Search results for: 3d acoustic streaming flow visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5649

Search results for: 3d acoustic streaming flow visualization

2559 Gestalt in Music and Brain: A Non-Linear Chaos Based Study with Detrended/Adaptive Fractal Analysis

Authors: Shankha Sanyal, Archi Banerjee, Sayan Biswas, Sourya Sengupta, Sayan Nag, Ranjan Sengupta, Dipak Ghosh

Abstract:

The term ‘gestalt’ has been widely used in the field of psychology which defined the perception of human mind to group any object not in part but as a 'unified' whole. Music, in general, is polyphonic - i.e. a combination of a number of pure tones (frequencies) mixed together in a manner that sounds harmonious. The study of human brain response due to different frequency groups of the acoustic signal can give us an excellent insight regarding the neural and functional architecture of brain functions. Hence, the study of music cognition using neuro-biosensors is becoming a rapidly emerging field of research. In this work, we have tried to analyze the effect of different frequency bands of music on the various frequency rhythms of human brain obtained from EEG data. Four widely popular Rabindrasangeet clips were subjected to Wavelet Transform method for extracting five resonant frequency bands from the original music signal. These frequency bands were initially analyzed with Detrended/Adaptive Fractal analysis (DFA/AFA) methods. A listening test was conducted on a pool of 100 respondents to assess the frequency band in which the music becomes non-recognizable. Next, these resonant frequency bands were presented to 20 subjects as auditory stimulus and EEG signals recorded simultaneously in 19 different locations of the brain. The recorded EEG signals were noise cleaned and subjected again to DFA/AFA technique on the alpha, theta and gamma frequency range. Thus, we obtained the scaling exponents from the two methods in alpha, theta and gamma EEG rhythms corresponding to different frequency bands of music. From the analysis of music signal, it is seen that loss of recognition is proportional to the loss of long range correlation in the signal. From the EEG signal analysis, we obtain frequency specific arousal based response in different lobes of brain as well as in specific EEG bands corresponding to musical stimuli. In this way, we look to identify a specific frequency band beyond which the music becomes non-recognizable and below which in spite of the absence of other bands the music is perceivable to the audience. This revelation can be of immense importance when it comes to the field of cognitive music therapy and researchers of creativity.

Keywords: AFA, DFA, EEG, gestalt in music, Hurst exponent

Procedia PDF Downloads 326
2558 Simultaneous Determination of Cefazolin and Cefotaxime in Urine by HPLC

Authors: Rafika Bibi, Khaled Khaladi, Hind Mokran, Mohamed Salah Boukhechem

Abstract:

A high performance liquid chromatographic method with ultraviolet detection at 264nm was developed and validate for quantitative determination and separation of cefazolin and cefotaxime in urine, the mobile phase consisted of acetonitrile and phosphate buffer pH4,2(15 :85) (v/v) pumped through ODB 250× 4,6 mm, 5um column at a flow rate of 1ml/min, loop of 20ul. In this condition, the validation of this technique showed that it is linear in a range of 0,01 to 10ug/ml with a good correlation coefficient ( R>0,9997), retention time of cefotaxime, cefazolin was 9.0, 10.1 respectively, the statistical evaluation of the method was examined by means of within day (n=6) and day to day (n=5) and was found to be satisfactory with high accuracy and precision.

Keywords: cefazolin, cefotaxime, HPLC, bioscience, biochemistry, pharmaceutical

Procedia PDF Downloads 355
2557 Assessment on the Collective Memory after Alteration of Urban Heritage: Case Study of Hengshan Mansions in Shanghai

Authors: Yueying Chen

Abstract:

A city can be developed through memory, and memory is one of the most important elements for urban contexts. Collective memory is a collection of personal memories that can be preserved with objects, places, and events of heritage, expressing culture through spatial changes. These preserved forms can evoke a sense of community and certain emotions. Collective memory in cities reflects urban spatial alterations and historical developments. It can be preserved and reflected by revitalisation projects. A major current focus in collective memory research is how to identify and preserve memory in an intangible way. The influential elements within the preservation of collective memory mainly include institutions and objects. However, current research lacks the assessment of the collective memory after alterations of urban heritage. The assessment of urban heritage lacks visualization and qualitative methods. The emergence of the application of space syntax can fill in this gap. Hengshan Mansions was a new project in 2015. The original residential area has been replaced with a comprehensive commercial area integrating boutique shopping, upscale restaurants, and creative offices. Hengshan Mansions is located in the largest historic area in Shanghai, and its development is the epitome of the traditional culture in Shanghai. Its alteration is the newest project in this area and presents the new concept of revitalisation of urban heritage. For its physical parts, modern vitality is created, and historical information is preserved at the same time. However, most of the local people are moved away, and its functions are altered a lot. The preservation of its collective memory needs to discuss furtherly. Thus, the article builds a framework to assess the collective memory of urban heritage, including spatial configuration, spatial interaction, and cultural cognition. Then, it selects Hengshan Mansions in Shanghai as a case to analyse the assessed framework. Space syntax can be applied to visualize the assessment. Based on the analysis, the article will explore the influential reasons for the collective memory after alterations and proposes relevant advice for the preservation of the collective memory of urban heritage.

Keywords: collective memory, alternation of urban heritage, space syntax, Hengshan Mansions

Procedia PDF Downloads 124
2556 Research of Concentratibility of Low Quality Bauxite Raw Materials

Authors: Nadezhda Nikolaeva, Tatyana Alexandrova, Alexandr Alexandrov

Abstract:

Processing of high-silicon bauxite on the base of the traditional clinkering method is related to high power consumption and capital investments, which makes production of alumina from those ores non-competitive in terms of basic economic showings. For these reasons, development of technological solutions enabling to process bauxites with various chemical and mineralogical structures efficiently with low level of thermal power consumption is important. Flow sheet of the studies on washability of ores from the Timanskoe and the Severo-Onezhskoe deposits is on the base of the flotation method.

Keywords: low-quality bauxite, resource-saving technology, optimization, aluminum, conditioning of composition, separation characteristics

Procedia PDF Downloads 279
2555 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing

Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima

Abstract:

Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.

Keywords: reverse osmosis, washing condition optimization, hypochlorous acid, biofouling control

Procedia PDF Downloads 343
2554 Critical Velocities for Particle Transport from Experiments and CFD Simulations

Authors: Sajith Sajeev, Brenton McLaury, Siamack Shirazi

Abstract:

In the petroleum industry, solid particles are often present along with the produced fluids. It is imperative to keep particles from accumulating in flow lines. In this study, various experiments are conducted to study sand particle transport, where critical velocity is defined as the average fluid velocity to keep particles continuously moving. Many parameters related to the fluid, particles and pipe affect the transport process. Experimental results are presented varying the particle concentration. Additionally, CFD simulations using a discrete element modeling (DEM) approach are presented to compare with experimental result.

Keywords: particle transport, critical velocity, CFD, DEM

Procedia PDF Downloads 300
2553 Natural Convection between Two Parallel Wavy Plates

Authors: Si Abdallah Mayouf

Abstract:

In this work, the effects of the wavy surface on free convection heat transfer boundary layer flow between two parallel wavy plates have been studied numerically. The two plates are considered at a constant temperature. The equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm. The important parameters in this problem are the amplitude of the wavy surfaces and the distance between the two wavy plates. Results are presented as velocity profiles, temperature profiles and local Nusselt number according to the important parameters.

Keywords: free convection, wavy surface, parallel plates, fluid dynamics

Procedia PDF Downloads 300
2552 Modeling of the Cavitation by Bubble around a NACA0009 Profile

Authors: L. Hammadi, D. Boukhaloua

Abstract:

In this study, a numerical model was developed to predict cavitation phenomena around a NACA0009 profile. The equations of the Rayleigh-Plesset and modified Rayleigh-Plesset are used to modeling the cavitation by bubble around a NACA0009 profile. The study shows that the distributions of pressures around extrados and intrados of profile for angle of incidence equal zero are the same. The study also shows that the increase in the angle of incidence makes it possible to differentiate the pressures on the intrados and the extrados.

Keywords: cavitation, NACA0009 profile, flow, pressure coefficient

Procedia PDF Downloads 173
2551 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir

Authors: Fengxia Li, Lufeng Zhang, Haibo Wang

Abstract:

The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.

Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties

Procedia PDF Downloads 69
2550 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food

Authors: Paulomi (Polly) Burey, Zoe Lynch

Abstract:

In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.

Keywords: chemistry, food science, future pedagogy, STEM Education

Procedia PDF Downloads 148
2549 Behaviour of an RC Circuit near Extreme Point

Authors: Tribhuvan N. Soorya

Abstract:

Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor.

Keywords: charging, discharging, RC Circuit, capacitor

Procedia PDF Downloads 437
2548 Inter-Complex Dependence of Production Technique and Preforms Construction on the Failure Pattern of Multilayer Homo-Polymer Composites

Authors: Ashraf Nawaz Khan, R. Alagirusamy, Apurba Das, Puneet Mahajan

Abstract:

The thermoplastic-based fibre composites are acquiring a market sector of conventional as well as thermoset composites. However, replacing the thermoset with a thermoplastic composite has never been an easy task. The inherent high viscosity of thermoplastic resin reveals poor interface properties. In this work, a homo-polymer towpreg is produced through an electrostatic powder spray coating methodology. The produced flexible towpreg offers a low melt-flow distance during the consolidation of the laminate. The reduced melt-flow distance demonstrates a homogeneous fibre/matrix distribution (and low void content) on consolidation. The composite laminate has been fabricated with two manufacturing techniques such as conventional film stack (FS) and powder-coated (PC) technique. This helps in understanding the distinct response of produced laminates on applying load since the laminates produced through the two techniques are comprised of the same constituent fibre and matrix (constant fibre volume fraction). The changed behaviour is observed mainly due to the different fibre/matrix configurations within the laminate. The interface adhesion influences the load transfer between the fibre and matrix. Therefore, it influences the elastic, plastic, and failure patterns of the laminates. Moreover, the effect of preform geometries (plain weave and satin weave structure) are also studied for corresponding composite laminates in terms of various mechanical properties. The fracture analysis is carried out to study the effect of resin at the interlacement points through micro-CT analysis. The PC laminate reveals a considerably small matrix-rich and deficient zone in comparison to the FS laminate. The different load tensile, shear, fracture toughness, and drop weight impact test) is applied to the laminates, and corresponding damage behaviour is analysed in the successive stage of failure. The PC composite has shown superior mechanical properties in comparison to the FS composite. The damage that occurs in the laminate is captured through the SEM analysis to identify the prominent mode of failure, such as matrix cracking, fibre breakage, delamination, debonding, and other phenomena.

Keywords: composite, damage, fibre, manufacturing

Procedia PDF Downloads 131
2547 Jet Impingement Heat Transfer on a Rib-Roughened Flat Plate

Authors: A. H. Alenezi

Abstract:

Cooling by impingement jet is known to have a significant high local and average heat transfer coefficient which make it widely used in industrial cooling systems. The heat transfer characteristics of an impinging jet on rib-roughened flat plate has been investigated numerically. This paper was set out to investigate the effect of rib height on the heat transfer rate. Since the flow needs to have enough spacing after passing the rib to allow reattachment especially for high Reynolds numbers, this study focuses on finding the optimum rib height which would be the best to maximize the heat transfer rate downstream the plate. This investigation employs a round nozzle with hydraulic diameter (Dh) of 13.5 mm, Jet-to-target distance of (H/D) of 4, rib location=1.5D and and finally jet angels of 45˚ and 90˚ under the influence of Re =10,000.

Keywords: jet impingement, CFD, turbulence model, heat transfer

Procedia PDF Downloads 344
2546 The Impact of Virtual Learning Strategy on Youth Learning Motivation in Malaysian Higher Learning Instituitions

Authors: Hafizah Harun, Habibah Harun, Azlina Kamaruddin

Abstract:

Virtual reality has become a powerful and promising tool in education because of their unique technological characteristics that differentiate them from the other ICT applications. Despite the numerous interpretations of its definition, virtual reality can be concisely and precisely described as the integration of computer graphics and various input and display technologies to create the illusion of immersion in a computer generated reality. Generally, there are two major types based on the level of interaction and immersive environment that are immersive and non-immersive virtual reality. In the study of the role of virtual reality in built environment education, Horne and Thompson were reported as saying that the benefits of using visualization technologies were seen as having the potential to improve and extend the learning process, increase student motivation and awareness, and add to the diversity of teaching methods. Youngblut reported that students enjoy working with virtual worlds and this experience can be highly motivating. The impact of virtual reality on youth learning in Malaysia is currently not well explored because the technology is still not widely used here. Only a handful of the universities, such as University Malaya, MMU, and Unimas are applying virtual reality strategy in some of their undergraduate programs. From the literature, it has been identified that there are several virtual reality learning strategies currently available. Therefore, this study aims to investigate the impact of Virtual Reality strategy on Youth Learning Motivation in Malaysian higher learning institutions. We will explore the relationship between virtual reality (gaming, laboratory, simulation) and youth leaning motivation. Another aspect that we will explore is the framework for virtual reality implementation at higher learning institution in Malaysia. This study will be carried out quantitatively by distributing questionnaires to respondents from sample universities. Data analysis are descriptive and multiple regression. Researcher will carry out a pilot test prior to distributing the questionnaires to 300 undergraduate students who are undergoing their courses in virtual reality environment. The respondents come from two universities, MMU CyberJaya and University Malaya. The expected outcomes from this study are the identification of which virtual reality strategy has most impact on students’ motivation in learning and a proposed framework of virtual reality implementation at higher learning.

Keywords: virtual reality, learning strategy, youth learning, motivation

Procedia PDF Downloads 380
2545 Impact of the Non-Energy Sectors Diversification on the Energy Dependency Mitigation: Visualization by the “IntelSymb” Software Application

Authors: Ilaha Rzayeva, Emin Alasgarov, Orkhan Karim-Zada

Abstract:

This study attempts to consider the linkage between management and computer sciences in order to develop the software named “IntelSymb” as a demo application to prove data analysis of non-energy* fields’ diversification, which will positively influence on energy dependency mitigation of countries. Afterward, we analyzed 18 years of economic fields of development (5 sectors) of 13 countries by identifying which patterns mostly prevailed and which can be dominant in the near future. To make our analysis solid and plausible, as a future work, we suggest developing a gateway or interface, which will be connected to all available on-line data bases (WB, UN, OECD, U.S. EIA) for countries’ analysis by fields. Sample data consists of energy (TPES and energy import indicators) and non-energy industries’ (Main Science and Technology Indicator, Internet user index, and Sales and Production indicators) statistics from 13 OECD countries over 18 years (1995-2012). Our results show that the diversification of non-energy industries can have a positive effect on energy sector dependency (energy consumption and import dependence on crude oil) deceleration. These results can provide empirical and practical support for energy and non-energy industries diversification’ policies, such as the promoting of Information and Communication Technologies (ICTs), services and innovative technologies efficiency and management, in other OECD and non-OECD member states with similar energy utilization patterns and policies. Industries, including the ICT sector, generate around 4 percent of total GHG, but this is much higher — around 14 percent — if indirect energy use is included. The ICT sector itself (excluding the broadcasting sector) contributes approximately 2 percent of global GHG emissions, at just under 1 gigatonne of carbon dioxide equivalent (GtCO2eq). Ergo, this can be a good example and lesson for countries which are dependent and independent on energy, and mainly emerging oil-based economies, as well as to motivate non-energy industries diversification in order to be ready to energy crisis and to be able to face any economic crisis as well.

Keywords: energy policy, energy diversification, “IntelSymb” software, renewable energy

Procedia PDF Downloads 217
2544 Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle

Authors: Fares Senouci, Bachir Imine

Abstract:

This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated.

Keywords: aerodynamics, drag, lift, turbulence model, wind tunnel

Procedia PDF Downloads 247
2543 Impact of Climate Change and Anthropogenic Effect on Hilsa Fishery Management in South-East Asia: Urgent Need for Trans-Boundary Policy

Authors: Dewan Ali Ahsan

Abstract:

Hilsa (Tenualosa ilisha) is one of the most important anadromous fish species of the trans-boundary ecosystem of Bangladesh, India and Myanmar. Hilsa is not only an economically important species specially for Bangladesh and India, but also for the integral part of the culture of the Bangladesh and India. This flag-ship species in Bangladesh contributed alone of 10.82% of the total fish production of the country and about 75% of world’s total catch of hilsa comes from Bangladesh alone. As hilsa is an anadromous fish, it migrates from the Bay of Bengal to rivers for spawning, nursing and growing and for all of these purposes hilsa needs freshwaters. Ripe broods prefer turbid, fast flowing freshwater for spawning but young prefer clear and slow flowing freshwater. Climate change (salinity intrusion, sea level rise, temperature rise, impact of fresh water flow), unplanned developmental activities and other anthropogenic activities all together are severely damaging the hilsa stock and its habitats. So, climate change and human interferences are predicted to have a range of direct and indirect impacts on marine and freshwater hilsa fishery, with implications for fisheries-dependent economies, coastal communities and fisherfolk. The present study identified that salinity intrusion, siltation in river bed, decrease water flow from upstream, fragmentation of river in dry season, over exploitation, use of small mesh nets are the major reasons to affect the upstream migration of hilsa and its sustainable management. It has been also noticed that Bangladesh government has taken some actions for hilsa management. Government is trying to increase hilsa production not only by conserving jatka (juvenile hilsa) but also protecting the brood hilsa during the breeding seasons by imposing seasonal ban on fishing, restricted mesh size etc. Unfortunately, no such management plans are available for Indian and Myanmar territory. As hilsa is a highly migratory trans-boundary fish in the Bay of Bengal (and all of these countries share the same stock), it is essential to adopt a joint management policy (by Bangladesh-India-Myanmar) for the sustainable management for the hilsa stock.

Keywords: hilsa, climate change, south-east Asia, fishery management

Procedia PDF Downloads 501
2542 An Improvement of a Dynamic Model of the Secondary Sedimentation Tank and Field Validation

Authors: Zahir Bakiri, Saci Nacefa

Abstract:

In this paper a comparison in made between two models, with and without dispersion term, and focused on the characterization of the movement of the sludge blanket in the secondary sedimentation tank using the solid flux theory and the velocity settling. This allowed us develop a one-dimensional models, with and without dispersion based on a thorough experimental study carried out in situ and the application of online data which are the mass load flow, transfer concentration, and influent characteristic. On the other hand, in the proposed model, the new settling velocity law (double-exponential function) used is based on the Vesilind function.

Keywords: wastewater, activated sludge, sedimentation, settling velocity, settling models

Procedia PDF Downloads 380
2541 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler

Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian

Abstract:

Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.

Keywords: fin wave angle, tube, intercooler, optimum, performance

Procedia PDF Downloads 374
2540 Constructed Wetlands with Subsurface Flow for Nitrogen and Metazachlor Removal from Tile Drainage: First Year Results

Authors: P. Fucik, J. Vymazal, M. Seres

Abstract:

Pollution from agricultural drainage is a severe issue for water quality, and it is a major reason for the failure in accomplishment of 'good chemical status' according to Water Framework Directive, especially due to high nitrogen and pesticide burden of receiving waters. Constructed wetlands were proposed as a suitable measure for removal of nitrogen from agricultural drainage in the early 1990s. Until now, the vast majority of constructed wetlands designed to treat tile drainage were free-surface constructed wetlands. In 2018, three small experimental constructed wetlands with horizontal subsurface flow were built in Czech Highlands to treat tile drainage from 15.73 ha watershed. The wetlands have a surface area of 79, 90 and 98 m² and were planted with Phalaris arundinacea and Glyceria maxima in parallel bands. The substrate in the first two wetlands is gravel (4-8 mm) mixed with birch woodchips (10:1 volume ratio). In one of those wetlands, the water level is kept 10 cm above the surface; in the second one, the water is kept below the surface. The third wetland has 20 cm layer of birch woodchips on top of gravel. The drainage outlet, as well as wetland outlets, are equipped with automatic discharge-gauging devices, temperature probes, as well as automatic water samplers (Teledyne ISCO). During the monitored period (2018-2019), the flows were unexpectedly low due to a drop of the shallow ground water level, being the main source of water for the monitored drainage system, as experienced at many areas of the Czech Republic. The mean water residence time was analyzed in the wetlands (KBr), which was 16, 9 and 27 days, respectively. The mean total nitrogen concentration eliminations during one-year period were 61.2%, 62.6%, and 70.9% for wetlands 1, 2, and 3, respectively. The average load removals amounted to 0.516, 0.323, and 0.399 g N m-2 d-1 or 1885, 1180 and 1457 kg ha-1 yr-1 in wetlands 1, 2 and 3, respectively. The plant uptake and nitrogen sequestration in aboveground biomass contributed only marginally to the overall nitrogen removal. Among the three variants, the one with shallow water on the surface was revealed to be the most effective for removal of nitrogen from drainage water. In August 2019, herbicide Metazachlor was experimentally poured in time of 2 hours at drainage outlet in a concentration of 250 ug/l to find out the removal rates of the aforementioned wetlands. Water samples were taken the first day every six hours, and for the next nine days, every day one water sample was taken. The removal rates were as follows 94, 69 and 99%; when the most effective wetland was the one with the longest water residence time and the birch woodchip-layer on top of gravel.

Keywords: constructed wetlands, metazachlor, nitrogen, tile drainage

Procedia PDF Downloads 141
2539 Effect of Packing Ratio on Fire Spread across Discrete Fuel Beds: An Experimental Analysis

Authors: Qianqian He, Naian Liu, Xiaodong Xie, Linhe Zhang, Yang Zhang, Weidong Yan

Abstract:

In the wild, the vegetation layer with exceptionally complex fuel composition and heterogeneous spatial distribution strongly affects the rate of fire spread (ROS) and fire intensity. Clarifying the influence of fuel bed structure on fire spread behavior is of great significance to wildland fire management and prediction. The packing ratio is one of the key physical parameters describing the property of the fuel bed. There is a threshold value of the packing ratio for ROS, but little is known about the controlling mechanism. In this study, to address this deficiency, a series of fire spread experiments were performed across a discrete fuel bed composed of some regularly arranged laser-cut cardboards, with constant wind speed and different packing ratios (0.0125-0.0375). The experiment aims to explore the relative importance of the internal and surface heat transfer with packing ratio. The dependence of the measured ROS on the packing ratio was almost consistent with the previous researches. The data of the radiative and total heat fluxes show that the internal heat transfer and surface heat transfer are both enhanced with increasing packing ratio (referred to as ‘Stage 1’). The trend agrees well with the variation of the flame length. The results extracted from the video show that the flame length markedly increases with increasing packing ratio in Stage 1. Combustion intensity is suggested to be increased, which, in turn, enhances the heat radiation. The heat flux data shows that the surface heat transfer appears to be more important than the internal heat transfer (fuel preheating inside the fuel bed) in Stage 1. On the contrary, the internal heat transfer dominates the fuel preheating mechanism when the packing ratio further increases (referred to as ‘Stage 2’) because the surface heat flux keeps almost stable with the packing ratio in Stage 2. As for the heat convection, the flow velocity was measured using Pitot tubes both inside and on the upper surface of the fuel bed during the fire spread. Based on the gas velocity distribution ahead of the flame front, it is found that the airflow inside the fuel bed is restricted in Stage 2, which can reduce the internal heat convection in theory. However, the analysis indicates not the influence of inside flow on convection and combustion, but the decreased internal radiation of per unit fuel is responsible for the decrease of ROS.

Keywords: discrete fuel bed, fire spread, packing ratio, wildfire

Procedia PDF Downloads 134
2538 The Effect of Subsurface Dam on Saltwater Intrusion in Heterogeneous Coastal Aquifers

Authors: Antoifi Abdoulhalik, Ashraf Ahmed

Abstract:

Saltwater intrusion (SWI) in coastal aquifers has become a growing threat for many countries around the world. While various control measures have been suggested to mitigate SWI, the construction of subsurface physical barriers remains one of the most effective solutions for this problem. In this work, we used laboratory experiments and numerical simulations to investigate the effectiveness of subsurface dams in heterogeneous layered coastal aquifer with different layering patterns. Four different cases were investigated, including a homogeneous (case H), and three heterogeneous cases in which a low permeability (K) layer was set in the top part of the system (case LH), in the middle part of the system (case HLH) and the bottom part of the system (case HL). Automated image analysis technique was implemented to quantify the main SWI parameters under high spatial and temporal resolution. The method also provides transient salt concentration maps, allowing for the first time clear visualization of the spillage of saline water over the dam (advancing wedge condition) as well as the flushing of residual saline water from the freshwater area (receding wedge condition). The SEAWAT code was adopted for the numerical simulations. The results show that the presence of an overlying layer of low permeability enhanced the ability of the dam to retain the saline water. In such conditions, the rate of saline water spillage and inland extension may considerably be reduced. Conversely, the presence of an underlying low K layer led to a faster increase of saltwater volume on the seaward side of the wall, therefore considerably facilitating the spillage. The results showed that a complete removal of the residual saline water eventually occurred in all the investigated scenarios, with a rate of removal strongly affected by the hydraulic conductivity of the lower part of the aquifer. The data showed that the addition of the underlying low K layer in case HL caused the complete flushing to be almost twice longer than in the homogeneous scenario.

Keywords: heterogeneous coastal aquifers, laboratory experiments, physical barriers, seawater intrusion control

Procedia PDF Downloads 242
2537 CO₂ Capture by Membrane Applied to Steel Production Process

Authors: Alexandra-Veronica Luca, Letitia Petrescu

Abstract:

Steel production is a major contributor to global warming potential. An average value of 1.83 tons of CO₂ is emitted for every ton of steel produced, resulting in over 3.3 Mt of CO₂ emissions each year. The present paper is focused on the investigation and comparison of two O₂ separation methods and two CO₂ capture technologies applicable to iron and steel industry. The O₂ used in steel production comes from an Air Separation Unit (ASU) using distillation or from air separation using membranes. The CO₂ capture technologies are represented by a two-stage membrane separation process and the gas-liquid absorption using methyl di-ethanol amine (MDEA). Process modelling and simulation tools, as well as environmental tools, are used in the present study. The production capacity of the steel mill is 4,000,000 tones/year. In order to compare the two CO₂ capture technologies in terms of efficiency, performance, and sustainability, the following cases have been investigated: Case 1: steel production using O₂ from ASU and no CO₂ capture; Case 2: steel production using O₂ from ASU and gas-liquid absorption for CO₂ capture; Case 3: steel production using O₂ from ASU and membranes for CO₂ capture; Case 4: steel production using O₂ from membrane separation method and gas-liquid absorption for CO₂ capture and Case-5: steel production using membranes for air separation and CO₂ capture. The O₂ separation rate obtained in the distillation technology was about 96%, and about 33% in the membrane technology. Similarly, the O₂ purity resulting in the conventional process (i.e. distillation) is higher compared to the O₂ purity obtained in the membrane unit (e.g., 99.50% vs. 73.66%). The air flow-rate required for membrane separation is about three times higher compared to the air flow-rate for cryogenic distillation (e.g., 549,096.93 kg/h vs. 189,743.82 kg/h). A CO₂ capture rate of 93.97% was obtained in the membrane case, while the CO₂ capture rate for the gas-liquid absorption was 89.97%. A quantity of 6,626.49 kg/h CO₂ with a purity of 95.45% is separated from the total 23,352.83 kg/h flue-gas in the membrane process, while with absorption of 6,173.94 kg/h CO₂ with a purity of 98.79% is obtained from 21,902.04 kg/h flue-gas and 156,041.80 kg/h MDEA is recycled. The simulation results, performed using ChemCAD process simulator software, lead to the conclusion that membrane-based technology can be a suitable alternative for CO₂ removal for steel production. An environmental evaluation using Life Cycle Assessment (LCA) methodology was also performed. Considering the electricity consumption, the performance, and environmental indicators, Case 3 can be considered the most effective. The environmental evaluation, performed using GaBi software, shows that membrane technology can lead to lower environmental emissions if membrane production is based on benzene derived from toluene hydrodealkilation and chlorine and sodium hydroxide are produced using mixed technologies.

Keywords: CO₂ capture, gas-liquid absorption, Life Cycle Assessment, membrane separation, steel production

Procedia PDF Downloads 285
2536 Reinforced Concrete Bridge Deck Condition Assessment Methods Using Ground Penetrating Radar and Infrared Thermography

Authors: Nicole M. Martino

Abstract:

Reinforced concrete bridge deck condition assessments primarily use visual inspection methods, where an inspector looks for and records locations of cracks, potholes, efflorescence and other signs of probable deterioration. Sounding is another technique used to diagnose the condition of a bridge deck, however this method listens for damage within the subsurface as the surface is struck with a hammer or chain. Even though extensive procedures are in place for using these inspection techniques, neither one provides the inspector with a comprehensive understanding of the internal condition of a bridge deck – the location where damage originates from.  In order to make accurate estimates of repair locations and quantities, in addition to allocating the necessary funding, a total understanding of the deck’s deteriorated state is key. The research presented in this paper collected infrared thermography and ground penetrating radar data from reinforced concrete bridge decks without an asphalt overlay. These decks were of various ages and their condition varied from brand new, to in need of replacement. The goals of this work were to first verify that these nondestructive evaluation methods could identify similar areas of healthy and damaged concrete, and then to see if combining the results of both methods would provide a higher confidence than if the condition assessment was completed using only one method. The results from each method were presented as plan view color contour plots. The results from one of the decks assessed as a part of this research, including these plan view plots, are presented in this paper. Furthermore, in order to answer the interest of transportation agencies throughout the United States, this research developed a step-by-step guide which demonstrates how to collect and assess a bridge deck using these nondestructive evaluation methods. This guide addresses setup procedures on the deck during the day of data collection, system setups and settings for different bridge decks, data post-processing for each method, and data visualization and quantification.

Keywords: bridge deck deterioration, ground penetrating radar, infrared thermography, NDT of bridge decks

Procedia PDF Downloads 150
2535 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics

Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich

Abstract:

Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.

Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes

Procedia PDF Downloads 67
2534 Numerical Study of Two Mechanical Stirring Systems for Yield Stress Fluid

Authors: Amine Benmoussa, Mebrouk Rebhi, Rahmani Lakhdar

Abstract:

Mechanically agitated vessels are commonly used for various operations within a wide range process in chemical, pharmaceutical, polymer, biochemical, mineral, petroleum industries. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. In this paper, the laminar 2D agitation flow and power consumption of viscoplastic fluids with straight and circular gate impellers in a stirring tank is studied by using computational fluid dynamics (CFD), where the velocity profile, the velocity fields and power consumption was analyzed.

Keywords: CFD, mechanical stirring, power consumption, yield stress fluid

Procedia PDF Downloads 344
2533 Noise Barrier Technique as a Way to Improve the Sonic Urban Environment along Existing Roadways Assessment: El-Gish Road Street, Alexandria, Egypt

Authors: Nihal Atif Salim

Abstract:

To improve the quality of life in cities, a variety of interventions are used. Noise is a substantial and important sort of pollution that has a negative impact on the urban environment and human health. According to the complaint survey, it ranks second among environmental contamination complaints (conducted by EEAA in 2019). The most significant source of noise in the city is traffic noise. In order to improve the sound urban environment, many physical techniques are applied. In the local area, noise barriers are considered as one of the most appropriate physical techniques along existing traffic routes. Alexandria is Egypt's second-largest city after Cairo. It is located along the Mediterranean Sea, and El- Gish Road is one of the city's main arteries. It impacts the waterfront promenade that extends along with the city by a high level of traffic noise. The purpose of this paper is to clarify the design considerations for the most appropriate noise barrier type along with the promenade, with the goal of improving the Quality of Life (QOL) and the sonic urban environment specifically. The proposed methodology focuses on how noise affects human perception and the environment. Then it delves into the various physical noise control approaches. After that, the paper discusses sustainable design decisions making. Finally, look into the importance of incorporating sustainability into design decisions making. Three stages will be followed in the case study. The first stage involves doing a site inspection and using specific sound measurement equipment (a noise level meter) to measure the noise level along the promenade at many sites, and the findings will be shown on a noise map. The second step is to inquire about the site's user experience. The third step is to investigate the various types of noise barriers and their effects on QOL along existing routes in order to select the most appropriate type. The goal of this research is to evaluate the suitable design of noise barriers that fulfill environmental and social perceptions while maintaining a balanced approach to the noise issue in order to improve QOL along existing roadways in the local area.

Keywords: noise pollution, sonic urban environment, traffic noise, noise barrier, acoustic sustainability, noise reduction techniques

Procedia PDF Downloads 132
2532 An Empirical Study of Performance Management System: Implementation of Performance Management Cycle to Achieve High-Performance Culture at Pertamina Company, Indonesia

Authors: Arif Budiman

Abstract:

Any organization or company that wishes to achieve vision, mission, and goals of the organization is required to implement a performance management system or known as the Performance Management System (PMS) in every part of the whole organization. PMS is a tool to help visualize the direction and work program of the organization to achieve the goal. The challenge is PMS should not stop merely as a visualization tool to achieve the vision and mission of the organization, but PMS should also be able to create a high-performance culture that is inherent in each individual of the organization. Establishment of a culture within an organization requires the support of top leaders and also requires a system or governance that encourages every individual in the organization to be involved in any work program of the organization. Keywords of creating a high-performance culture are the formation of communication pattern involving the whole individual, either vertically or horizontally, and performed consistently and persistently by all individuals in each line of the organization. PT Pertamina (Persero) as the state-owned national energy company holds a system to internalize the culture of high performance through a system called Performance Management System Cycle (PMS Cycle). This system has 7 stages of the cycle, those are: (1) defining vision, mission and strategic plan of the company, (2) defining key performance indicator of each line and the individual (‘expectation setting conversation’), (3) defining performance target and performance agreement, (4) monitoring performance on a monthly regular basis (‘pulse check’), (5) implementing performance dialogue between leaders and staffs periodically every 3 months (‘performance dialogue’), (6) defining rewards and consequences based on the achievement of the performance of each line and the individual, and (7) calculating the final performance value achieved by each line and individual from one period of the current year. Perform PMS is a continual communication running throughout the year, that is why any three performance discussion that should be performed, include expectation setting conversations, pulse check and performance dialogue. In addition, another significant point and necessary undertaken to complete the assessment of individual performance assessment is soft competencies through 360-degree assessment by leaders, staffs, and peers.

Keywords: 360-degree assessment, expectation setting conversation, performance management system cycle, performance dialogue, pulse check

Procedia PDF Downloads 434
2531 Anticorrosive Performances of “Methyl Ester Sulfonates” Biodegradable Anionic Synthetized Surfactants on Carbon Steel X 70 in Oilfields

Authors: Asselah Amel, Affif Chaouche M'yassa, Toudji Amira, Tazerouti Amel

Abstract:

This study covers two aspects ; the biodegradability and the performances in corrosion inhibition of a series of synthetized surfactants namely Φ- sodium methyl ester sulfonates (Φ-MES: C₁₂-MES, C₁₄-MES and C₁₆-MES. The biodegradability of these organic compounds was studied using the respirometric method, ‘the standard ISO 9408’. Degradation was followed by analysis of dissolved oxygen using the dissolved oxygen meter over 28 days and the results were compared with that of sodium dodecyl sulphate (SDS). The inoculum used consists of activated sludge taken from the aeration basin of the biological wastewater treatment plant in the city of Boumerdes-Algeria. In addition, the anticorrosive performances of Φ-MES surfactants on a carbon steel "X70" were evaluated in an injection water from a well of Hassi R'mel region- Algeria, known as Baremian water, and are compared to sodium dodecyl sulphate. Two technics, the weight loss and the linear polarization resistance corrosion rate (LPR) are used allowing to investigate the relationships between the concentrations of these synthetized surfactants and their surface properties, surface coverage and inhibition efficiency. Various adsorption isotherm models were used to characterize the nature of adsorption and explain their mechanism. The results show that the MES anionic surfactants was readily biodegradable, degrading faster than SDS, about 88% for C₁₂-MES compared to 66% for the SDS. The length of their carbon chain affects their biodegradability; the longer the chain, the lower the biodegradability. The inhibition efficiency of these surfactants is around 78.4% for C₁₂-MES, 76.60% for C₁₄-MES and 98.19% for C₁₆-MES and increases with their concentration and reaches a maximum value around their critical micelle concentrations ( CMCs). Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy allowed to the visualization of a good adhesion of the protective film formed by the surfactants to the surface of the steel. The studied surfactants show the Langmuirian behavior from which the thermodynamic parameters as adsorption constant (Kads), standard free energy of adsorption (〖∆G〗_ads^0 ) are determined. Interaction of the surfactants with steel surface have involved physisorptions.

Keywords: corrosion, surfactants, adsorption, adsorption isotherems

Procedia PDF Downloads 92
2530 Opportunities and Challenges of Digital Diplomacy in the Public Diplomacy of the Islamic Republic of Iran

Authors: Somayeh Pashaee

Abstract:

The ever-increasing growth of the Internet and the development of information and communication technology have prompted the politicians of different countries to use virtual networks as an efficient tool for their foreign policy. The communication of governments and countries, even in the farthest places from each other, through electronic networks, has caused vast changes in the way of statecraft and governance. Importantly, in the meantime, diplomacy, which is always based on information and communication, has been affected by the new prevailing conditions and new technologies more than other areas and has faced greater changes. The emergence of virtual space and the formation of new communication tools in the field of public diplomacy has led to the redefinition of the framework of diplomacy and politics in the international arena and the appearance of a new aspect of diplomacy called digital diplomacy. Digital diplomacy is in the concept of changing relations from a face-to-face and traditional way to a non-face-to-face and new way, and its purpose is to solve foreign policy issues using virtual space. Digital diplomacy, by affecting diplomatic procedures and its change, explains the role of technology in the visualization and implementation of diplomacy in different ways. The purpose of this paper is to investigate the position of digital diplomacy in the public diplomacy of the Islamic Republic of Iran. The paper tries to answer these two questions in a descriptive-analytical way, considering the progress of communication and the role of virtual space in the service of diplomacy, what is the approach of the Islamic Republic of Iran towards digital diplomacy and the use of a new way of establishing foreign relations in public diplomacy? What capacities and damages are facing the country after the use of this type of new diplomacy? In this paper, various theoretical concepts in the field of public diplomacy and modern diplomacy, including Geoff Berridge, Charles Kegley, Hans Tuch and Ronald Peter Barston, as well as the theoretical framework of Marcus Holmes on digital diplomacy, will be used as a conceptual basis to support the analysis. As a result, in order to better achieve the political goals of the country, especially in foreign policy, the approach of the Islamic Republic of Iran to public diplomacy with a focus on digital diplomacy should be strengthened and revised. Today, only emphasizing on advancing diplomacy through traditional methods may weaken Iran's position in the public opinion level from other countries.

Keywords: digital diplomacy, public diplomacy, islamic republic of Iran, foreign policy, opportunities and challenges

Procedia PDF Downloads 106