The JICA then revised the experiment materials to assess what was available and then developed textbooks for experiments using them; however, the question remained, what about the multimedia component of the course? Next, the JICA reviewed Physics teacher Pavy Souvannavong’s YouTube channel, where he and his students upload video reports of their physics classes at NUOL using their smartphones. While they use multi-media, almost all the videos recorded were of class presentations. To improve the multimedia style, authors edited the videos in the style of another YouTube channel, “Science for Lao,” which is a science education group made up of Japan Overseas Cooperation Volunteers (JOCV) in Laos. They created the channel to enhance science education in Laos, and hold regular monthly meetings in the capital, Vientiane, and at teacher training colleges in the country. They edit the video clips in three parts, which are the materials and procedures part including pictures, practice footage of the experiment part, and then the result and conclusion part. Then students perform experiments and prepare for presentation by following the videos. The revised experiment presentation reports use PowerPoint presentations, material pictures and experiment video clips. As for providing textbooks and submitting reports, the students use the e-Learning system of “Moodle” of the Information Technology Center in Dongdok campus of NUOL. The Korean International Cooperation Agency (KOICA) donated those facilities. The authors have passed the process of the revised materials, developed textbooks, the PowerPoint slides presented by students, downloaded textbooks and uploaded reports, to begin the physics experiments class using multimedia. This is the practice research report for beginning a physics experiments class using multimedia in the physics unit at the Department of Natural Science, Faculty of Education, at the NUOL.

Keywords: NUOL, JICA, KOICA, physics experiment materials, smartphone, Moodle, IT center, Science for Lao

Procedia PDF Downloads 353
151 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 137
150 The Administration of Infection Diseases During the Pandemic COVID-19 and the Role of the Differential Diagnosis with Biomarkers VB10

Authors: Sofia Papadimitriou

Abstract:

INTRODUCTION: The differential diagnosis between acute viral and bacterial infections is an important cost-effectiveness parameter at the stage of the treatment process in order to achieve the maximum benefits in therapeutic intervention by combining the minimum cost to ensure the proper use of antibiotics.The discovery of sensitive and robust molecular diagnostic tests in response to the role of the host in infections has enhanced the accurate diagnosis and differentiation of infections. METHOD: The study used a sample of six independent blood samples (total=756) which are associated with human proteins-proteins, each of which at the transcription stage expresses a different response in the host network between viral and bacterial infections.Τhe individual blood samples are subjected to a sequence of computer filters that identify a gene panel corresponding to an autonomous diagnostic score. The data set and the correspondence of the gene panel to the diagnostic patents a new Bangalore -Viral Bacterial (BL-VB). FINDING: We use a biomarker based on the blood of 10 genes(Panel-VB) that are an important prognostic value for the detection of viruses from bacterial infections with a weighted average AUROC of 0.97(95% CL:0.96-0.99) in eleven independent samples (sets n=898). We discovered a base with a patient score (VB 10 ) according to the table, which is a significant diagnostic value with a weighted average of AUROC 0.94(95% CL: 0.91-0.98) in 2996 patient samples from 56 public sets of data from 19 different countries. We also studied VB 10 in a new cohort of South India (BL-VB,n=56) and found 97% accuracy in confirmed cases of viral and bacterial infections. We found that VB 10 (a)accurately identifies the type of infection even in unspecified cases negative to the culture (b) shows its clinical condition recovery and (c) applies to all age groups, covering a wide range of acute bacterial and viral infectious, including non-specific pathogens. We applied our VB 10 rating to publicly available COVID 19 data and found that our rating diagnosed viral infection in patient samples. RESULTS: Τhe results of the study showed the diagnostic power of the biomarker VB 10 as a diagnostic test for the accurate diagnosis of acute infections in recovery conditions. We look forward to helping you make clinical decisions about prescribing antibiotics and integrating them into your policies management of antibiotic stewardship efforts. CONCLUSIONS: Overall, we are developing a new property of the RNA-based biomarker and a new blood test to differentiate between viral and bacterial infections to assist a physician in designing the optimal treatment regimen to contribute to the proper use of antibiotics and reduce the burden on antimicrobial resistance, AMR.

Keywords: acute infections, antimicrobial resistance, biomarker, blood transcriptome, systems biology, classifier diagnostic score

Procedia PDF Downloads 155
149 Exploring the Motivations That Drive Paper Use in Clinical Practice Post-Electronic Health Record Adoption: A Nursing Perspective

Authors: Sinead Impey, Gaye Stephens, Lucy Hederman, Declan O'Sullivan

Abstract:

Continued paper use in the clinical area post-Electronic Health Record (EHR) adoption is regularly linked to hardware and software usability challenges. Although paper is used as a workaround to circumvent challenges, including limited availability of a computer, this perspective does not consider the important role paper, such as the nurses’ handover sheet, play in practice. The purpose of this study is to confirm the hypothesis that paper use post-EHR adoption continues as paper provides both a cognitive tool (that assists with workflow) and a compensation tool (to circumvent usability challenges). Distinguishing the different motivations for continued paper-use could assist future evaluations of electronic record systems. Methods: Qualitative data were collected from three clinical care environments (ICU, general ward and specialist day-care) who used an electronic record for at least 12 months. Data were collected through semi-structured interviews with 22 nurses. Data were transcribed, themes extracted using an inductive bottom-up coding approach and a thematic index constructed. Findings: All nurses interviewed continued to use paper post-EHR adoption. While two distinct motivations for paper use post-EHR adoption were confirmed by the data - paper as a cognitive tool and paper as a compensation tool - further finding was that there was an overlap between the two uses. That is, paper used as a compensation tool could also be adapted to function as a cognitive aid due to its nature (easy to access and annotate) or vice versa. Rather than present paper persistence as having two distinctive motivations, it is more useful to describe it as presenting on a continuum with compensation tool and cognitive tool at either pole. Paper as a cognitive tool referred to pages such as nurses’ handover sheet. These did not form part of the patient’s record, although information could be transcribed from one to the other. Findings suggest that although the patient record was digitised, handover sheets did not fall within this remit. These personal pages continued to be useful post-EHR adoption for capturing personal notes or patient information and so continued to be incorporated into the nurses’ work. Comparatively, the paper used as a compensation tool, such as pre-printed care plans which were stored in the patient's record, appears to have been instigated in reaction to usability challenges. In these instances, it is expected that paper use could reduce or cease when the underlying problem is addressed. There is a danger that as paper affords nurses a temporary information platform that is mobile, easy to access and annotate, its use could become embedded in clinical practice. Conclusion: Paper presents a utility to nursing, either as a cognitive or compensation tool or combination of both. By fully understanding its utility and nuances, organisations can avoid evaluating all incidences of paper use (post-EHR adoption) as arising from usability challenges. Instead, suitable remedies for paper-persistence can be targeted at the root cause.

Keywords: cognitive tool, compensation tool, electronic record, handover sheet, nurse, paper persistence

Procedia PDF Downloads 442
148 Legal Provisions on Child Pornography in Bangladesh: A Comparative Study on South Asian Landscape

Authors: Monira Nazmi Jahan, Nusrat Jahan Nishat

Abstract:

'Child Pornography' is a sex crime that portrays illegal images and videos of a minor over the Internet and now has become a social concern with the increase of commission of this crime. The major objective of this paper is to identify and examine the laws relating to child pornography in Bangladesh and to compare this with other South Asian countries. In Bangladesh to prosecute under child pornography, provisions have been made in ‘Digital Security Act, 2018’ where it has been defined as involving child in areas of child sexuality or in sexuality and whoever commits the crime will be punished for 10 years imprisonment or 10 lac taka fine. In India, the crime is dealt with ‘The Protection of Children from Sexual Offences Act, 2012’ (POSCO) where the offenders for commission of this crime has been divided separately and has provision for punishments starting from three years to rigorous life imprisonment and shall also be liable to fine. In the Maldives, there is ‘Special Provisions Act to Deal with Child Sex Abuse Offenders, Act number 12/2009’. In this act it has been provided that a person is guilty of such an act if intentionally runs child prostitution, involves child in the creation of pornography or displays child’s sexual organ in pornography then shall be punished between 20 to 25 years of imprisonment. Nepal prosecutes this crime through ‘Act Relating to Children, 2018’ and the conviction of using child in prostitution or sexual services is imprisonment up to fifteen years and fine up to one hundred fifty thousand rupees. In Pakistan, child pornography is prosecuted with ‘Pakistan Penal Code Child Abuse Amendment Act, 2016’. This provides that one is guilty of this offence if he involves child with or without consent in such activities. It provides punishment for two to seven years of imprisonment or fine from two hundred thousand to seven hundred thousand rupees. In Bhutan child pornography is not explicitly addressed under the municipal laws. The Penal Code of Bhutan penalizes all kinds of pornography including child pornography under the provisions of computer pornography and the offence shall be a misdemeanor. Child Pornography is also prohibited under the ‘Child Care and Protection Act’. In Sri Lanka, ‘The Penal Code’ de facto criminalizes child prohibition and has a penalty of two to ten years and may also be liable to fine. The most shocking scenario exists in Afghanistan. There is no specific law for the protection of children from pornography, whereas this serious crime is present there. This paper will be conducted through a qualitative research method that is, the primary sources will be laws, and secondary sources will be journal articles and newspapers. The conclusion that can be drawn is except Afghanistan all other South Asian countries have laws for controlling this crime but still have loopholes. India has the most amended provisions. Nepal has no provision for fine, and Bhutan does not mention any specific punishment. Bangladesh compared to these countries, has a good piece of law; however, it also has space to broaden the laws for controlling child pornography.

Keywords: child abuse, child pornography, life imprisonment, penal code, South Asian countries

Procedia PDF Downloads 229
147 Phenomena-Based Approach for Automated Generation of Process Options and Process Models

Authors: Parminder Kaur Heer, Alexei Lapkin

Abstract:

Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature.

Keywords: Phenomena, Process intensification, Process models , Process options

Procedia PDF Downloads 232
146 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective

Authors: Pardis Moslemzadeh Tehrani

Abstract:

Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.

Keywords: blockchain, supply chain, IoT, smart contract

Procedia PDF Downloads 126
145 Dynamic EEG Desynchronization in Response to Vicarious Pain

Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy

Abstract:

The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.

Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition

Procedia PDF Downloads 283
144 Geospatial Technologies in Support of Civic Engagement and Cultural Heritage: Lessons Learned from Three Participatory Planning Workshops for Involving Local Communities in the Development of Sustainable Tourism Practices in Latiano, Brindisi

Authors: Mark Opmeer

Abstract:

The fruitful relationship between cultural heritage and digital technology is evident. Due to the development of user-friendly software, an increasing amount of heritage scholars use ict for their research activities. As a result, the implementation of information technology for heritage planning has become a research objective in itself. During the last decades, we have witnessed a growing debate and literature about the importance of computer technologies for the field of cultural heritage and ecotourism. Indeed, implementing digital technology in support of these domains can be very fruitful for one’s research practice. However, due to the rapid development of new software scholars may find it challenging to use these innovations in an appropriate way. As such, this contribution seeks to explore the interplay between geospatial technologies (geo-ict), civic engagement and cultural heritage and tourism. In this article, we discuss our findings on the use of geo-ict in support of civic participation, cultural heritage and sustainable tourism development in the southern Italian district of Brindisi. In the city of Latiano, three workshops were organized that involved local members of the community to distinguish and discuss interesting points of interests (POI’s) which represent the cultural significance and identity of the area. During the first workshop, a so called mappa della comunità was created on a touch table with collaborative mapping software, that allowed the participators to highlight potential destinations for tourist purposes. Furthermore, two heritage-based itineraries along a selection of identified POI’s was created to make the region attractive for recreants and tourists. These heritage-based itineraries reflect the communities’ ideas about the cultural identity of the region. Both trails were subsequently implemented in a dedicated mobile application (app) and was evaluated using a mixed-method approach with the members of the community during the second workshop. In the final workshop, the findings of the collaboration, the heritage trails and the app was evaluated with all participants. Based on our conclusions, we argue that geospatial technologies have a significant potential for involving local communities in heritage planning and tourism development. The participants of the workshops found it increasingly engaging to share their ideas and knowledge using the digital map of the touch table. Secondly, the use of a mobile application as instrument to test the heritage-based itineraries in the field was broadly considered as fun and beneficial for enhancing community awareness and participation in local heritage. The app furthermore stimulated the communities’ awareness of the added value of geospatial technologies for sustainable tourism development in the area. We conclude this article with a number of recommendations in order to provide a best practice for organizing heritage workshops with similar objectives.

Keywords: civic engagement, geospatial technologies, tourism development, cultural heritage

Procedia PDF Downloads 287
143 Comparison of Equivalent Linear and Non-Linear Site Response Model Performance in Kathmandu Valley

Authors: Sajana Suwal, Ganesh R. Nhemafuki

Abstract:

Evaluation of ground response under earthquake shaking is crucial in geotechnical earthquake engineering. Damage due to seismic excitation is mainly correlated to local geological and geotechnical conditions. It is evident from the past earthquakes (e.g. 1906 San Francisco, USA, 1923 Kanto, Japan) that the local geology has strong influence on amplitude and duration of ground motions. Since then significant studies has been conducted on ground motion amplification revealing the importance of influence of local geology on ground. Observations from the damaging earthquakes (e.g. Nigata and San Francisco, 1964; Irpinia, 1980; Mexico, 1985; Kobe, 1995; L’Aquila, 2009) divulged that non-uniform damage pattern, particularly in soft fluvio-lacustrine deposit is due to the local amplification of seismic ground motion. Non-uniform damage patterns are also observed in Kathmandu Valley during 1934 Bihar Nepal earthquake and recent 2015 Gorkha earthquake seemingly due to the modification of earthquake ground motion parameters. In this study, site effects resulting from amplification of soft soil in Kathmandu are presented. A large amount of subsoil data was collected and used for defining the appropriate subsoil model for the Kathamandu valley. A comparative study of one-dimensional total-stress equivalent linear and non-linear site response is performed using four strong ground motions for six sites of Kathmandu valley. In general, one-dimensional (1D) site-response analysis involves the excitation of a soil profile using the horizontal component and calculating the response at individual soil layers. In the present study, both equivalent linear and non-linear site response analyses were conducted using the computer program DEEPSOIL. The results show that there is no significant deviation between equivalent linear and non-linear site response models until the maximum strain reaches to 0.06-0.1%. Overall, it is clearly observed from the results that non-linear site response model perform better as compared to equivalent linear model. However, the significant deviation between two models is resulted from other influencing factors such as assumptions made in 1D site response, lack of accurate values of shear wave velocity and nonlinear properties of the soil deposit. The results are also presented in terms of amplification factors which are predicted to be around four times more in case of non-linear analysis as compared to equivalent linear analysis. Hence, the nonlinear behavior of soil prevails the urgent need of study of dynamic characteristics of the soft soil deposit that can specifically represent the site-specific design spectra for the Kathmandu valley for building resilient structures from future damaging earthquakes.

Keywords: deep soil, equivalent linear analysis, non-linear analysis, site response

Procedia PDF Downloads 291
142 The Impact of Online Learning on Visual Learners

Authors: Ani Demetrashvili

Abstract:

As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.

Keywords: online learning, visual learners, digital education, technology in learning

Procedia PDF Downloads 38
141 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 174
140 Bank Failures: A Question of Leadership

Authors: Alison L. Miles

Abstract:

Almost all major financial institutions in the world suffered losses due to the financial crisis of 2007, but the extent varied widely. The causes of the crash of 2007 are well documented and predominately focus on the role and complexity of the financial markets. The dominant theme of the literature suggests the causes of the crash were a combination of globalization, financial sector innovation, moribund regulation and short termism. While these arguments are undoubtedly true, they do not tell the whole story. A key weakness in the current analysis is the lack of consideration of those leading the banks pre and during times of crisis. This purpose of this study is to examine the possible link between the leadership styles and characteristics of the CEO, CFO and chairman and the financial institutions that failed or needed recapitalization. As such, it contributes to the literature and debate on international financial crises and systemic risk and also to the debate on risk management and regulatory reform in the banking sector. In order to first test the proposition (p1) that there are prevalent leadership characteristics or traits in financial institutions, an initial study was conducted using a sample of the top 65 largest global banks and financial institutions according to the Banker Top 1000 banks 2014. Secondary data from publically available and official documents, annual reports, treasury and parliamentary reports together with a selection of press articles and analyst meeting transcripts was collected longitudinally from the period 1998 to 2013. A computer aided key word search was used in order to identify the leadership styles and characteristics of the chairman, CEO and CFO. The results were then compared with the leadership models to form a picture of leadership in the sector during the research period. As this resulted in separate results that needed combining, SPSS data editor was used to aggregate the results across the studies using the variables ‘leadership style’ and ‘company financial performance’ together with the size of the company. In order to test the proposition (p2) that there was a prevalent leadership style in the banks that failed and the proposition (P3) that this was different to those that did not, further quantitative analysis was carried out on the leadership styles of the chair, CEO and CFO of banks that needed recapitalization, were taken over, or required government bail-out assistance during 2007-8. These included: Lehman Bros, Merrill Lynch, Royal Bank of Scotland, HBOS, Barclays, Northern Rock, Fortis and Allied Irish. The findings show that although regulatory reform has been a key mechanism of control of behavior in the banking sector, consideration of the leadership characteristics of those running the board are a key factor. They add weight to the argument that if each crisis is met with the same pattern of popular fury with the financier, increased regulation, followed by back to business as usual, the cycle of failure will always be repeated and show that through a different lens, new paradigms can be formed and future clashes avoided.

Keywords: banking, financial crisis, leadership, risk

Procedia PDF Downloads 318
139 Modelling of Groundwater Resources for Al-Najaf City, Iraq

Authors: Hayder H. Kareem, Shunqi Pan

Abstract:

Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City.

Keywords: Al-Najaf city, conceptual modelling, groundwater, unconfined aquifer, visual MODFLOW

Procedia PDF Downloads 213
138 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube

Authors: Nirjhar Dhang, S. Vinay Kumar

Abstract:

Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.

Keywords: concrete, image processing, plane strain, interfacial transition zone

Procedia PDF Downloads 240
137 Ways to Prevent Increased Wear of the Drive Box Parts and the Central Drive of the Civil Aviation Turbo Engine Based on Tribology

Authors: Liudmila Shabalinskaya, Victor Golovanov, Liudmila Milinis, Sergey Loponos, Alexander Maslov, D. O. Frolov

Abstract:

The work is devoted to the rapid laboratory diagnosis of the condition of aircraft friction units, based on the application of the nondestructive testing method by analyzing the parameters of wear particles, or tribodiagnostics. The most important task of tribodiagnostics is to develop recommendations for the selection of more advanced designs, materials and lubricants based on data on wear processes for increasing the life and ensuring the safety of the operation of machines and mechanisms. The object of tribodiagnostics in this work are the tooth gears of the central drive and the gearboxes of the gas turbine engine of the civil aviation PS-90A type, in which rolling friction and sliding friction with slip occur. The main criterion for evaluating the technical state of lubricated friction units of a gas turbine engine is the intensity and rate of wear of the friction surfaces of the friction unit parts. When the engine is running, oil samples are taken and the state of the friction surfaces is evaluated according to the parameters of the wear particles contained in the oil sample, which carry important and detailed information about the wear processes in the engine transmission units. The parameters carrying this information include the concentration of wear particles and metals in the oil, the dispersion composition, the shape, the size ratio and the number of particles, the state of their surfaces, the presence in the oil of various mechanical impurities of non-metallic origin. Such a morphological analysis of wear particles has been introduced into the order of monitoring the status and diagnostics of various aircraft engines, including a gas turbine engine, since the type of wear characteristic of the central drive and the drive box is surface fatigue wear and the beginning of its development, accompanied by the formation of microcracks, leads to the formation of spherical, up to 10 μm in size, and in the aftermath of flocculent particles measuring 20-200 μm in size. Tribodiagnostics using the morphological analysis of wear particles includes the following techniques: ferrography, filtering, and computer analysis of the classification and counting of wear particles. Based on the analysis of several series of oil samples taken from the drive box of the engine during their operating time, a study was carried out of the processes of wear kinetics. Based on the results of the study and comparing the series of criteria for tribodiagnostics, wear state ratings and statistics of the results of morphological analysis, norms for the normal operating regime were developed. The study allowed to develop levels of wear state for friction surfaces of gearing and a 10-point rating system for estimating the likelihood of the occurrence of an increased wear mode and, accordingly, prevention of engine failures in flight.

Keywords: aviation, box of drives, morphological analysis, tribodiagnostics, tribology, ferrography, filtering, wear particle

Procedia PDF Downloads 260
136 Variability of Physico-Chemical and Carbonate Chemistry of Seawater in Selected Portions of the Central Atlantic Coastline of Ghana

Authors: Robert Kwame Kpaliba, Dennis Kpakpor Adotey, Yaw Serfor-Armah

Abstract:

Increase in the oceanic carbon dioxide absorbance from the atmosphere due to climate change has led to appreciable change in the chemistry of the oceans. The change in oceanic pH referred to as ocean acidification poses multiple threats and stresses on marine species, biodiversity, goods and services, and livelihoods. Marine ecosystems are continuously threatened by plethora of natural and anthropogenic stressors including carbon dioxide (CO₂) emissions causing a lot of changes which has not been experienced for approximately 60 years. Little has been done in Africa as a whole and Ghana in particular to improve the understanding of the variations of the carbonate chemistry of seawater and the biophysical impacts of ocean acidification on security of seafood, nutrition, climate and environmental change. There is, therefore, the need for regular monitoring of carbonate chemistry of seawater along Ghana’s coastline to generate reliable data to aid marine policy formulation. Samples of seawater were collected thrice every month for a one-year period from five study sites for the various parameters to be analyzed. Analysis of the measured physico-chemical and the carbonate chemistry parameters was done using simple statistics. Correlation test and ANOVA were run on both of the physico-chemical and carbonate chemistry parameters. The carbonate chemistry parameters were measured using computer software programme (CO₂cal v4.0.9) except total alkalinity and pH. The study assessed the variability of seawater carbonate chemistry in selected portions of the Central Atlantic Coastline of Ghana (Tsokomey/Bortianor, Kokrobitey, Gomoa Nyanyanor, Gomoa Fetteh, and Senya Breku landing beaches) over a 1-year period (June 2016–May 2017). For physico-chemical parameters, there was insignificant variation in nitrate (NO₃⁻) (1.62 - 2.3 mg/L), ammonia (NH₃) (1.52 - 2.05 mg/L), and salinity (sal) (34.50 - 34.74 ppt). Carbonate chemistry parameters for all the five study sites showed significant variation: partial pressure of carbon dioxide (pCO₂) (414.08-715.5 µmol/kg), carbonate ion (CO₃²⁻) (115-157.92 µmol/kg), pH (7.9-8.12), total alkalinity (TA) (1711.8-1986 µmol/kg), total carbon dioxide (TCO₂) (1512.1 - 1792 µmol/kg), dissolved carbon dioxide (CO₂aq) (10.97-18.92 µmol/kg), Revelle Factor (RF) (9.62-11.84), aragonite (ΩAr) (0.75-1.48) and calcite (ΩCa) (1.08-2.14). The study revealed that the partial pressure of carbon dioxide and temperature did not have a significant effect on each other (r² = 0.31) (p-value = 0.0717). There was an appreciable effect of pH on dissolved carbon dioxide (r² = 0.921) (p-value = 0.0000). The variation between total alkalinity and dissolved carbon dioxide was appreciable (r² = 0.731) (p-value = 0.0008). There was a significant correlation between total carbon dioxide and dissolved carbon dioxide (r² = 0.852) (p-value = 0.0000). Revelle factor correlated strongly with dissolved carbon dioxide (r² = 0.982) (p-value = 0.0000). Partial pressure of carbon dioxide corresponds strongly with atmospheric carbon dioxide (r² = 0.9999) (p-value = 0.00000).

Keywords: carbonate chemistry, seawater, central atlantic coastline, Ghana, ocean acidification

Procedia PDF Downloads 558
135 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 132
134 Using Balanced Scorecard Performance Metrics in Gauging the Delivery of Stakeholder Value in Higher Education: the Assimilation of Industry Certifications within a Business Program Curriculum

Authors: Thomas J. Bell III

Abstract:

This paper explores the value of assimilating certification training within a traditional course curriculum. This innovative approach is believed to increase stakeholder value within the Computer Information System program at Texas Wesleyan University. Stakeholder value is obtained from increased job marketability and critical thinking skills that create employment-ready graduates. This paper views value as first developing the capability to earn an industry-recognized certification, which provides the student with more job placement compatibility while allowing the use of critical thinking skills in a liberal arts business program. Graduates with industry-based credentials are often given preference in the hiring process, particularly in the information technology sector. And without a pioneering curriculum that better prepares students for an ever-changing employment market, its educational value is dubiously questioned. Since certifications are trending in the hiring process, academic programs should explore the viability of incorporating certification training into teaching pedagogy and courses curriculum. This study will examine the use of the balanced scorecard across four performance dimensions (financial, customer, internal process, and innovation) to measure the stakeholder value of certification training within a traditional course curriculum. The balanced scorecard as a strategic management tool may provide insight for leveraging resource prioritization and decisions needed to achieve various curriculum objectives and long-term value while meeting multiple stakeholders' needs, such as students, universities, faculty, and administrators. The research methodology will consist of quantitative analysis that includes (1) surveying over one-hundred students in the CIS program to learn what factor(s) contributed to their certification exam success or failure, (2) interviewing representatives from the Texas Workforce Commission to identify the employment needs and trends in the North Texas (Dallas/Fort Worth) area, (3) reviewing notable Workforce Innovation and Opportunity Act publications on training trends across several local business sectors, and (4) analyzing control variables to identify specific correlations between industry alignment and job placement to determine if a correlation exists. These findings may provide helpful insight into impactful pedagogical teaching techniques and curriculum that positively contribute to certification credentialing success. And should these industry-certified students land industry-related jobs that correlate with their certification credential value, arguably, stakeholder value has been realized.

Keywords: certification exam teaching pedagogy, exam preparation, testing techniques, exam study tips, passing certification exams, embedding industry certification and curriculum alignment, balanced scorecard performance evaluation

Procedia PDF Downloads 108
133 Building Community through Discussion Forums in an Online Accelerated MLIS Program: Perspectives of Instructors and Students

Authors: Mary H Moen, Lauren H. Mandel

Abstract:

Creating a sense of community in online learning is important for student engagement and success. The integration of discussion forums within online learning environments presents an opportunity to explore how this computer mediated communications format can cultivate a sense of community among students in accelerated master’s degree programs. This research has two aims, to delve into the ways instructors utilize this communications technology to create community and to understand the feelings and experiences of graduate students participating in these forums in regard to its effectiveness in community building. This study is a two-phase approach encompassing qualitative and quantitative methodologies. The data will be collected at an online accelerated Master of Library and Information Studies program at a public university in the northeast of the United States. Phase 1 is a content analysis of the syllabi from all courses taught in the 2023 calendar year, which explores the format and rules governing discussion forum assignments. Four to six individual interviews of department faculty and part time faculty will also be conducted to illuminate their perceptions of the successes and challenges of their discussion forum activities. Phase 2 will be an online survey administered to students in the program during the 2023 calendar year. Quantitative data will be collected for statistical analysis, and short answer responses will be analyzed for themes. The survey is adapted from the Classroom Community Scale Short-Form (CSS-SF), which measures students' self-reported responses on their feelings of connectedness and learning. The prompts will contextualize the items from their experience in discussion forums during the program. Short answer responses on the challenges and successes of using discussion forums will be analyzed to gauge student perceptions and experiences using this type of communication technology in education. This research study is in progress. The authors anticipate that the findings will provide a comprehensive understanding of the varied approaches instructors use in discussion forums for community-building purposes in an accelerated MLIS program. They predict that the more varied, flexible, and consistent student uses of discussion forums are, the greater the sense of community students will report. Additionally, students’ and instructors’ perceptions and experiences within these forums will shed light on the successes and challenges faced, thereby offering valuable recommendations for enhancing online learning environments. The findings are significant because they can contribute actionable insights for instructors, educational institutions, and curriculum designers aiming to optimize the use of discussion forums in online accelerated graduate programs, ultimately fostering a richer and more engaging learning experience for students.

Keywords: accelerated online learning, discussion forums, LIS programs, sense of community, g

Procedia PDF Downloads 84
132 Developing a Framework for Designing Digital Assessments for Middle-school Aged Deaf or Hard of Hearing Students in the United States

Authors: Alexis Polanco Jr, Tsai Lu Liu

Abstract:

Research on digital assessment for deaf and hard of hearing (DHH) students is negligible. Part of this stems from the DHH assessment design existing at the intersection of the emergent disciplines of usability, accessibility, and child-computer interaction (CCI). While these disciplines have some prevailing guidelines —e.g. in user experience design (UXD), there is Jacob Nielsen’s 10 Usability Heuristics (Nielsen-10); for accessibility, there are the Web Content Accessibility Guidelines (WCAG) & the Principles of Universal Design (PUD)— this research was unable to uncover a unified set of guidelines. Given that digital assessments have lasting implications for the funding and shaping of U.S. school districts, it is vital that cross-disciplinary guidelines emerge. As a result, this research seeks to provide a framework by which these disciplines can share knowledge. The framework entails a process of asking subject-matter experts (SMEs) and design & development professionals to self-describe their fields of expertise, how their work might serve DHH students, and to expose any incongruence between their ideal process and what is permissible at their workplace. This research used two rounds of mixed methods. The first round consisted of structured interviews with SMEs in usability, accessibility, CCI, and DHH education. These practitioners were not designers by trade but were revealed to use designerly work processes. In addition to asking these SMEs about their field of expertise, work process, etc., these SMEs were asked to comment about whether they believed Nielsen-10 and/or PUD were sufficient for designing products for middle-school DHH students. This first round of interviews revealed that Nielsen-10 and PUD were, at best, a starting point for creating middle-school DHH design guidelines or, at worst insufficient. The second round of interviews followed a semi-structured interview methodology. The SMEs who were interviewed in the first round were asked open-ended follow-up questions about their semantic understanding of guidelines— going from the most general sense down to the level of design guidelines for DHH middle school students. Designers and developers who were never interviewed previously were asked the same questions that the SMEs had been asked across both rounds of interviews. In terms of the research goals: it was confirmed that the design of digital assessments for DHH students is inherently cross-disciplinary. Unexpectedly, 1) guidelines did not emerge from the interviews conducted in this study, and 2) the principles of Nielsen-10 and PUD were deemed to be less relevant than expected. Given the prevalence of Nielsen-10 in UXD curricula across academia and certificate programs, this poses a risk to the efficacy of DHH assessments designed by UX designers. Furthermore, the following findings emerged: A) deep collaboration between the disciplines of usability, accessibility, and CCI is low to non-existent; B) there are no universally agreed-upon guidelines for designing digital assessments for DHH middle school students; C) these disciplines are structured academically and professionally in such a way that practitioners may not know to reach out to other disciplines. For example, accessibility teams at large organizations do not have designers and accessibility specialists on the same team.

Keywords: deaf, hard of hearing, design, guidelines, education, assessment

Procedia PDF Downloads 67
131 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis

Authors: Liliia N. Butymova, Vladimir Ya Modorskii

Abstract:

To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.

Keywords: aeroelasticity, labyrinth packings, oscillation phase shift, vibration

Procedia PDF Downloads 296
130 Robotic Process Automation in Accounting and Finance Processes: An Impact Assessment of Benefits

Authors: Rafał Szmajser, Katarzyna Świetla, Mariusz Andrzejewski

Abstract:

Robotic process automation (RPA) is a technology of repeatable business processes performed using computer programs, robots that simulate the work of a human being. This approach assumes replacing an existing employee with the use of dedicated software (software robots) to support activities, primarily repeated and uncomplicated, characterized by a low number of exceptions. RPA application is widespread in modern business services, particularly in the areas of Finance, Accounting and Human Resources Management. By utilizing this technology, the effectiveness of operations increases while reducing workload, minimizing possible errors in the process, and as a result, bringing measurable decrease in the cost of providing services. Regardless of how the use of modern information technology is assessed, there are also some doubts as to whether we should replace human activities in the implementation of the automation in business processes. After the initial awe for the new technological concept, a reflection arises: to what extent does the implementation of RPA increase the efficiency of operations or is there a Business Case for implementing it? If the business case is beneficial, in which business processes is the greatest potential for RPA? A closer look at these issues was provided by in this research during which the respondents’ view of the perceived advantages resulting from the use of robotization and automation in financial and accounting processes was verified. As a result of an online survey addressed to over 500 respondents from international companies, 162 complete answers were returned from the most important types of organizations in the modern business services industry, i.e. Business or IT Process Outsourcing (BPO/ITO), Shared Service Centers (SSC), Consulting/Advisory and their customers. Answers were provided by representatives of the positions in their organizations: Members of the Board, Directors, Managers and Experts/Specialists. The structure of the survey allowed the respondents to supplement the survey with additional comments and observations. The results formed the basis for the creation of a business case calculating tangible benefits associated with the implementation of automation in the selected financial processes. The results of the statistical analyses carried out with regard to revenue growth confirmed the correctness of the hypothesis that there is a correlation between job position and the perception of the impact of RPA implementation on individual benefits. Second hypothesis (H2) that: There is a relationship between the kind of company in the business services industry and the reception of the impact of RPA on individual benefits was thus not confirmed. Based results of survey authors performed simulation of business case for implementation of RPA in selected Finance and Accounting Processes. Calculated payback period was diametrically different ranging from 2 months for the Account Payables process with 75% savings and in the extreme case for the process Taxes implementation and maintenance costs exceed the savings resulting from the use of the robot.

Keywords: automation, outsourcing, business process automation, process automation, robotic process automation, RPA, RPA business case, RPA benefits

Procedia PDF Downloads 137
129 Trainability of Executive Functions during Preschool Age Analysis of Inhibition of 5-Year-Old Children

Authors: Christian Andrä, Pauline Hähner, Sebastian Ludyga

Abstract:

Introduction: In the recent past, discussions on the importance of physical activity for child development have contributed to a growing interest in executive functions, which refer to cognitive processes. By controlling, modulating and coordinating sub-processes, they make it possible to achieve superior goals. Major components include working memory, inhibition and cognitive flexibility. While executive functions can be trained easily in school children, there are still research deficits regarding the trainability during preschool age. Methodology: This quasi-experimental study with pre- and post-design analyzes 23 children [age: 5.0 (mean value) ± 0.7 (standard deviation)] from four different sports groups. The intervention group was made up of 13 children (IG: 4.9 ± 0.6), while the control group consisted of ten children (CG: 5.1 ± 0.9). Between pre-test and post-test, children from the intervention group participated special games that train executive functions (i.e., changing rules of the game, introduction of new stimuli in familiar games) for ten units of their weekly sports program. The sports program of the control group was not modified. A computer-based version of the Eriksen Flanker Task was employed in order to analyze the participants’ inhibition ability. In two rounds, the participants had to respond 50 times and as fast as possible to a certain target (direction of sight of a fish; the target was always placed in a central position between five fish). Congruent (all fish have the same direction of sight) and incongruent (central fish faces opposite direction) stimuli were used. Relevant parameters were response time and accuracy. The main objective was to investigate whether children from the intervention group show more improvement in the two parameters than the children from the control group. Major findings: The intervention group revealed significant improvements in congruent response time (pre: 1.34 s, post: 1.12 s, p<.01), while the control group did not show any statistically relevant difference (pre: 1.31 s, post: 1.24 s). Likewise, the comparison of incongruent response times indicates a comparable result (IG: pre: 1.44 s, post: 1.25 s, p<.05 vs. CG: pre: 1.38 s, post: 1.38 s). In terms of accuracy for congruent stimuli, the intervention group showed significant improvements (pre: 90.1 %, post: 95.9 %, p<.01). In contrast, no significant improvement was found for the control group (pre: 88.8 %, post: 92.9 %). Vice versa, the intervention group did not display any significant results for incongruent stimuli (pre: 74.9 %, post: 83.5 %), while the control group revealed a significant difference (pre: 68.9 %, post: 80.3 %, p<.01). The analysis of three out of four criteria demonstrates that children who took part in a special sports program improved more than children who did not. The contrary results for the last criterion could be caused by the control group’s low results from the pre-test. Conclusion: The findings illustrate that inhibition can be trained as early as in preschool age. The combination of familiar games with increased requirements for attention and control processes appears to be particularly suitable.

Keywords: executive functions, flanker task, inhibition, preschool children

Procedia PDF Downloads 253
128 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 119
127 Hybrid versus Cemented Fixation in Total Knee Arthroplasty: Mid-Term Follow-Up

Authors: Pedro Gomes, Luís Sá Castelo, António Lopes, Marta Maio, Pedro Mota, Adélia Avelar, António Marques Dias

Abstract:

Introduction: Total Knee Arthroplasty (TKA) has contributed to improvement of patient`s quality of life, although it has been associated with some complications including component loosening and polyethylene wear. To prevent these complications various fixation techniques have been employed. Hybrid TKA with cemented tibial and cementless femoral components have shown favourable outcomes, although it still lack of consensus in the literature. Objectives: To evaluate the clinical and radiographic results of hybrid versus cemented TKA with an average 5 years follow-up and analyse the survival rates. Methods: A retrospective study of 125 TKAs performed in 92 patients at our institution, between 2006 to 2008, with a minimum follow-up of 2 years. The same prosthesis was used in all knees. Hybrid TKA fixation was performed in 96 knees, with a mean follow-up of 4,8±1,7 years (range, 2–8,3 years) and 29 TKAs received fully cemented fixation with a mean follow-up of 4,9±1,9 years (range, 2-8,3 years). Selection for hybrid fixation was nonrandomized and based on femoral component fit. The Oxford Knee Score (OKS 0-48) was evaluated for clinical assessment and Knee Society Roentgenographic Evaluation Scoring System was used for radiographic outcome. The survival rate was calculated using the Kaplan-Meier method, with failures defined as revision of either the tibial or femoral component for aseptic failures and all-causes (aseptic and infection). Analysis of survivorship data was performed using the log-rank test. SPSS (v22) was the computer program used for statistical analysis. Results: The hybrid group consisted of 72 females (75%) and 24 males (25%), with mean age 64±7 years (range, 50-78 years). The preoperative diagnosis was osteoarthritis (OA) in 94 knees (98%), rheumatoid arthritis (RA) in 1 knee (1%) and Posttraumatic arthritis (PTA) in 1 Knee (1%). The fully cemented group consisted of 23 females (79%) and 6 males (21%), with mean age 65±7 years (range, 47-78 years). The preoperative diagnosis was OA in 27 knees (93%), PTA in 2 knees (7%). The Oxford Knee Scores were similar between the 2 groups (hybrid 40,3±2,8 versus cemented 40,2±3). The percentage of radiolucencies seen on the femoral side was slightly higher in the cemented group 20,7% than the hybrid group 11,5% p0.223. In the cemented group there were significantly more Zone 4 radiolucencies compared to the hybrid group (13,8% versus 2,1% p0,026). Revisions for all causes were performed in 4 of the 96 hybrid TKAs (4,2%) and 1 of the 29 cemented TKAs (3,5%). The reason for revision was aseptic loosening in 3 hybrid TKAs and 1 of the cemented TKAs. Revision was performed for infection in 1 hybrid TKA. The hybrid group demonstrated a 7 years survival rate of 93% for all-cause failures and 94% for aseptic loosening. No significant difference in survivorship was seen between the groups for all-cause failures or aseptic failures. Conclusions: Hybrid TKA yields similar intermediate-term results and survival rates as fully cemented total knee arthroplasty and remains a viable option in knee joint replacement surgery.

Keywords: hybrid, survival rate, total knee arthroplasty, orthopaedic surgery

Procedia PDF Downloads 594