Search results for: zero strength layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5962

Search results for: zero strength layer

2872 The Experimental Study on Reducing and Carbonizing Titanium-Containing Slag by Iron-Containing Coke

Authors: Yadong Liu

Abstract:

The experimental study on reduction carbonization of coke containing iron respectively with the particle size of <0.3mm, 0.3-0.6mm and 0.6-0.9mm and synthetic sea sand ore smelting reduction titanium-bearing slag as material were studied under the conditions of holding 6h at most at 1500℃. The effects of coke containing iron particle size and heat preservation time on the formation of TiC and the size of TiC crystal were studied by XRD, SEM and EDS. The results show that it is not good for the formation, concentration and growth of TiC crystal when the particle size of coke containing iron is too small or too large. The suitable particle size is 0.3~0.6mm. The heat preservation time of 2h basically ensures that all the component TiO2 in the slag are reduced and carbonized and converted to TiC. The size of TiC crystal will increase with the prolongation of heat preservation time. The thickness of the TiC layer can reach 20μm when the heat preservation time is 6h.

Keywords: coke containing iron, formation and concentration and growth of TiC, reduction and carbonization, titanium-bearing slag

Procedia PDF Downloads 140
2871 Design and Simulation of Step Structure RF MEMS Switch for K Band Applications

Authors: G. K. S. Prakash, Rao K. Srinivasa

Abstract:

MEMS plays an important role in wide range of applications like biological, automobiles, military and communication engineering. This paper mainly investigates on capacitive shunt RF MEMS switch with low actuation voltage and low insertion losses. To trim the pull-in voltage, a step structure has introduced to trim air gap between the beam and the dielectric layer with that pull in voltage is trim to 2.9 V. The switching time of the proposed switch is 39.1μs, and capacitance ratio is 67. To get more isolation, we have used aluminum nitride as dielectric material instead of silicon nitride (Si₃N₄) and silicon dioxide (SiO₂) because aluminum nitride has high dielectric constant (εᵣ = 9.5) increases the OFF capacitance and eventually increases the isolation of the switch. The results show that the switch is ON state involves return loss (S₁₁) less than -25 dB up to 40 GHz and insertion loss (S₂₁) is more than -1 dB up to 35 GHz. In OFF state switch shows maximum isolation (S₂₁) of -38 dB occurs at a frequency of 25-27 GHz for K band applications.

Keywords: RF MEMS, actuation voltage, isolation loss, switches

Procedia PDF Downloads 357
2870 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport

Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto

Abstract:

The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.

Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell

Procedia PDF Downloads 87
2869 Analytical Modeling of Equivalent Magnetic Circuit in Multi-segment and Multi-barrier Synchronous Reluctance Motor

Authors: Huai-Cong Liu,Tae Chul Jeong,Ju Lee

Abstract:

This paper describes characteristic analysis of a synchronous reluctance motor (SynRM)’s rotor with the Multi-segment and Multi-layer structure. The magnetic-saturation phenomenon in SynRM is often appeared. Therefore, when modeling analysis of SynRM the calculation of nonlinear magnetic field needs to be considered. An important influence factor on the convergence process is how to determine the relative permeability. An improved method, which ensures the calculation, is convergence by linear iterative method for saturated magnetic field. If there are inflection points on the magnetic curve,an optimum convergence method of solution for nonlinear magnetic field was provided. Then the equivalent magnetic circuit is calculated, and d,q-axis inductance can be got. At last, this process is applied to design a 7.5Kw SynRM and its validity is verified by comparing with the result of finite element method (FEM) and experimental test data.

Keywords: SynRM, magnetic-saturation, magnetic circuit, analytical modeling

Procedia PDF Downloads 497
2868 Electrospun TiO2/Nylon-6 Nanofiber Mat: Improved Hydrophilicity Properties

Authors: Roshank Haghighat, Laleh Maleknia

Abstract:

In this study, electrospun TiO2/nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by SEM, FE-SEM, TEM, XRD, WCA, and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The presence of a small amount of TiO2 in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved UV blocking ability will also make it a potential candidate for protective clothing.

Keywords: electrospinning, hydrophilicity, antimicrobial, nanocomposite, nylon-6/TiO2

Procedia PDF Downloads 343
2867 The Effect of Substrate Surface Roughness for Hot Dip Aluminizing of IN718 Alloy

Authors: Aptullah Karakas, Murat Baydogan

Abstract:

The hot dip aluminizing (HDA) process involves immersing a metallic substrate into a molten aluminum bath for several minutes, and removed from the bath and cooled down to room temperature. After the HDA process, various aluminide layers are formed as a result of interdiffusion between the substrate and the molten aluminum and between the aluminide layers. In order to form a uniform aluminide layer, the specimen must be covered and wet well by the molten aluminum. Surface roughness plays an important role in wettability, and thus, surface preparation is an important stage in determining the final surface roughness. In this study, different roughness values were achieved by grinding the surface with emery papers as 180, 320 and 600 grids. After the surface preparation, the HDA process was performed in a molten Al-Si bath at 700 ᴼC for 10 minutes. After the HDA process, a microstructural examination of the coating was carried out to evaluate the uniformity of the coating and adhesion between the substrate and the coating. According to the results, the best adhesion at the interface was observed on the specimen, which was prepared by 320 grid emery paper having a mean surface roughness (Ra) of 0.097 µm.

Keywords: hot-dip aluminizing, microstructure, surface roughness, coating

Procedia PDF Downloads 63
2866 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing

Authors: Benjamin Panreck, Manfred Hild

Abstract:

Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.

Keywords: aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge

Procedia PDF Downloads 198
2865 Oil Palm Leaf and Corn Stalk, Mechanical Properties and Surface Characterization

Authors: Zawawi Daud

Abstract:

Agro waste can be defined as waste from agricultural plant. Oil palm leaf and corn stalk can be categorized as ago waste material. At first, the comparison between oil palm leaf and corn stalk by mechanical properties from soda pulping process. After that, focusing on surface characterization by Scanning Electron Microscopy (SEM). Both material have a potential due to mechanical properties (tensile, tear, burst and fold) and surface characterization but corn stalk shows more in strength and compactness due to fiber characterization compared to oil palm leaf. This study promoting the green technology in develop a friendly product and suitable to be used as an alternative pulp in paper making industry.

Keywords: fiber, oil palm leaf, corn stalk, green technology

Procedia PDF Downloads 481
2864 Characterization of Retinal Pigmented Cell Epithelium Cell Sheet Cultivated on Synthetic Scaffold

Authors: Tan Yong Sheng Edgar, Yeong Wai Yee

Abstract:

Age-related macular degeneration (AMD) is one of the leading cause of blindness. It can cause severe visual loss due to damaged retinal pigment epithelium (RPE). RPE is an important component of the retinal tissue. It functions as a transducing boundary for visual perception making it an essential factor for sight. The RPE also functions as a metabolically complex and functional cell layer that is responsible for the local homeostasis and maintenance of the extra photoreceptor environment. Thus one of the suggested method of treating such diseases would be regenerating these RPE cells. As such, we intend to grow these cells using a synthetic scaffold to provide a stable environment that reduces the batch effects found in natural scaffolds. Stiffness of the scaffold will also be investigated to determine the optimal Young’s modulus for cultivating these cells. The cells will be generated into a monolayer cell sheet and their functions such as formation of tight junctions and gene expression patterns will be assessed to evaluate the cell sheet quality compared to a native RPE tissue.

Keywords: RPE, scaffold, characterization, biomaterials, colloids and nanomedicine

Procedia PDF Downloads 428
2863 Association Between Swallowing Disorders and Cognitive Disorders in Adults: Systematic Review and Metaanalysis

Authors: Shiva Ebrahimian Dehaghani, Afsaneh Doosti, Morteza Zare

Abstract:

Background: There is no consensus regarding the association between dysphagia and cognition. Purpose: The aim of this study was to quantitatively and qualitatively analyze the available evidence on the direction and strength of association between dysphagia and cognition. Methodology: PubMed, Scopus, Embase and Web of Science were searched about the association between dysphagia and cognition. A random-effects model was used to determine weighted odds ratios (OR) and 95% confidence intervals (CI). Sensitivity analysis was performed to determine the impact of each individual study on the pooled results. Results: A total of 1427 participants showed that some cognitive disorders were significantly associated with dysphagia (OR = 3.23; 95% CI, 2.33–4.48). Conclusion: The association between cognition and swallowing disorders suggests that multiple neuroanatomical systems are involved in these two functions.

Keywords: adult, association, cognitive impairment, dysphagia, systematic review

Procedia PDF Downloads 154
2862 A Fast Chemiresistive H₂ Gas Sensor Based on Sputter Grown Nanocrystalline P-TiO₂ Thin Film Decorated with Catalytic Pd-Pt Layer on P-Si Substrate

Authors: Jyoti Jaiswal, Satyendra Mourya, Gaurav Malik, Ramesh Chandra

Abstract:

In the present work, we have fabricated and studied a resistive H₂ gas sensor based on Pd-Pt decorated room temperature sputter grown nanocrystalline porous titanium dioxide (p-TiO₂) thin film on porous silicon (p-Si) substrate for fast H₂ detection. The gas sensing performance of Pd-Pt/p-TiO₂/p-Si sensing electrode towards H₂ gas under low (10-500 ppm) detection limit and operating temperature regime (25-200 °C) was discussed. The sensor is highly sensitive even at room temperature, with response (Ra/Rg) reaching ~102 for 500 ppm H₂ in dry air and its capability of sensing H₂ concentrations as low as ~10 ppm was demonstrated. At elevated temperature of 200 ℃, the response reached more than ~103 for 500 ppm H₂. Overall the fabricated resistive gas sensor exhibited high selectivity, good sensing response, and fast response/recovery time with good stability towards H₂.

Keywords: sputtering, porous silicon (p-Si), TiO₂ thin film, hydrogen gas sensor

Procedia PDF Downloads 253
2861 Mechanical Properties of Recycled Plasticized PVB/PVC Blends

Authors: Michael Tupý, Dagmar Měřínská, Alice Tesaříková-Svobodová, Christian Carrot, Caroline Pillon, Vít Petránek

Abstract:

The mechanical properties of blends consisting of plasticized poly(vinyl butyral) (PVB) and plasticized poly(vinyl chloride) (PVC) are studied, in order to evaluate the possibility of using recycled PVB waste derived from windshields. PVC was plasticized with 38% of diisononyl phthalate (DINP), while PVB was plasticized with 28% of triethylene glycol, bis(2-ethylhexanoate) (3GO). The optimal process conditions for the PVB/PVC blend in 1:1 ratio were determined. Entropy was used in order to theoretically predict the blends miscibility. The PVB content of each blend composition used was ranging from zero to 100%. Tensile strength and strain were tested. In addition, a comparison between recycled and original PVB, used as constituents of the blend, was performed.

Keywords: poly(vinyl butyral), poly(vinyl chloride), windshield, polymer waste, mechanical properties

Procedia PDF Downloads 440
2860 Influence of Non-Formal Physical Education Curriculum, Based on Olympic Pedagogy, for 11-13 Years Old Children Physical Development

Authors: Asta Sarkauskiene

Abstract:

The pedagogy of Olympic education is based upon the main idea of P. de Coubertin, that physical education can and has to support the education of the perfect person, the one who was an aspiration in archaic Greece, when it was looking towards human as a one whole, which is composed of three interconnected functions: physical, psychical and spiritual. The following research question was formulated in the present study: What curriculum of non-formal physical education in school can positively influence physical development of 11-13 years old children? The aim of this study was to formulate and implement curriculum of non-formal physical education, based on Olympic pedagogy, and assess its effectiveness for physical development of 11-13 years old children. The research was conducted in two stages. In the first stage 51 fifth grade children (Mage = 11.3 years) participated in a quasi-experiment for two years. Children were organized into 2 groups: E and C. Both groups shared the duration (1 hour) and frequency (twice a week) but were different in their education curriculum. Experimental group (E) worked under the program developed by us. Priorities of the E group were: training of physical powers in unity with psychical and spiritual powers; integral growth of physical development, physical activity, physical health, and physical fitness; integration of children with lower health and physical fitness level; content that corresponds children needs, abilities, physical and functional powers. Control group (C) worked according to NFPE programs prepared by teachers and approved by school principal and school methodical group. Priorities of the C group were: motion actions teaching and development; physical qualities training; training of the most physically capable children. In the second stage (after four years) 72 sixth graders (Mage = 13.00) attended in the research from the same comprehensive schools. Children were organized into first and second groups. The curriculum of the first group was modified and the second - the same as group C. The focus groups conducted anthropometric (height, weight, BMI) and physiometric (VC, right and left handgrip strength) measurements. Dependent t test indicated that over two years E and C group girls and boys height, weight, right and left handgrip strength indices increased significantly, p < 0.05. E group girls and boys BMI indices did not change significantly, p > 0.05, i.e. height and weight ratio of girls, who participated in NFPE in school, became more proportional. C group girls VC indices did not differ significantly, p > 0.05. Independent t test indicated that in the first and second research stage differences of anthropometric and physiometric measurements of the groups are not significant, p > 0.05. Formulated and implemented curriculum of non-formal education in school, based on olympic pedagogy, had the biggest positive influence on decreasing 11-13 years old children level of BMI and increasing level of VC.

Keywords: non – formal physical education, olympic pedagogy, physical development, health sciences

Procedia PDF Downloads 558
2859 Melt Conditioned-Twin Roll Casting of Magnesium Alloy

Authors: Sanjeev Das

Abstract:

In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. The microstructures showed uniform fine equiaxed grain morphology in the case of MC-TRC cast samples. In the case of TRC samples elongated grains with centerline segregation was observed. Further investigation showed both the process has different solidification mechanism. Tensile tests were performed at 250–400ºC for both TRC and MCTRC samples. At 250ºC, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. It was observed that homogenized MC-TRC samples were easily hot stamped compared to TRC samples.

Keywords: MC-TRC, magnesium alloy, solidification, nucleation

Procedia PDF Downloads 183
2858 Soil-Cement Floor Produced with Alum Water Treatment Residues

Authors: Flavio Araujo, Paulo Scalize, Julio Lima, Natalia Vieira, Antonio Albuquerque, Isabela Santos

Abstract:

From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry.

Keywords: residue, soil-cement floor, sustainable, WTP

Procedia PDF Downloads 561
2857 11-Round Impossible Differential Attack on Midori64

Authors: Zhan Chen, Wenquan Bi

Abstract:

This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.

Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori

Procedia PDF Downloads 271
2856 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 139
2855 Characteristics of Wood Plastics Nano-Composites Made of Agricultural Residues and Urban Recycled Polymer Materials

Authors: Amir Nourbakhsh Habibabadi, Alireza Ashori

Abstract:

Context: The growing concern over the management of plastic waste and the high demand for wood-based products have led to the development of wood-plastic composites. Agricultural residues, which are abundantly available, can be used as a source of lignocellulosic fibers in the production of these composites. The use of recycled polymers and nanomaterials is also a promising approach to enhance the mechanical and physical properties of the composites. Research Aim: The aim of this study was to investigate the feasibility of using recycled high-density polyethylene (rHDPE), polypropylene (rPP), and agricultural residues fibers for manufacturing wood-plastic nano-composites. The effects of these materials on the mechanical properties of the composites, specifically tensile and flexural strength, were studied. Methodology: The study utilized an experimental approach where extruders and hot presses were used to fabricate the composites. Five types of cellulosic residues fibers (bagasse, corn stalk, rice straw, sunflower, and canola stem), three levels of nanomaterials (carbon nanotubes, nano silica, and nanoclay), and coupling agent were used to chemically bind the wood/polymer fibers, chemicals, and reinforcement. The mechanical properties of the composites were then analyzed. Findings: The study found that composites made with rHDPE provided moderately superior tensile and flexural properties compared to rPP samples. The addition of agricultural residues in several types of wood-plastic nano-composites significantly improved their bending and tensile properties, with bagasse having the most significant advantage over other lignocellulosic materials. The use of recycled polymers, agricultural residues, and nano-silica resulted in composites with the best strength properties. Theoretical Importance: The study's findings suggest that using agricultural fiber residues as reinforcement in wood/plastic nanocomposites is a viable approach to improve the mechanical properties of the composites. Additionally, the study highlights the potential of using recycled polymers in the development of value-added products without compromising the product's properties. Data Collection and Analysis Procedures: The study collected data on the mechanical properties of the composites using tensile and flexural tests. Statistical analyses were performed to determine the significant effects of the various materials used. Question addressed: Can agricultural residues and recycled polymers be used to manufacture wood-plastic nano-composites with enhanced mechanical properties? Conclusion: The study demonstrates the feasibility of using agricultural residues and recycled polymers in the production of wood-plastic nano-composites. The addition of these materials significantly improved the mechanical properties of the composites, with bagasse being the most effective agricultural residue. The study's findings suggest that composites made from recycled materials can offer value-added products without sacrificing performance.

Keywords: polymer, composites, wood, nano

Procedia PDF Downloads 64
2854 The Plasma Additional Heating Systems by Electron Cyclotron Waves

Authors: Ghoutia Naima Sabri, Tayeb Benouaz

Abstract:

The interaction between wave and electron cyclotron movement when the electron passes through a layer of resonance at a fixed frequency results an Electron Cyclotron (EC) absorption in Tokamak plasma and dependent magnetic field. This technique is the principle of additional heating (ECRH) and the generation of non-inductive current drive (ECCD) in modern fusion devices. In this paper we are interested by the problem of EC absorption which used a microscopic description of kinetic theory treatment versus the propagation which used the cold plasma description. The power absorbed depends on the optical depth which in turn depends on coefficient of absorption and the order of the excited harmonic for O-mode or X-mode. There is another possibility of heating by dissipation of Alfven waves, based on resonance of cold plasma waves, the shear Alfven wave (SW) and the compressional Alfven wave (FW). Once the (FW) power is coupled to (SW), it stays on the magnetic surface and dissipates there, which cause the heating of bulk plasmas.

Keywords: electron cyclotron, heating, plasma, tokamak

Procedia PDF Downloads 508
2853 Surface Nanocrystalline and Hardening Effects of Ti–Al–V Alloy by Electropulsing Ultrasonic Shock

Authors: Xiaoxin Ye, Guoyi Tang

Abstract:

The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It’s indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It’s different from conventional experiments and theory. It’s discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it’s supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

Keywords: titanium alloys, electropulsing, ultrasonic shock, microhardness, nanocrystalline

Procedia PDF Downloads 286
2852 Vitamin B9 Separation by Synergic Pertraction

Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan

Abstract:

Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.

Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid

Procedia PDF Downloads 272
2851 Using Dynamic Bayesian Networks to Characterize and Predict Job Placement

Authors: Xupin Zhang, Maria Caterina Bramati, Enrest Fokoue

Abstract:

Understanding the career placement of graduates from the university is crucial for both the qualities of education and ultimate satisfaction of students. In this research, we adapt the capabilities of dynamic Bayesian networks to characterize and predict students’ job placement using data from various universities. We also provide elements of the estimation of the indicator (score) of the strength of the network. The research focuses on overall findings as well as specific student groups including international and STEM students and their insight on the career path and what changes need to be made. The derived Bayesian network has the potential to be used as a tool for simulating the career path for students and ultimately helps universities in both academic advising and career counseling.

Keywords: dynamic bayesian networks, indicator estimation, job placement, social networks

Procedia PDF Downloads 368
2850 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon

Procedia PDF Downloads 637
2849 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation

Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida

Abstract:

Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.

Keywords: clogging, double layer porous asphalt, infiltration capacity, rainfall intensity

Procedia PDF Downloads 486
2848 Quantifying Fatigue during Periods of Intensified Competition in Professional Ice Hockey Players: Magnitude of Fatigue in Selected Markers

Authors: Eoin Kirwan, Christopher Nulty, Declan Browne

Abstract:

The professional ice hockey season consists of approximately 60 regular season games with periods of fixture congestion occurring several times in the average season. These periods of congestion provide limited time for recovery, exposing the athletes to the risk of competing whilst not fully recovered. Although a body of research is growing with respect to monitoring fatigue, particularly during periods of congested fixtures in team sports such as rugby and soccer, it has received little to no attention thus far in ice hockey athletes. Consequently, there is limited knowledge on monitoring tools that might effectively detect a fatigue response and the magnitude of fatigue that can accumulate when recovery is limited by competitive fixtures. The benefit of quantifying and establishing fatigue status is the ability to optimise training and provide pertinent information on player health, injury risk, availability and readiness. Some commonly used methods to assess fatigue and recovery status of athletes include the use of perceived fatigue and wellbeing questionnaires, tests of muscular force and ratings of perceive exertion (RPE). These measures are widely used in popular team sports such as soccer and rugby and show promise as assessments of fatigue and recovery status for ice hockey athletes. As part of a larger study, this study explored the magnitude of changes in adductor muscle strength after game play and throughout a period of fixture congestion and examined the relationship between internal game load and perceived wellbeing with adductor muscle strength. Methods 8 professional ice hockey players from a British Elite League club volunteered to participate (age = 29.3 ± 2.49 years, height = 186.15 ± 6.75 cm, body mass = 90.85 ± 8.64 kg). Prior to and after competitive games each player performed trials of the adductor squeeze test at 0˚ hip flexion with the lead investigator using hand-held dynamometry. Rate of perceived exertion was recorded for each game and from data of total ice time individual session RPE was calculated. After each game players completed a 5- point questionnaire to assess perceived wellbeing. Data was collected from six competitive games, 1 practice and 36 hours post the final game, over a 10 – day period. Results Pending final data collection in February Conclusions Pending final data collection in February.

Keywords: Conjested fixtures, fatigue monitoring, ice hockey, readiness

Procedia PDF Downloads 136
2847 Effect of Water Absorption on the Fatigue Behavior of Glass/Polyester Composite

Authors: Djamel Djeghader, Bachir Redjel

Abstract:

The composite materials of glass fibers can be used as a repair material for damage elements under repeated stresses, and in various environments. A cyclic bending characterization of a glass/polyester composite material was carried out with consideration of the period of immersion in water. These tests describe the behavior of materials and identify the mechanical fatigue characteristics using the Wohler Curve for different immersion time: 0, 90, 180 and 270 days in water. These curves are characterized by a dispersion in the lifetimes were modeled by straight whose intercepts are very similar and comparable to the static strength. This material deteriorates fatigue at a constant rate, which increases with increasing immersion time in water at a constant speed. The endurance limit seems to be independent of the immersion time in the water.

Keywords: fatigue, composite, glass, polyester, immersion, wohler

Procedia PDF Downloads 307
2846 Air-Purifying Properties of Cement Mortars Intermixed with TiO₂-SiO₂ Composites

Authors: A.M. Kaja, Q. Yu, H.J.H Brouwers

Abstract:

An increased functionality of concrete towards higher eco-efficiency is nowadays of great importance due to the decreasing air quality in urban areas. Surface modifications of concrete walls and roads, as a coating or an intermixing of the surface layer with TiO₂, provide an opportunity to improve the air quality by reducing NOx via photocatalytic phenomena. Nevertheless, there are still concerns regarding the cost-efficiency as well as the toxicity of intermediate products which can be produced during the photocatalysis, limiting a widespread adoption of these materials. This study addresses the problem of the selectivity of cement mortars towards nitrate in terms of microstructural characteristics and hydration products. The ability of cement mortars matrix intermixed with commercial TiO₂ and TiO₂-SiO₂ composite to abate NO₂ is investigated. The influence of hydration products formed under the carbonation facilitating conditions is discussed and solutions how to optimize the mix design are proposed. The incorporation of the TiO₂-SiO₂ composite into cement mortar is found to increase the nitrate selectivity index.

Keywords: cement matrix, NO₂ abatement, photocatalysis, TiO₂-SiO₂ composite

Procedia PDF Downloads 156
2845 Navigating the VUCA World with a Strong Heart and Mind: How to Build Passion and Character

Authors: Shynn Lim, Ching Tan

Abstract:

The paper presents the PASSION Programme designed by a government school in Singapore, guided by national goals as well as research-based pedagogies that aims to nurture students to become lifelong learners with the strength of character. The design and enactment of the integrated approach to develop in students good character, resilience and social-emotional well-being, future readiness, and active citizenship is guided by a set of principles that amalgamates Biesta’s domains of purposes of education and authentic learning. Data in terms of evidence of students’ learning and students’ feedback were collected, analysed, and suggests that the learning experience benefitted students by boosting their self-confidence, self-directed and collaborative learning skills, as well as empathy.

Keywords: lifelong learning, character and citizenship education, education and career guidance, 21CC, teaching and learning empathy

Procedia PDF Downloads 138
2844 The Study of Strength and Weakness Points of Various Techniques for Calculating the Volume of Done Work in Civil Projects

Authors: Ali Fazeli Moslehabadi

Abstract:

One of the topics discussed in civil projects, during the execution of the project, which the continuous change of work volumes is usually the characteristics of these types of projects, is how to calculate the volume of done work. The difference in volumes announced by the execution unit with the estimated volume by the technical office unit, has direct effect on the announced progress of the project. This issue can show the progress of the project more or less than actual value and as a result making mistakes for stakeholders and project managers and misleading them. This article intends to introduce some practical methods for calculating the volume of done work in civil projects. It then reviews the strengths and weaknesses of each of them, in order to resolve these contradictions and conflicts.

Keywords: technical skills, systemic skills, communication skills, done work volume calculation techniques

Procedia PDF Downloads 151
2843 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine

Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland

Abstract:

The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.

Keywords: force-velocity, leg-press, power-velocity, profiling, reliability

Procedia PDF Downloads 51