Search results for: missing data estimation
23444 Fermentable Bio-Ethanol Using Bakers and Palmwine Yeasts: Indices of Bioavailability of Carbohydrate and Sugar from Fungal Treated Rice Husk
Authors: Ezeonu, Chukwuma Stephen, Onwurah, Ikechukwu Noel Emmanuel
Abstract:
Pure strains of Aspergillus fumigatus (AF), aspergillus niger (AN), aspergillus oryzae (AO), trichophyton mentagrophyte (TM), trichophyton rubrum (TR) and Trichophyton soudanense (TS) were isolated from decomposing rice husk. Freshly processed rice husk in Mandle’s medium were heat pre-treated using an autoclave at 121oC for 20 minutes. The isolated fungi as monoculture and di-culture combinations were inoculated into each of the pre-treated rice husk with the exception of two controls. Seven days hydrolysis was followed by estimation of carbohydrate, reducing sugar and non-reducing sugar. Fungal treated rice husks were left to ferment for 7 days with introduction of both baker’s and palm wine yeast. The result obtained in the work gave the highest carbohydrate (20.53 ± 2.73 %) from rice husks treated with TS + TR di-culture. The highest soluble reducing sugar (2.66 ± 0.14 %) was obtained from rice husk treated with TM. The highest soluble nonreducing sugar (18.08 ± 2.61 %) was from AF. The introduction of yeasts from palm wine gave the highest bio-ethanol (12.82 ± 0.39 %) from AO. The highest bio-ethanol (6.60 ± 0.10 %) from baker's yeast fermentation was in AO + TS treated rice husk. There was increased availability of sugar and moderate yield of bio-ethanol, especially from palm wine yeast.Keywords: fungi, rice husk, carbohydrate, reducing sugar, non-reducing sugar, ethanol, fermentation
Procedia PDF Downloads 44323443 A Bayesian Approach for Health Workforce Planning in Portugal
Authors: Diana F. Lopes, Jorge Simoes, José Martins, Eduardo Castro
Abstract:
Health professionals are the keystone of any health system, by delivering health services to the population. Given the time and cost involved in training new health professionals, the planning process of the health workforce is particularly important as it ensures a proper balance between the supply and demand of these professionals and it plays a central role on the Health 2020 policy. In the past 40 years, the planning of the health workforce in Portugal has been conducted in a reactive way lacking a prospective vision based on an integrated, comprehensive and valid analysis. This situation may compromise not only the productivity and the overall socio-economic development but the quality of the healthcare services delivered to patients. This is even more critical given the expected shortage of the health workforce in the future. Furthermore, Portugal is facing an aging context of some professional classes (physicians and nurses). In 2015, 54% of physicians in Portugal were over 50 years old, and 30% of all members were over 60 years old. This phenomenon associated to an increasing emigration of young health professionals and a change in the citizens’ illness profiles and expectations must be considered when planning resources in healthcare. The perspective of sudden retirement of large groups of professionals in a short time is also a major problem to address. Another challenge to embrace is the health workforce imbalances, in which Portugal has one of the lowest nurse to physician ratio, 1.5, below the European Region and the OECD averages (2.2 and 2.8, respectively). Within the scope of the HEALTH 2040 project – which aims to estimate the ‘Future needs of human health resources in Portugal till 2040’ – the present study intends to get a comprehensive dynamic approach of the problem, by (i) estimating the needs of physicians and nurses in Portugal, by specialties and by quinquenium till 2040; (ii) identifying the training needs of physicians and nurses, in medium and long term, till 2040, and (iii) estimating the number of students that must be admitted into medicine and nursing training systems, each year, considering the different categories of specialties. The development of such approach is significantly more critical in the context of limited budget resources and changing health care needs. In this context, this study presents the drivers of the healthcare needs’ evolution (such as the demographic and technological evolution, the future expectations of the users of the health systems) and it proposes a Bayesian methodology, combining the best available data with experts opinion, to model such evolution. Preliminary results considering different plausible scenarios are presented. The proposed methodology will be integrated in a user-friendly decision support system so it can be used by politicians, with the potential to measure the impact of health policies, both at the regional and the national level.Keywords: bayesian estimation, health economics, health workforce planning, human health resources planning
Procedia PDF Downloads 25323442 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition
Authors: Michael Okeke, Andrew Blyth
Abstract:
Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)
Procedia PDF Downloads 34623441 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning
Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim
Abstract:
The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.Keywords: apartment unit plan, data-driven design, design methodology, machine learning
Procedia PDF Downloads 26923440 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique
Authors: Karchung, S. Ruangsinchaiwanich
Abstract:
This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.Keywords: electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique
Procedia PDF Downloads 14923439 Impact of Protean Career Attitude on Career Success with the Mediating Effect of Career Insight
Authors: Prabhashini Wijewantha
Abstract:
This study looks at the impact of protean career attitude of employees on their career success and next it looks at the mediation effect of career insights on the above relationship. Career success is defined as the accomplishment of desirable work related outcomes at any point in person’s work experiences over time and it comprises of two sub variables, namely, career satisfaction and perceived employability. Protean career attitude was measured using the eight items from the Self Directedness subscale of the Protean Career Attitude scale developed by Briscoe and Hall, where as career satisfaction was measured by the three item scale developed by Martine, Eddleston, and Veiga. Perceived employability was also evaluated using three items and career insight was measured using fourteen items that were adapted and used by De Vos and Soens. Data were collected from a sample of 300 mid career executives in Sri Lanka deploying the survey strategy and data were analyzed using the SPSS and AMOS software version 20.0. A preliminary analysis of data was initially performed where data were screened and reliability and validity were ensured. Next a simple regression analysis was performed to test the direct impact of protean career attitude on career success and the hypothesis was supported. The Baron and Kenney’s four steps, three regressions approach for mediator testing was used to calculate the mediation effect of career insight on the above relationship and a partial mediation was supported by the data. Finally theoretical and practical implications are discussed.Keywords: career success, career insight, mid career MBAs, protean career attitude
Procedia PDF Downloads 36123438 Studying the Influence of Systematic Pre-Occupancy Data Collection through Post-Occupancy Evaluation: A Shift in the Architectural Design Process
Authors: Noor Abdelhamid, Donovan Nelson, Cara Prosser
Abstract:
The architectural design process could be mapped out as a dialogue between designer and user that is constructed across multiple phases with the overarching goal of aligning design outcomes with user needs. Traditionally, this dialogue is bounded within a preliminary phase of determining factors that will direct the design intent, and a completion phase, of handing off the project to the client. Pre- and post-occupancy evaluations (P/POE’s) could provide an alternative process by extending this dialogue on both ends of the design process. The purpose of this research is to study the influence of systematic pre-occupancy data collection in achieving design goals by conducting post-occupancy evaluations of two case studies. In the context of this study, systematic pre-occupancy data collection is defined as the preliminary documentation of the existing conditions that helps portray stakeholders’ needs. When implemented, pre-occupancy occurs during the early phases of the architectural design process, utilizing the information to shape the design intent. Investigative POE’s are performed on two case studies with distinct early design approaches to understand how the current space is impacting user needs, establish design outcomes, and inform future strategies. The first case study underwent systematic pre-occupancy data collection and synthesis, while the other represents the traditional, uncoordinated practice of informally collecting data during an early design phase. POE’s target the dynamics between the building and its occupants by studying how spaces are serving the needs of the users. Data collection for this study consists of user surveys, audiovisual materials, and observations during regular site visits. Mixed methods of qualitative and quantitative analyses are synthesized to identify patterns in the data. The paper concludes by positioning value on both sides of the architectural design process: the integration of systematic pre-occupancy methods in the early phases and the reinforcement of a continued dialogue between building and design team after building completion.Keywords: architecture, design process, pre-occupancy data, post-occupancy evaluation
Procedia PDF Downloads 16623437 An Analysis of Oil Price Changes and Other Factors Affecting Iranian Food Basket: A Panel Data Method
Authors: Niloofar Ashktorab, Negar Ashktorab
Abstract:
Oil exports fund nearly half of Iran’s government expenditures, since many years other countries have been imposed different sanctions against Iran. Sanctions that primarily target Iran’s key energy sector have harmed Iran’s economy. The strategic effects of sanctions might be reduction as Iran adjusts to them economically. In this study, we evaluate the impact of oil price and sanctions against Iran on food commodity prices by using panel data method. Here, we find that the food commodity prices, the oil price and real exchange rate are stationary. The results show positive effect of oil price changes, real exchange rate and sanctions on food commodity prices.Keywords: oil price, food basket, sanctions, panel data, Iran
Procedia PDF Downloads 36023436 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology
Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy
Abstract:
Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.Keywords: legacy systems, redocumentation, big data analysis, parallel processing
Procedia PDF Downloads 4823435 Armenian Refugees in Early 20th C Japan: Quantitative Analysis on Their Number Based on Japanese Historical Data with the Comparison of a Foreign Historical Data
Authors: Meline Mesropyan
Abstract:
At the beginning of the 20th century, Japan served as a transit point for Armenian refugees fleeing the 1915 Genocide. However, research on Armenian refugees in Japan is sparse, and the Armenian Diaspora has never taken root in Japan. Consequently, Japan has not been considered a relevant research site for studying Armenian refugees. The primary objective of this study is to shed light on the number of Armenian refugees who passed through Japan between 1915 and 1930. Quantitative analyses will be conducted based on newly uncovered Japanese archival documents. Subsequently, the Japanese data will be compared to American immigration data to estimate the potential number of refugees in Japan during that period. This under-researched area is relevant to both the Armenian Diaspora and refugee studies in Japan. By clarifying the number of refugees, this study aims to enhance understanding of Japan's treatment of refugees and the extent of humanitarian efforts conducted by organizations and individuals in Japan, contributing to the broader field of historical refugee studies.Keywords: Armenian genocide, Armenian refugees, Japanese statistics, number of refugees
Procedia PDF Downloads 6023434 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis
Authors: Gon Park
Abstract:
Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.Keywords: cadastral data, green Infrastructure, network analysis, parcel data
Procedia PDF Downloads 20923433 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 14123432 The Effect of CPU Location in Total Immersion of Microelectronics
Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson
Abstract:
Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.Keywords: CPU location, data centre cooling, heat sink in enclosures, immersed microelectronics, turbulent natural convection in enclosures
Procedia PDF Downloads 27523431 A Macroeconomic Analysis of Defense Industry: Comparisons, Trends and Improvements in Brazil and in the World
Authors: J. Fajardo, J. Guerra, E. Gonzales
Abstract:
This paper will outline a study of Brazil's industrial base of defense (IDB), through a bibliographic research method, combined with an analysis of macroeconomic data from several available public data platforms. This paper begins with a brief study about Brazilian national industry, including analyzes of productivity, income, outcome and jobs. Next, the research presents a study on the defense industry in Brazil, presenting the main national companies that operate in the aeronautical, army and naval branches. After knowing the main points of the Brazilian defense industry, data on the productivity of the defense industry of the main countries and competing companies of the Brazilian industry were analyzed, in order to summarize big cases in Brazil with a comparative analysis. Concerned the methodology, were used bibliographic research and the exploration of historical data series, in order to analyze information, to get trends and to make comparisons along the time. The research is finished with the main trends for the development of the Brazilian defense industry, comparing the current situation with the point of view of several countries.Keywords: economics of defence, industry, trends, market
Procedia PDF Downloads 15923430 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data
Authors: M. Lghoul, N. El Goumi, M. Guernouche
Abstract:
In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.Keywords: magnetic, gravity, structural trend, depth to basement
Procedia PDF Downloads 13423429 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions
Authors: Erva Akin
Abstract:
– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.Keywords: artificial intelligence, copyright, data governance, machine learning
Procedia PDF Downloads 8523428 Low Back Pain among Nurses in Penang Public Hospitals: A Study on Prevalence and Factors Associated
Authors: Izani Uzair Zubair, Mohd Ismail Ibrahim, Mohd Nazri Shafei, Hassan Merican Omar Naina Merican, Mohamad Sabri Othman, Mohd Izmi Ahmad Ibrahim, Rasilah Ramli, Rajpal Singh Karam Singh
Abstract:
Nurses experience a higher prevalence of low back pain (LBP) and musculoskeletal complaints as compared to other hospital workers. Due to no proper policy related to LBP, the job has exposed them to the problem. Thus, the current study aims to look at the intensity of the problem and factors associated with development of LBP. Method and Tools: A cross sectional study was carried out among 1292 nurses from six public hospitals in Penang. They were randomly selected and those who were pregnant and have been diagnosed to have LBP were excluded. A Malay validated BACK Questionnaire was used. The associated factors were determined by using multiple logistic regression from SPSS version 20.0. Result: Most of the respondents were at mean age 30 years old and had mean working experience 86 months. The prevalence of LBP was identified as 76% (95% CI 74, 82). Factors that were associated with LBP among nurses include lifting a heavy object (OR2.626 (95% CI 1.978, 3.486) p =0.001 and the estimation weight of the lifted object (OR1.443 (95% CI 1.056, 1.970) p =0.021. Conclusion: Nurses who practice lifting heavy object and weight of the object lifted give a significant contribution to the development of LBP. The prevalence of the problem is significantly high. Thus, a proper no weight lifting policy should be considered.Keywords: low back pain, nurses, Penang public hospital, Penang
Procedia PDF Downloads 48923427 Biosorption of Phenol onto Water Hyacinth Activated Carbon: Kinetics and Isotherm Study
Authors: Manoj Kumar Mahapatra, Arvind Kumar
Abstract:
Batch adsorption experiments were carried out for the removal of phenol from its aqueous solution using water hyancith activated carbon (WHAC) as an adsorbent. The sorption kinetics were analysed using pseudo-first order kinetics and pseudo-second order model, and it was observed that the sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Equilibrium data fitted well to the Freundlich model with a maximum biosorption capacity of 31.45 mg/g estimated using Langmuir model. The adsorption intensity 3.7975 represents a favorable adsorption condition.Keywords: adsorption, isotherm, kinetics, phenol
Procedia PDF Downloads 44723426 Estimation of the Antioxidant Potential of Microalgae With ABTS and CUPRAC Assays
Authors: Juliana Ianova, Lyudmila Kabaivanova, Tanya Toshkova- Yotova
Abstract:
Background: Microalgae are widely known for their nutritional and therapeutic applications due to the richness in nutrients and bioactive elements. The aim of this research was to investigate the growth and production of bioactive compounds with antioxidant properties by different microalgal strains: Scenedesmus acutus M Tomaselli 8, Scenedesmus obliquus BGP, Porphyridium aerugineum and Porphyridium cruentum (Chlorophyta and Rhodophyta). Most of them are freshwater species, with only one marine microalga P. cruentum. Methods: Monoalgal, non-axenic cultures of the investigated strains were grown autotrophically in 200 ml flasks, CO2 - 2% at 132 μmol m-2 s-1 photon flux density and T 25°C. Algal biomass concentration was measured daily by the dry weight. The ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid, C18H18N4O6S4) scavenging assay and CUPRAC assay (cupric ion reducing antioxidant capacity) were used to establish the antioxidant activity of the four algae at the end of the cultivation process, when stationary phase of growth was reached. Results: The highest biomass yield was achieved by Scenedesmus obliquus BGP- (6.6 g/L) after 144 hours of cultivation. Scenedesmus obliquus showed much higher levels of antioxidant properties from the assessed strains. The red microalga Porphyridium aerugineum also exhibits promising reducing antioxidant power. Conclusion: This study confirmed the view that microalgae are promising producers of food supplements and pharmaceuticals.Keywords: microalgae, dry weight, antioxidant activity, CUPRAC, ABTS
Procedia PDF Downloads 11123425 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication
Authors: Vedant Janapaty
Abstract:
Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.Keywords: estuary, remote sensing, machine learning, Fourier transform
Procedia PDF Downloads 10623424 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 6323423 Biomass and CPUA Estimation and Distribution Pattern of Saurida Tumbil in the Northwest of Persian Gulf
Authors: Negar Ghotbeddin, Izadpanah Zeinab, Tooraj Valinassab, Mohammad Azhir
Abstract:
It is reported on results of a trawls survey in 2011 to assess the amount of biomass and Catch Per Unit of Area (CPUA) and also to determine the distribution pattern of Synodonidae family of demersal fishes (with emphasize on great lizardfish, Saurida tumbil) as one the most important and commercial fish species in the northwest of Persian Gulf. Samples were collected at a total 65 trawl stations selected a stratified random procedure. The study area was stratified to five strata (A to E) covering the depth layers of 10-20, 20-30 and 30-50 m. The catch rates of CPUA and biomass of lizardfishes were estimated to be approximately 316.20 kg/nm2, and 2902.1 tons, respectively. The highest value of biomass of Synodontids was recorded in the east of the study area, Bordkhoon to Dayer (stratum D & E, approximately 1310.6 tonnes) and in depth layer of 30-50 m; and the lowest value was estimated for stratum A (West of Khuzestan Province) and in depth layer of 10-20 m. On the other hand, the highest CPUA was recorded in stratum D and depth layer of 20-30 m; and the lowest value for stratum A and 10-20 m depth. It was concluded that stratum D (namely from Bordkhoon to Dayer) contains the best fishing area from the point of higher density and distribution of Synodontidae in the covering area, and from the point of depth distribution, they are found in depths more than 30 m.Keywords: Saurida tumbil, CPUA, biomass, distribution, fishing area, Persian gulf
Procedia PDF Downloads 40823422 A Statistical Approach to Classification of Agricultural Regions
Authors: Hasan Vural
Abstract:
Turkey is a favorable country to produce a great variety of agricultural products because of her different geographic and climatic conditions which have been used to divide the country into four main and seven sub regions. This classification into seven regions traditionally has been used in order to data collection and publication especially related with agricultural production. Afterwards, nine agricultural regions were considered. Recently, the governmental body which is responsible of data collection and dissemination (Turkish Institute of Statistics-TIS) has used 12 classes which include 11 sub regions and Istanbul province. This study aims to evaluate these classification efforts based on the acreage of ten main crops in a ten years time period (1996-2005). The panel data grouped in 11 subregions has been evaluated by cluster and multivariate statistical methods. It was concluded that from the agricultural production point of view, it will be rather meaningful to consider three main and eight sub-agricultural regions throughout the country.Keywords: agricultural region, factorial analysis, cluster analysis,
Procedia PDF Downloads 41723421 Sustainable Investing and Corporate Performance: Evidence from Shariah Compliant Companies in Southeast Asia
Authors: Norashikin Ismail, Nadia Anridho
Abstract:
Sustainable investing is a responsible investment that focuses on Environmental, Social, and Governance (ESG) elements. ESG integration is essential in the investment process as it provides a positive contribution to the corporate performance for stakeholders, specifically investors. Sustainable investing is in line with the objectives of Shariah (Maqasid of Shariah), such as social inclusion as well as environmental preservation. This study attempts to evaluate the impact of ESG elements to the corporate financial performance among Shariah compliant stocks listed in two countries, namely Malaysia and Indonesia. The motivation of this study is to provide a further understanding in corporate sustainability for two different Islamic capital markets. The existence of the FTSE4Good Asean Index has played a vital role for ESG practices and eventually encouraged specific index for ESG and Shariah Compliant stocks. Our sample consists of 60 companies over the period 2010-2020 from two Southeast countries. We employ System Generalized Method of Moments (GMM) to reduce bias and more specific parameter estimation. Shariah Compliant companies tend to have higher ESG scores and are positively correlated to corporate financial performance. ESG integration with Shariah based investing would provide higher returns and lower risks for Muslim investors. Essentially, integrating ESG and Shariah, compliant companies lead to better financial performance.Keywords: shariah compliant, southeast asia, corporate performance, sustainable investing
Procedia PDF Downloads 19123420 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: building system, time series, diagnosis, outliers, delay, data gap
Procedia PDF Downloads 24823419 Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems
Authors: Lei Zhang
Abstract:
The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale.Keywords: classification system, land cover, ecosystem, carbon storage, object based
Procedia PDF Downloads 7123418 An Integrated Framework for Wind-Wave Study in Lakes
Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung
Abstract:
The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.Keywords: wave modelling, wind-wave, extreme value analysis, marina
Procedia PDF Downloads 8523417 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid
Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu
Abstract:
The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction
Procedia PDF Downloads 43323416 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification
Authors: Anita Kushwaha
Abstract:
We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining
Procedia PDF Downloads 27423415 Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications
Authors: Omojokun Gabriel Aju
Abstract:
Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines.Keywords: applications, first-in-first-out queuing (FIFO), optimised network evaluation tool (OPNET), packets, priority queuing (PQ), queuing discipline, weighted-fair queuing (WFQ)
Procedia PDF Downloads 362