Search results for: spatial and temporal data
23744 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 38223743 Climate Changes Impact on Artificial Wetlands
Authors: Carla Idely Palencia-Aguilar
Abstract:
Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.Keywords: DEM, evapotranspiration, geostatistics, NDVI
Procedia PDF Downloads 12023742 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)
Authors: Fatih Iscan, Ceren Yagci
Abstract:
Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economical, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economical factors for site selection of landfill areas and using GIS for an decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/TURKEY city, Güzelyurt district practice.Keywords: GIS, landfill, solid waste, spatial analysis
Procedia PDF Downloads 35923741 Wireless Sensor Network for Forest Fire Detection and Localization
Authors: Tarek Dandashi
Abstract:
WSNs may provide a fast and reliable solution for the early detection of environment events like forest fires. This is crucial for alerting and calling for fire brigade intervention. Sensor nodes communicate sensor data to a host station, which enables a global analysis and the generation of a reliable decision on a potential fire and its location. A WSN with TinyOS and nesC for the capturing and transmission of a variety of sensor information with controlled source, data rates, duration, and the records/displaying activity traces is presented. We propose a similarity distance (SD) between the distribution of currently sensed data and that of a reference. At any given time, a fire causes diverging opinions in the reported data, which alters the usual data distribution. Basically, SD consists of a metric on the Cumulative Distribution Function (CDF). SD is designed to be invariant versus day-to-day changes of temperature, changes due to the surrounding environment, and normal changes in weather, which preserve the data locality. Evaluation shows that SD sensitivity is quadratic versus an increase in sensor node temperature for a group of sensors of different sizes and neighborhood. Simulation of fire spreading when ignition is placed at random locations with some wind speed shows that SD takes a few minutes to reliably detect fires and locate them. We also discuss the case of false negative and false positive and their impact on the decision reliability.Keywords: forest fire, WSN, wireless sensor network, algortihm
Procedia PDF Downloads 26223740 A Feasibility Study of Crowdsourcing Data Collection for Facility Maintenance Management
Authors: Mohamed Bin Alhaj, Hexu Liu, Mohammed Sulaiman, Osama Abudayyeh
Abstract:
An effective facility maintenance management (FMM) system plays a crucial role in improving the quality of services and maintaining the facility in good condition. Current FMM heavily relies on the quality of the data collection function of the FMM systems, at times resulting in inefficient FMM decision-making. The new technology-based crowdsourcing provides great potential to improve the current FMM practices, especially in terms of timeliness and quality of data. This research aims to investigate the feasibility of using new technology-driven crowdsourcing for FMM and highlight its opportunities and challenges. A survey was carried out to understand the human, data, system, geospatial, and automation characteristics of crowdsourcing for an educational campus FMM via social networks. The survey results were analyzed to reveal the challenges and recommendations for the implementation of crowdsourcing for FMM. This research contributes to the body of knowledge by synthesizing the challenges and opportunities of using crowdsourcing for facility maintenance and providing a road map for applying crowdsourcing technology in FMM. In future work, a conceptual framework will be proposed to support data-driven FMM using social networks.Keywords: crowdsourcing, facility maintenance management, social networks
Procedia PDF Downloads 17323739 Exploring the Effects of Transcendental Mindfulness Meditation on Anxiety Symptoms in Young Females
Authors: Claudia Cedeno Nadal, Mei-Ling Villafana, Griela Rodriguez, Jessica Martin, Jennifer Martin, Megan Patel
Abstract:
This study systematically examines the impact of Transcendental Mindfulness Meditation on anxiety symptoms in young females aged 18-25. Through a comprehensive literature review, we found consistent evidence supporting the positive influence of Transcendental Mindfulness Meditation on reducing anxiety, enhancing overall well-being, and decreasing perceived stress levels within this demographic. The mechanisms underlying these effects include heightened self-awareness, improved emotional regulation, and the development of effective stress-coping strategies. These findings have significant implications for mental health interventions targeting young females. However, the reviewed studies had some limitations, such as small sample sizes and reliance on self-report measures. To advance this field, future research should focus on larger sample sizes and utilize a broader range of measurement methods, including neuroscience assessments. Additionally, investigating the temporal relationships between Transcendental Mindfulness Meditation, proposed mediators, and anxiety symptoms will help establish causal specificity and a deeper understanding of the precise mechanisms of action. The development of integrative models based on these mechanisms can further enhance the effectiveness of Transcendental Mindfulness Meditation as an intervention for anxiety in this demographic. This study contributes to the current knowledge on the potential benefits of Transcendental Mindfulness Meditation for reducing anxiety in young females, paving the way for more targeted and effective mental health interventions in this population.Keywords: mindfulness, meditation, anxiety, transcendental mindfulness
Procedia PDF Downloads 7023738 Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling
Authors: Taehan Bae
Abstract:
In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets.Keywords: Erlang mixture, length-biased distribution, transformed gamma distribution, asymptotic tail estimate, EM algorithm, expectation-maximization algorithm
Procedia PDF Downloads 22423737 Robust Data Image Watermarking for Data Security
Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan
Abstract:
In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms
Procedia PDF Downloads 51523736 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors
Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde
Abstract:
In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance
Procedia PDF Downloads 12423735 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data
Authors: Saeid Gharechelou, Ryutaro Tateishi
Abstract:
Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake
Procedia PDF Downloads 17223734 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks
Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi
Abstract:
In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks
Procedia PDF Downloads 37823733 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: apartment complex, big data, life-cycle building value analysis, machine learning
Procedia PDF Downloads 37423732 Blockchain Technology Security Evaluation: Voting System Based on Blockchain
Authors: Omid Amini
Abstract:
Nowadays, technology plays the most important role in the life of human beings because people use technology to share data and to communicate with each other, but the challenge is the security of this data. For instance, as more people turn to technology in the world, more data is generated, and more hackers try to steal or infiltrate data. In addition, the data is under the control of the central authority, which can trigger the challenge of losing information and changing information; this can create widespread anxiety for different people in different communities. In this paper, we sought to investigate Blockchain technology that can guarantee information security and eliminate the challenge of central authority access to information. Now a day, people are suffering from the current voting system. This means that the lack of transparency in the voting system is a big problem for society and the government in most countries, but blockchain technology can be the best alternative to the previous voting system methods because it removes the most important challenge for voting. According to the results, this research can be a good start to getting acquainted with this new technology, especially on the security part and familiarity with how to use a voting system based on blockchain in the world. At the end of this research, it is concluded that the use of blockchain technology can solve the major security problem and lead to a secure and transparent election.Keywords: blockchain, technology, security, information, voting system, transparency
Procedia PDF Downloads 13223731 Shaabi in the City: On Modernizing Sounds and Exclusion in Egyptian Cities
Authors: Mariam Aref Mahmoud
Abstract:
After centuries of historical development, Egypt is no stranger to national identity frustrations. What may or may not be counted as this “national identity” becomes a source of contention. Today, after decades of neoliberal reform, Cairo has become the center of Egypt’s cultural debacle. At its heart, the Egyptian capital serves as Egypt’s extension into global capitalism, its flailing hope to become part of the modernized, cosmopolitan world. Yet, to converge into this image of cosmopolitanism, Cairo must silence the perceived un-modernized sounds, cultures, and spaces that arise from within its alleyways. Currently, the agitation surrounding shaabi music, particularly, that of mahraganat, places these contentions to the center of the modernization debates. This paper will discuss the process through which the conversations between modernization, space, and culture have taken place through a historical analysis of national identity formation under Egypt’s neoliberal regimes. Through this, the paper concludes that music becomes a spatial force through which public space, identity, and globalization must be contested. From these findings researchers can then analyze Cairo through not only its physical landscapes, but also its metaphysical features – such as the soundscape.Keywords: music, space, globalization, Cairo
Procedia PDF Downloads 11123730 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 16723729 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 15923728 Design and Implementation of Flexible Metadata Editing System for Digital Contents
Authors: K. W. Nam, B. J. Kim, S. J. Lee
Abstract:
Along with the development of network infrastructures, such as high-speed Internet and mobile environment, the explosion of multimedia data is expanding the range of multimedia services beyond voice and data services. Amid this flow, research is actively being done on the creation, management, and transmission of metadata on digital content to provide different services to users. This paper proposes a system for the insertion, storage, and retrieval of metadata about digital content. The metadata server with Binary XML was implemented for efficient storage space and retrieval speeds, and the transport data size required for metadata retrieval was simplified. With the proposed system, the metadata could be inserted into the moving objects in the video, and the unnecessary overlap could be minimized by improving the storage structure of the metadata. The proposed system can assemble metadata into one relevant topic, even if it is expressed in different media or in different forms. It is expected that the proposed system will handle complex network types of data.Keywords: video, multimedia, metadata, editing tool, XML
Procedia PDF Downloads 17123727 System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data
Authors: Luís Pina
Abstract:
The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.Keywords: GSM, marine biology, marine turtles, unstructured supplementary service data (USSD)
Procedia PDF Downloads 20623726 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising
Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri
Abstract:
Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing
Procedia PDF Downloads 58923725 The Trend of Injuries in Building Fire in Tehran from 2002 to 2012
Authors: Mohammadreza Ashouri, Majid Bayatian
Abstract:
Analysis of fire data is a way for the implementation of any plan to improve the level of safety in cities. Such an analysis is able to reveal signs of changes in a given period and can be used as a measure of safety. The information of about 66,341 fires (from 2002 to 2012) released by Tehran Safety Services and Fire-Fighting Organization and data on the population and the number of households provided by Tehran Municipality and the Statistical Yearbook of Iran were extracted. Using the data, the fire changes, the rate of injuries, and mortality rate were determined and analyzed. The rate of injuries and mortality rate of fires per one million population of Tehran were 59.58% and 86.12%, respectively. During the study period, the number of fires and fire stations increased by 104.38% and 102.63%, respectively. Most fires (9.21%) happened in the 4th District of Tehran. The results showed that the recorded fire data have not been systematically planned for fire prevention since one of the ways to reduce injuries caused by fires is to develop a systematic plan for necessary actions in emergency situations. To determine a reliable source for fire prevention, the stages, definitions of working processes and the cause and effect chains should be considered. Therefore, a comprehensive statistical system should be developed for reported and recorded fire data.Keywords: fire statistics, fire analysis, accident prevention, Tehran
Procedia PDF Downloads 18423724 “Fake It Till You Make It”: A Qualitative Study into the Well-being of Autistic Women
Authors: Kathleen Seers, Rachel Hogg
Abstract:
Diagnosis of Autism Spectrum Disorder (ASD) in women is increasing, prompting research into the presentation of female ASD and exploring why females are failing to meet the diagnostic threshold. One explanation is the use of masking behaviors, where traits of ASD are suppressed and gender-appropriate behaviors are mimicked to reduce the visibility and victimization of ASD girls. Current research explores ASD presentation and the lived experiences of ASD girls and adolescents; however, there is a paucity of literature in relation to the intra- and inter- psychic experiences of ASD women. Through a social constructionist framework, this qualitative study sought to understand how the construction of gender and the medicalisation of ASD influences women’s experiences of ASD. This study also explored the use and consequence of masking strategies and the impact this has on well-being. Eight women were interviewed, and three major themes were identified. The themes outline the influence of gender expectations and social norms on the women’s experiences, the significance of diagnosis to their identity, and the influence of the medicalization of ASD. Participants shared experiences of feeling different and internalizing blame for this difference. The feeling of difference was a major contributor to the women’s positive or negative mental well-being. The process of diagnosis allowed participants to create and confirm their identity. Diagnosis also led to improvements in well-being, however, the findings also explore the complexity of labeling individuals with a disorder and the difficulties that arise from the construct of ‘functionality’ for those with Autism. The study also explores the temporal nature of ASD and the changing experiences of women as they mature. It is hoped this study promotes discussion and provides clinicians and those connected to ASD women with insights into the support ASD women require to live authentic lives.Keywords: female autism, gender, masking, social constructionism
Procedia PDF Downloads 12123723 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services
Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.Keywords: internet of things (IoT), IoT platform, serviceplatform, virtual file system (VSF)
Procedia PDF Downloads 50223722 A Review on 3D Smart City Platforms Using Remotely Sensed Data to Aid Simulation and Urban Analysis
Authors: Slim Namouchi, Bruno Vallet, Imed Riadh Farah
Abstract:
3D urban models provide powerful tools for decision making, urban planning, and smart city services. The accuracy of this 3D based systems is directly related to the quality of these models. Since manual large-scale modeling, such as cities or countries is highly time intensive and very expensive process, a fully automatic 3D building generation is needed. However, 3D modeling process result depends on the input data, the proprieties of the captured objects, and the required characteristics of the reconstructed 3D model. Nowadays, producing 3D real-world model is no longer a problem. Remotely sensed data had experienced a remarkable increase in the recent years, especially data acquired using unmanned aerial vehicles (UAV). While the scanning techniques are developing, the captured data amount and the resolution are getting bigger and more precise. This paper presents a literature review, which aims to identify different methods of automatic 3D buildings extractions either from LiDAR or the combination of LiDAR and satellite or aerial images. Then, we present open source technologies, and data models (e.g., CityGML, PostGIS, Cesiumjs) used to integrate these models in geospatial base layers for smart city services.Keywords: CityGML, LiDAR, remote sensing, SIG, Smart City, 3D urban modeling
Procedia PDF Downloads 13523721 Climate Indices: A Key Element for Climate Change Adaptation and Ecosystem Forecasting - A Case Study for Alberta, Canada
Authors: Stefan W. Kienzle
Abstract:
The increasing number of occurrences of extreme weather and climate events have significant impacts on society and are the cause of continued and increasing loss of human and animal lives, loss or damage to property (houses, cars), and associated stresses to the public in coping with a changing climate. A climate index breaks down daily climate time series into meaningful derivatives, such as the annual number of frost days. Climate indices allow for the spatially consistent analysis of a wide range of climate-dependent variables, which enables the quantification and mapping of historical and future climate change across regions. As trends of phenomena such as the length of the growing season change differently in different hydro-climatological regions, mapping needs to be carried out at a high spatial resolution, such as the 10km by 10km Canadian Climate Grid, which has interpolated daily values from 1950 to 2017 for minimum and maximum temperature and precipitation. Climate indices form the basis for the analysis and comparison of means, extremes, trends, the quantification of changes, and their respective confidence levels. A total of 39 temperature indices and 16 precipitation indices were computed for the period 1951 to 2017 for the Province of Alberta. Temperature indices include the annual number of days with temperatures above or below certain threshold temperatures (0, +-10, +-20, +25, +30ºC), frost days, and timing of frost days, freeze-thaw days, growing or degree days, and energy demands for air conditioning and heating. Precipitation indices include daily and accumulated 3- and 5-day extremes, days with precipitation, period of days without precipitation, and snow and potential evapotranspiration. The rank-based nonparametric Mann-Kendall statistical test was used to determine the existence and significant levels of all associated trends. The slope of the trends was determined using the non-parametric Sen’s slope test. The Google mapping interface was developed to create the website albertaclimaterecords.com, from which beach of the 55 climate indices can be queried for any of the 6833 grid cells that make up Alberta. In addition to the climate indices, climate normals were calculated and mapped for four historical 30-year periods and one future period (1951-1980, 1961-1990, 1971-2000, 1981-2017, 2041-2070). While winters have warmed since the 1950s by between 4 - 5°C in the South and 6 - 7°C in the North, summers are showing the weakest warming during the same period, ranging from about 0.5 - 1.5°C. New agricultural opportunities exist in central regions where the number of heat units and growing degree days are increasing, and the number of frost days is decreasing. While the number of days below -20ºC has about halved across Alberta, the growing season has expanded by between two and five weeks since the 1950s. Interestingly, both the number of days with heat waves and cold spells have doubled to four-folded during the same period. This research demonstrates the enormous potential of using climate indices at the best regional spatial resolution possible to enable society to understand historical and future climate changes of their region.Keywords: climate change, climate indices, habitat risk, regional, mapping, extremes
Procedia PDF Downloads 9223720 Structural Damage Detection via Incomplete Model Data Using Output Data Only
Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation
Procedia PDF Downloads 36523719 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm
Authors: P. Senthil Kumari
Abstract:
Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.Keywords: text mining, data classification, community network, learning algorithm
Procedia PDF Downloads 50823718 Biodegradable and Bioactive Scaffold for Bone Tissue Engineering
Authors: A. M. Malagon Escandon, J. A. Arenas Alatorre, C. P. Chaires Rosas, N. A. Vazquez Torres, B. Hernandez Tellez, G. Pinon Zarate, M. Herrera Enriquez, A. E. Castell Rodriguez
Abstract:
The current approach to the treatment of bone defects involves the use of scaffolds that provide a biological and mechanically stable niche to favor tissue repair. Despite the significant progress in the field of bone tissue engineering, several main problems associated are attributed to giving a low biodegradation degree, does not promote osseointegration and regeneration, if the bone is not healing as well as expected or fails to heal, will not be given a proper ossification or new bone formation. The actual approaches of bone tissue regeneration are directed to the use of decellularized native extracellular matrices, which are able of retain their own architecture, mechanic properties, biodegradability and promote new bone formation because they are capable of conserving proteins and other factors that are founded in physiological concentrations. Therefore, we propose an extracellular matrix-based bioscaffolds derived from bovine cancellous bone, which is processed by decellularization, demineralization, and hydrolysis of the collagen protein, these protocols have been successfully carried out in other organs and tissues; the effectiveness of its biosafety has also been previously evaluated in vivo and Food and Drug Administration (FDA) approved. In the specific case of bone, a more complex treatment is needed in comparison with other organs and tissues because is necessary demineralization and collagen denaturalization. The present work was made in order to obtain a temporal scaffold that succeed in degradation in an inversely proportional way to the synthesis of extracellular matrix and the maturation of the bone by the cells of the host.Keywords: bioactive, biodegradable, bone, extracellular matrix-based bioscaffolds, stem cells, tissue engineering
Procedia PDF Downloads 15823717 Quantification of Effects of Shape of Basement Topography below the Circular Basin on the Ground Motion Characteristics and Engineering Implications
Authors: Kamal, Dinesh Kumar, J. P. Narayan, Komal Rani
Abstract:
This paper presents the effects of shape of basement topography on the characteristics of the basin-generated surface (BGS) waves and associated average spectral amplification (ASA) in the 3D basins having circular surface area. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on parsimonious staggered-grid approximation of 3D viscoelastic wave equations. An increase of amplitude amplification and ASA towards the centre of different considered basins was obtained. Further, it may be concluded that ASA in basin very much depends on the impedance contrast, exposure area of basement to the incident wave front, edge-slope, focusing of the BGS-waves and sediment-damping. There is an urgent need of incorporation of a map of differential ground motion (DGM) caused by the BGS-waves as one of the output maps of the seismic microzonation.Keywords: 3D viscoelastic simulation, basin-generated surface waves, maximum displacement, average spectral amplification
Procedia PDF Downloads 29723716 Expanding the Evaluation Criteria for a Wind Turbine Performance
Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin
Abstract:
The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses
Procedia PDF Downloads 39023715 Numerical Modeling on the Vehicle Interior Noise Produced by Rain-the-Roof Excitation
Authors: Zilong Peng, Jun Fan
Abstract:
With the improvement of the living standards, the requirement on the acoustic comfort of the vehicle interior environment is becoming higher. The rain-the-roof producing interior noise is a common phenomenon for the vehicle, which usually discourages the conversation, especially for the heavy rain. This paper presents some numerical results about the rain-the-roof noise. The impact of each water drop is modeled as a short pulse, and the excitation locations on the roof are generated randomly. The vehicle body is simplified to a box closed with some certain-thickness shells. According to the main frequency components of the rain excitation, the analyzing frequency range is divided as low, high and middle frequency domains, which makes the vehicle body are modeled using finite element method (FEM), statistical energy analysis (SEA) and hybrid FE-SEA method, respectively. Furthermore, the effect of spatial distribution density and size of the rain on the sound pressure level are also discussed. These results may provide a guide for designing a more silent vehicle in the special weather.Keywords: rain-the-roof noise, vehicle, finite element method, statistical energy analysis
Procedia PDF Downloads 202