Search results for: waste glass powder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4436

Search results for: waste glass powder

1376 From Manipulation to Citizen Control: A Case Study Revealing the Level of Participation in the Citizen Participatory Audit

Authors: Mark Jason E. Arca, Jay Vee R. Linatoc, Rex Francis N. Lupango, Michael Joe A. Ramirez

Abstract:

Participation promises an avenue for citizens to take part in governance, but it does not necessarily mean effective participation. The proper integration of participants in the decision-making process should be properly addressed to ensure effectiveness. This study explores the integration of the participants in the decision-making process to reveal the level of participation in the Solid Waste Management audit done by the Citizen Participatory Audit (CPA), a program under the supervision of the Commission on Audit. Specifically, this study will use the experience of participation to identify emerging themes that will help reveal the level of participation through the integrated ladder of participation. The researchers used key informant interviews to gather necessary data from the actors of the program. The findings revealed that the level of participation present in the CPA is at the Placation level, a level below the program’s targeted level of participation. The study also allowed the researchers to reveal facilitating factors in the program that contributed to a better understanding of the practice of participation.

Keywords: citizen participation, culture of participation, ladder of participation, level of participation

Procedia PDF Downloads 410
1375 Cost Diminution in Supply Chain of a Dairy Industry

Authors: Naveed Ahmed Khan

Abstract:

The ever increasing importance of food industry cannot be denied and especially in the wake of escalating population and prices both in developing and developed nations. Thus, this issue demands the attention of researchers especially in the area of supply chain to identify cost diminution waste eliminating supply chain practices in the said industry. For such purpose the 'Dairy Division' of Engro Foods Limited, one of the biggest food companies in Pakistan was taken into consideration in a case study manner. Based on the literature review and interviews following variables were obtained: energy, losses, maintenance, taxes, and logistics. Having studied the said variables, it was concluded that management of relevant industries operating in a comparable environment need to efficiently manage two major areas: energy and taxes. On the other hand, similar kind of other organizations could be benefited by adopting the proficient supply chain practices being observed at dairy division of Engro foods limited.

Keywords: cost diminution, supply chain, dairy industry, Engro Foods Limited

Procedia PDF Downloads 309
1374 Study of Lamination Quality of Semi-Flexible Solar Modules with Special Textile Materials

Authors: K. Drabczyk, Z. Starowicz, S. Maleczek, P. Zieba

Abstract:

The army, police and fire brigade commonly use dedicated equipment based on special textile materials. The properties of these textiles should ensure human life and health protection. Equally important is the ability to use electronic equipment and this requires access to the source of electricity. Photovoltaic cells integrated with such textiles can be solution for this problem in the most of outdoor circumstances. One idea may be to laminate the cells to textile without changing their properties. The main goal of this work was analyzed lamination quality of special designed semi-flexible solar module with special textile materials as a backsheet. In the first step of investigation, the quality of lamination was determined using device equipped with dynamometer. In this work, the crystalline silicon solar cells 50 x 50 mm and thin chemical tempered glass - 62 x 62 mm and 0.8 mm thick - were used. The obtained results showed the correlation between breaking force and type of textile weave and fiber. The breaking force was in the ranges: 4.5-5.5 N, 15-20 N and 30-33 N depending on the type of wave and fiber type. To verify these observations the microscopic and FTIR analysis of fibers was performed. The studies showed the special textile can be used as a backsheet of semi-flexible solar modules. This work presents a new composition of solar module with special textile layer which, to our best knowledge, has not been published so far. Moreover, the work presents original investigations on adhesion of EVA (ethylene-vinyl acetate) polymer to textile with respect to fiber structure of laminated substrate. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management.

Keywords: flexible solar modules, lamination process, solar cells, textile for photovoltaics

Procedia PDF Downloads 357
1373 Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling

Authors: Hadi Chahal, Irini Djeran-Maigre

Abstract:

This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg.

Keywords: geosynthetic clay liners, landfill, polychlorinated biphenyl, polluted dredged materials

Procedia PDF Downloads 122
1372 Future Trends in Sources of Natural Antioxidants from Indigenous Foods

Authors: Ahmed El-Ghorab

Abstract:

Indigenous foods are promising sources of various chemical bioactive compounds such as vitamins, phenolic compounds and carotenoids. Therefore, the presence o different bioactive compounds in fruits could be used to retard or prevent various diseases such as cardiovascular and cancer. This is an update report on nutritional compositions and health promoting phytochemicals of different indigenous food . This different type of fruits and/ or other sources such as spices, aromatic plants, grains by-products, which containing bioactive compounds might be used as functional foods or for nutraceutical purposes. most common bioactive compounds are vitamin C, polyphenol, β- carotene and lycopene contents. In recent years, there has been a global trend toward the use of natural phytochemical as antioxidants and functional ingredients, which are present in natural resources such as vegetables, fruits, oilseeds and herbs.. Our future trend the Use of Natural antioxidants as a promising alternative to use of synthetic antioxidants and the Production of natural antioxidant on commercial scale to maximize the value addition of indigenous food waste as a good source of bioactive compounds such as antioxidants.

Keywords: bioactive compounds, antioxidants, by-product, indigenous foods, phenolic compounds

Procedia PDF Downloads 482
1371 Formulation, Nutritive Value Assessment And Effect On Weight Gain Of Infant Formulae Prepared From Locally Available Materia

Authors: J. T. Johnson, R. A. Atule, E. Gbodo

Abstract:

The widespread problem of infant malnutrition in developing countries has stirred efforts in research, development and extension by both local and international organizations. As a result, the formulation and development of nutritious weaning foods from local and readily available raw materials which are cost effective has become imperative in many developing countries. Thus, local and readily available raw materials where used to compound and develop nutritious new infant formulae. The materials used for this study include maize, millet, cowpea, pumpkin, fingerlings, and fish bone. The materials where dried and blended to powder. The powders were weighed in the ratio of 4:4:4:3:1:1 respectively and were then mixed properly. Analysis of nutritive value was conducted on the formulae and compared with NAN-2 standard and results reveals that the formulae had reasonable amount of moisture, lipids, carbohydrate, protein, and fibre. Although NAN-2 was superior in both carbohydrate and protein, the new infant formula was higher in mineral elements, vitamins, fibre, and lipids. All the essentials vitamins and both macro and micro minerals where found in appreciable quantity capable of meeting the biochemical and physiological demand of the body while the anti-nutrients composition were significantly below FAO and WHO safe limits. Finally, the compounded infant formulae was feed to a set of albino Wistar rats while some other set of rats was feed with NAN-2 for the period of twenty seven (27) days and body weight was measure at three days intervals. The results of body weight changes was spectacular as their body weight over shot or almost double that of those animals that were feed with NAN-2 at each point of measurement. The results suggest that the widespread problem of infant malnutrition in the developing world especially among the low income segment of the society can now be reduced if not totally eradicated since nutritive and cost effective weaning formulae can be prepared locally from common readily available materials.

Keywords: formulation, nutritive value, local, materials

Procedia PDF Downloads 377
1370 Determination of the Cooling Rate Dependency of High Entropy Alloys Using a High-Temperature Drop-on-Demand Droplet Generator

Authors: Saeedeh Imani Moqadam, Ilya Bobrov, Jérémy Epp, Nils Ellendt, Lutz Mädler

Abstract:

High entropy alloys (HEAs), having adjustable properties and enhanced stability compared with intermetallic compounds, are solid solution alloys that contain more than five principal elements with almost equal atomic percentage. The concept of producing such alloys pave the way for developing advanced materials with unique properties. However, the synthesis of such alloys may require advanced processes with high cooling rates depending on which alloy elements are used. In this study, the micro spheres of different diameters of HEAs were generated via a drop-on-demand droplet generator and subsequently solidified during free-fall in an argon atmosphere. Such droplet generators can generate individual droplets with high reproducibility regarding droplet diameter, trajectory and cooling while avoiding any interparticle momentum or thermal coupling. Metallography as well as X-ray diffraction investigations for each diameter of the generated metallic droplets where then carried out to obtain information about the microstructural state. To calculate the cooling rate of the droplets, a droplet cooling model was developed and validated using model alloys such as CuSn%6 and AlCu%4.5 for which a correlation of secondary dendrite arm spacing (SDAS) and cooling rate is well-known. Droplets were generated from these alloys and their SDAS was determined using quantitative metallography. The cooling rate was then determined from the SDAS and used to validate the cooling rates obtained from the droplet cooling model. The application of that model on the HEA then leads to the cooling rate dependency and hence to the identification of process windows for the synthesis of these alloys. These process windows were then compared with cooling rates obtained in processes such as powder production, spray forming, selective laser melting and casting to predict if a synthesis is possible with these processes.

Keywords: cooling rate, drop-on-demand, high entropy alloys, microstructure, single droplet generation, X-ray Diffractometry

Procedia PDF Downloads 209
1369 Effect of Print Orientation on the Mechanical Properties of Multi Jet Fusion Additively Manufactured Polyamide-12

Authors: Tyler Palma, Praveen Damasus, Michael Munther, Mehrdad Mohsenizadeh, Keivan Davami

Abstract:

The advancement of additive manufacturing, in both research and commercial realms, is highly dependent upon continuing innovations and creativity in materials and designs. Additive manufacturing shows great promise towards revolutionizing various industries, due largely to the fact that design data can be used to create complex products and components, on demand and from the raw materials, for the end user at the point of use. However, it will be critical that the material properties of additively-made parts for engineering purposes be fully understood. As it is a relatively new additive manufacturing method, the response of properties of Multi Jet Fusion (MJF) produced parts to different printing parameters has not been well studied. In this work, testing of mechanical and tribological properties MJF-printed Polyamide 12 parts was performed to determine whether printing orientation in this method results in significantly different part performances. Material properties were studied at macro- and nanoscales. Tensile tests, in combination with tribology tests including steady-state wear, were performed. Results showed a significant difference in resultant part characteristics based on whether they were printed in a vertical or horizontal orientation. Tensile performance of vertically and horizontally printed samples varied, both in ultimate strength and strain. Tribology tests showed that printing orientation has notable effects on the resulting mechanical and wear properties of tested surfaces, due largely to layer orientation and the presence of unfused fused powder grain inclusions. This research advances the understanding of how print orientation affects the mechanical properties of additively manufactured structures, and also how print orientation can be exploited in future engineering design.

Keywords: additive manufacturing, indentation, nano mechanical characterization, print orientation

Procedia PDF Downloads 136
1368 An Assessment of Existing Material Management Process in Building Construction Projects in Nepal

Authors: Uttam Neupane, Narendra Budha, Subash Kumar Bhattarai

Abstract:

Material management is an essential part in construction project management. There are a number of material management problems in the Nepalese construction industry, which contribute to an inefficient material management system. Ineffective material management can cause waste of time and money thus increasing the problem of time and cost overrun. An assessment of material management system with gap and solution was carried out on 20 construction projects implemented by the Federal Level Project Implementation Unit (FPIU); Kaski district of Nepal. To improve the material management process, the respondents have provided possible solutions to overcome the gaps seen in the current material management process. The possible solutions are preparation of material schedule in line with the construction schedule for material requirement planning, verifications of material and locating of source, purchasing of the required material in advance before commencement of work, classifying the materials, and managing the inventory based on their usage value and eliminating and reduction in wastages during the overall material management process.

Keywords: material management, construction site, inventory, construction project

Procedia PDF Downloads 66
1367 Anti-Obesity Activity of Garcinia xanthochymus: Biochemical Characterization and In vivo Studies in High Fat Diet-Rat Model

Authors: Mahesh M. Patil, K. A. Anu-Appaiah

Abstract:

Overweight and obesity is a serious medical problem, increasing in prevalence, and affecting millions worldwide. Investigators have been trying from decades to articulate the burden of obesity and related risk factors. To answer this problem, we suggest a new therapeutic anti-obesity compounds from Garcinia xanthochymus fruit. However, there is little published scientific information on non-hydroxycitric acid Garcinia species. Our findings include biochemical characterization of the fruit; in vivo toxicity and bio-efficacy study of G. xanthochymus in high fat diet wistar rat model. We observed that Garcinia pericarp is a rich source of organic acids, polyphenols, mono- (40.63%) and poly-unsaturated fatty acids (16.45%; omega-3: 10.02%). Toxicological studies have showed that Garcinia is safe and had no observed adverse effect level up to 400 mg/kg/day. Body weight and food intake was significantly (P<0.05) reduced in oral gavage treated rats (sonicated Garcinia powder) in 13 weeks. Subcutaneous fat was significantly (P<0.05) reduced in Garcinia treated rats. Hepatocytes significantly (p<0.05) overexpressed sterol regulatory element binding protein 2, liver X receptor- α, liver X receptor- β, lipoprotein lipase and monoacylglycerol lipase. Fatty acid binding protein 1 and peroxisome proliferator activated receptor- α were down regulated as assessed by real time qPCR. Currently our research is focused on the adipocyte obesity related gene expressions, effect of Garcinia on 3T3-adipocyte cell lines and high fat diet induced mice model. This in vivo pre-clinical data suggests that G. xanthochymus may have clinical utility for the treatment of obesity. However, further studies are required to establish its potency.

Keywords: Garcinia xanthochymus, anti-obesity, high fat diet, real time qPCR

Procedia PDF Downloads 250
1366 Synthesis of Na-LSX Zeolite and Hydrosodalite from Polish Fly Ashes

Authors: Barbara Bialecka, Zdzislaw Adamczyk, Magdalena Cempa

Abstract:

In the work, the results of investigations into the hydrothermal zeolitization of fly ash from hard coal combustion in one of Polish Power Station have been presented. The chemical composition of the ash was determined by the method of X-ray fluorescence (XRF), whereas the phases of both fly ash and the products after synthesis were identified using microscopic observations, X-ray diffraction analysis (XRD) as well as electron scanning microscopy with measurements of the chemical compositions in micro areas (SEM/EDS). The synthesis was carried out with various concentrations of NaOH solution (3M, 4M and 6M) in the following conditions: synthesis temperature – 80ᵒC, synthesis time – 16 hours, volume of NaOH solution – 350ml, fly ash mass – 14g. The main chemical components of fly ash were SiO₂ and Al₂O₃, the contents of which reached 51.62 and 28.14%mas., respectively. The input ash contained mainly such phases as mullite, quarz, magnetite, and glass. The research results indicate that the phase composition of products after zeolitization was differentiated. The material after synthesis in 3M NaOH solution was found to contain mullite, quarz, magnetite, and Na-LSX zeolite. The products of synthesis in 4M NaOH solution were very similar to those in 3M solution (mullite, quarz, magnetite, Na-LSX zeolite), but they additionally contained hydrosodalite. The material after synthesis in 6M NaOH solution contains mullite, quarz, magnetite (similarly to synthesis in 3M and 4M NaOH solition) and additionally hydrosodalite. Therefore, the products of synthesis contain relic components from the fly ash input sample in the form of mullite, quarz, and magnetite, as well as new phases, which are Na-LSX zeolite and hydrosodalite. It should be noted that the products of synthesis in the case of 4M NaOH solution contained both new phases (Na-LSX zeolite and hydrosodalite), while the products from the extreme concentration of NaOH solutions (3M and 6M) contained only one of them. Observations in the scanning electron microscope revealed the new phases’ morphology. It was found that Na-LSX zeolite formed cubic crystals, whereas hydrosodalite formed characteristic aggregations. The results of investigations into the chemical composition in the micro area of phase grains in the products after synthesis reveal some dependencies, among others a characteristic increase in the content of sodium, related to the increased concentration of NaOH solution.

Keywords: Na-LSX, fly ash, hydrosodalite, zeolite

Procedia PDF Downloads 171
1365 Tailoring and Characterization of Lithium Manganese Ferrite- Polypyrrole Nanocomposite (LixMnxFe₂O₄-PPY) to Evaluate Their Performance as an Energy Storage Device

Authors: Muhammad Waheed Mushtaq, Shahid bashir, Atta Ur Rehman

Abstract:

In the past decade, the growing demand for capital and the increased utilization of supercapacitors reflect advancements in energy-producing systems and energy storage devices. Metal oxides and ferrites have emerged as promising candidates for supercapacitors and batteries. In our current study, we synthesized Lithium manganese nanoferrite, denoted as LixMnxFe₂O₄, using the hydrothermal technique. Subsequently, we treated it with sodium dodecyl benzene sulphonate (SDBS) surfactant to create nanocomposites of Lithium manganese nano ferrite (LMFe) with poly pyrrole (LixMnxFe₂O₄-PPY). We employed Powder X-ray diffraction (XRD) to confirm the crystalline nature and spinel phase structure of LMFe nanoparticles, which exhibited a single-phase crystal structure, indicating sample purity. To assess the surface topography, morphology, and grain size of both synthesized LixMnxFe₂O₄ and LixMnxFe₂O₄-PPY, we used atomic force microscopy and scanning electron microscopy (SEM). The average particle size of pure ferrite was found to be 54 nm, while that of its nanocomposite was 71 nm. Energy dispersive X-ray (EDX) analysis confirmed the presence of all required elements, including Li, Mn, Fe, and O, in the appropriate proportions. Saturation magnetization (32.69 emu), remanence (Mr), and coercive force (Hc) were measured using a Vibrating Sample Magnetometer (VSM). To assess the electrochemical performance of the material, we conducted Cyclic Voltammetry (CV) measurements for both pure LMFe and LMFe-PPY. The CV results for LMFe-PPY demonstrated that specific capacitance decreased with increasing scan rate while the area of the current-voltage loop increased. These findings are promising for the development of supercapacitors and lithium-ion batteries (LIBs).

Keywords: lithium manganese ferrite, poly pyrrole, nanocomposites, cyclic voltammetry, cathode

Procedia PDF Downloads 68
1364 Chemical and Mechanical Characterization of Composites Reinforced with Coconut Fiber in the Polymeric Matrix of Recycled PVC

Authors: Luiz C. G. Pennafort Jr., Alexandre de S. Rios, Enio P. de Deus

Abstract:

In the search for materials that replace conventional polymers in order to preserve natural resources, combined with the need to minimize the problems arising from environmental pollution generated by plastic waste, comes the recycled materials biodegradable, especially the composites reinforced with natural fibers. However, such materials exhibit properties little known, requiring studies of manufacturing methods and characterization of these composites. This article shows informations about preparation and characterization of a composite produced by extrusion, which consists of recycled PVC derived from the recycling of materials discarded, added of the micronized coconut fiber. The recycled PVC with 5% of micronized fiber were characterized by X-ray diffraction, thermogravimetric, differential scanning calorimetry, mechanical analysis and optical microscopy. The use of fiber in the composite caused a decrease in its specific weight, due to the lower specific weight of fibers and the appearance of porosity, in addition to the decrease of mechanical properties.

Keywords: recycled PVC, coconut fiber, characterization, composites

Procedia PDF Downloads 465
1363 Effect of Local Steel Slag as a Coarse Aggregate in the Properties of Fly Ash Based-Geopolymer Concrete

Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien

Abstract:

Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitute of crushed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of dolomite. This paper reports the experimental study to investigate the influence of a hundred replacement of dolomite as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.

Keywords: geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate

Procedia PDF Downloads 303
1362 The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water

Authors: Mohamed A. Deyab, Ahmed E. Awadallah

Abstract:

Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand.

Keywords: hydrogen production, Mg, wastewater, ionic liquid

Procedia PDF Downloads 156
1361 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: activated carbon, palm shell-PEEK, regeneration, thermal

Procedia PDF Downloads 484
1360 Ultrasonic Agglomeration of Protein Matrices and Its Effect on Thermophysical, Macro- and Microstructural Properties

Authors: Daniela Rivera-Tobar Mario Perez-Won, Roberto Lemus-Mondaca, Gipsy Tabilo-Munizaga

Abstract:

Different dietary trends worldwide seek to consume foods with anti-inflammatory properties, rich in antioxidants, proteins, and unsaturated fatty acids that lead to better metabolic, intestinal, mental, and cardiac health. In this sense, food matrices with high protein content based on macro and microalgae are an excellent alternative to meet the new needs of consumers. An emerging and environmentally friendly technology for producing protein matrices is ultrasonic agglomeration. It consists of the formation of permanent bonds between particles, improving the agglomeration of the matrix compared to conventionally agglomerated products (compression). Among the advantages of this process are the reduction of nutrient loss and the avoidance of binding agents. The objective of this research was to optimize the ultrasonic agglomeration process in matrices composed of Spirulina (Arthrospira platensis) powder and Cochayuyo (Durvillae Antartica) flour, by means of the response variable (Young's modulus) and the independent variables were the process conditions (percentage of ultrasonic amplitude: 70, 80 and 90; ultrasonic agglomeration times and cycles: 20, 25 and 30 seconds, and 3, 4 and 5). It was evaluated using a central composite design and analyzed using response surface methodology. In addition, the effects of agglomeration on thermophysical and microstructural properties were evaluated. It was determined that ultrasonic compression with 80 and 90% amplitude caused conformational changes according to Fourier infrared spectroscopy (FTIR) analysis, the best condition with respect to observed microstructure images (SEM) and differential scanning calorimetry (DSC) analysis, was the condition of 90% amplitude 25 and 30 seconds with 3 and 4 cycles of ultrasound. In conclusion, the agglomerated matrices present good macro and microstructural properties which would allow the design of food systems with better nutritional and functional properties.

Keywords: ultrasonic agglomeration, physical properties of food, protein matrices, macro and microalgae

Procedia PDF Downloads 59
1359 The Environmental Damages Related to Urban Sites

Authors: Kherbache Radhwane

Abstract:

We currently live in the world pressed by technological developments necessary for the construction, where the concept of sustainable development is truly rooted in recent years. Construction or demolitions of buildings necessarily generate environmental pollution, both inside and outside the site. Depending on the size and nature of work and the context surrounding these problems can be more or less important as is the case here in Algeria. They may affect the smooth running of the site. Moreover, there are regulations exist or are under development and should be taken into account by the various players in the act of building. This is, for example, the case of new obligations in terms of sorting and recycling of construction waste. Given this situation, it appears increasingly necessary to integrate the building sites in an effort to better respect the environment and its regulation. Several operations were performed according to this principle. The success of a project is that respects its environment through the involvement of each actor of the operation of the site with a low nuisance. As such, the client assisted by his driver and its operating contractor and the company plays a central role as an initiator of the process. It must ensure the establishment of appropriate means of organizational plans and contract.

Keywords: evolution, sustainable development, construction, demolition, building, nuisance, environmental, tailings, construction, regulations

Procedia PDF Downloads 263
1358 Development of Non-Structural Crushed Palm Kernel Shell Fine Aggregate Concrete

Authors: Kazeem K. Adewole, Ismail A. Yahya

Abstract:

In the published literature, Palm Kernel Shell (PKS), an agricultural waste has largely been used as a large aggregate in PKS concrete production. In this paper, the development of Crushed Palm Kernel Shell Fine Aggregate Concrete (CPKSFAC) with crushed PKS (CPKS) as the fine aggregate and granite as the coarse aggregate is presented. 100mm x 100mm x 100mm 1:11/2:3 and 1:2:4 CPKSFAC and River Sand Fine Aggregate Concrete (RSFAC) cubes were molded, cured for 28 days and subjected to a compressive strength test. The average wet densities of the 1:11/2:3 and 1:2:4 CPKSFAC cubes are 2240kg/m3 and 2335kg/m3 respectively. The average wet densities of the 1:11/2:3 and 1:2:4 RSFAC cubes are 2606kg/m3 and 2553kg/m3 respectively. The average compressive strengths of the 1:11/2:3 and 1:2:4 CPKSFAC cubes are 15.40MPa and 14.30MPa respectively. This study demonstrates that CPKSFA is suitable for the production of non-structural C8/10 and C12/15 concrete specified in BS EN 206-1:2000.

Keywords: crushed palm kernel shell, fine aggregate, lightweight concrete, non-structural concrete

Procedia PDF Downloads 424
1357 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams

Authors: Saruhan Kartal, Ilker Kalkan

Abstract:

The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.

Keywords: polymer reinforcement, four-point bending, hybrid use of reinforcement, cracking moment

Procedia PDF Downloads 138
1356 Development of PPy-M Composites Materials for Sensor Application

Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad

Abstract:

The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.

Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole

Procedia PDF Downloads 266
1355 Microwave Assisted Rapid Synthesis of Nano-Binder from Renewable Resource and Their Application in Textile Printing

Authors: K. Haggag, N. S. Elshemy

Abstract:

Due to limited fossil resource and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feed stocks in textile industry area will increase in the decades to come. This research highlights some of the perspectives in this area. Alkyd resins for high characterization and reactive properties, completely based on commercially available renewable resources (sunflower and/or soybean oil) were prepared and characterized. In this work, we present results on the synthesis of various alkyd resins according to the alcoholysis – polyesterification process under different preparation conditions using a microwave synthesis as energy source to determine suitable reaction conditions. Effects of polymerization parameters, such as catalyst ratio, reaction temperature and microwave power level have been studied. The prepared binder was characterized via FT-IR, scanning electron microscope (SEM) and transmission electron microscope (TEM), in addition to acid value (AV), iodine value (IV), water absorbance, weight loss, and glass transition temperature. The prepared binder showed high performance physico-mechanical properties. TEM analysis showed that the polymer latex nanoparticle within range of 20–200 nm. The study involved the application of the prepared alkyd resins as binder for pigment printing process onto cotton fabric by using a flat screen technique and the prints were dried and thermal cured. The optimum curing conditions were determined, color strength and fastness properties of pigment printed areas to light, washing, perspiration and crocking were evaluated. The rheological properties and apparent viscosity of prepared binders were measured in addition roughness of the prints was also determined.

Keywords: nano-binder, microwave heating, renewable resource, alkyd resins, sunflower oil, soybean oil

Procedia PDF Downloads 372
1354 Mathematical Modeling of Activated Sludge Process: Identification and Optimization of Key Design Parameters

Authors: Ujwal Kishor Zore, Shankar Balajirao Kausley, Aniruddha Bhalchandra Pandit

Abstract:

There are some important design parameters of activated sludge process (ASP) for wastewater treatment and they must be optimally defined to have the optimized plant working. To know them, developing a mathematical model is a way out as it is nearly commensurate the real world works. In this study, a mathematical model was developed for ASP, solved under activated sludge model no 1 (ASM 1) conditions and MATLAB tool was used to solve the mathematical equations. For its real-life validation, the developed model was tested for the inputs from the municipal wastewater treatment plant and the results were quite promising. Additionally, the most cardinal assumptions required to design the treatment plant are discussed in this paper. With the need for computerization and digitalization surging in every aspect of engineering, this mathematical model developed might prove to be a boon to many biological wastewater treatment plants as now they can in no time know the design parameters which are required for a particular type of wastewater treatment.

Keywords: waste water treatment, activated sludge process, mathematical modeling, optimization

Procedia PDF Downloads 142
1353 Study of Nanoclay Blends Based on PET/PEN Prepared by Reactive Extrusion

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

A new route of preparation of compatible blends, based on poly(ethylene terephthalate)(PET)/poly(ethylenenaphthalene2,6-dicarboxylate) (PEN)/clay nanocomposites has been successfully performed in one step by reactive melt extrusion. To achieve this, untreated clay was first purified and functionalized “in situ” with a compound based on an organic peroxide/sulfur mixture and (tetra methyl thiuram disulfide) TMTD as accelerator or activator for sulfur. The PET and PEN materials were first mixed separately in the melt state with different amounts of functionalized clay. It was observed that the compositions PET/4 wt% clay and PEN/7.5 wt% clay showed total exfoliation. These completely exfoliated compositions, called nPET and nPEN, respectively, were used to prepare new nPET/nPEN nanoblends in the same mixing batch. The nPET/nPEN nanoblends were compared to neat blends of PET/PEN. The blends and the nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. The results of the WAXS measurements study showed that the exfoliation of tetrahedral nanolayers of clay was complete and the octahedral structure disappeared totally. From the different WAXS patterns, it is seen that all samples are amorphous phase. The thermal study showed that there are only one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This indicated that both PET/PEN blends and nPET/nPEN blends were compatible in the entire range of compositions. In addition, nPET/nPEN blends present lower Tc values and higher Tm values than the corresponding neat PET/PEN blends. The obtained results indicate that nPET/nPEN blends are somewhat different from the pure ones in nanostructure and behavior, thus showing the additional effect of nanolayers. The present study allowed establishing good correlations between the different measured properties.

Keywords: PET, PEN, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing

Procedia PDF Downloads 296
1352 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50 mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300 m/min cutting speed and 1140 mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded K-Type thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: composites, trimming, thermal damage, surface quality

Procedia PDF Downloads 320
1351 Formation of in-situ Ceramic Phase in N220 Nano Carbon Containing Low Carbon Mgo-C Refractory

Authors: Satyananda Behera, Ritwik Sarkar

Abstract:

In iron and steel industries, MgO–C refractories are widely used in basic oxygen furnaces, electric arc furnaces and steel ladles due to their excellent corrosion resistance, thermal shock resistance, and other excellent hot properties. Conventionally magnesia carbon refractories contain about 8-20 wt% of carbon but the use of carbon is also associate with disadvantages like oxidation, low fracture strength, high heat loss and higher carbon pick up in steel. So, MgO-C refractory having low carbon content without compromising the beneficial properties is the challenge. Nano carbon, having finer particles, can mix and distribute within the entire matrix uniformly and can result in improved mechanical, thermo-mechanical, corrosion and other refractory properties. Previous experiences with the use of nano carbon in low carbon MgO-C refractory have indicated an optimum range of use of nano carbon around 1 wt%. This optimum nano carbon content was used in MgO-C compositions with flaky graphite followed by aluminum and silicon metal powder as an anti-oxidant. These low carbon MgO-C refractory compositions were prepared by conventional manufacturing techniques. At the same time 16 wt. % flaky graphite containing conventional MgO-C refractory was also prepared parallel under similar conditions. The developed products were characterized for various refractory related properties. Nano carbon containing compositions showed better mechanical, thermo-mechanical properties, and oxidation resistance compared to that of conventional composition. Improvement in the properties is associated with the formation of in-situ ceramic phase-like aluminum carbide, silicon carbide, and magnesium aluminum spinel. Higher surface area and higher reactivity of N220 nano carbon black resulted in greater formation in-situ ceramic phases, even at a much lower amount. Nano carbon containing compositions were found to have improved properties in MgO-C refractories compared to that of the conventional ones at much lower total carbon content.

Keywords: N220nano carbon black, refractory properties, conventionally manufacturing techniques, conventional magnesia carbon refractories

Procedia PDF Downloads 366
1350 The Effect of a Test Pump Supplement on the Physiological and Functional Performance of Futsal Women

Authors: Samaneh Rahsepar, Mehrzad Moghadasi

Abstract:

To evaluate the effect of Test Pump supplement on the physiological and functional performance of futsal women, twenty female futsal subjects were divided into two groups: placebo (n = 10) and supplement (n = 10) and were given buccal tablets for 7 days and 12 g daily supplement each day. The placebo group used starch powder during this period. Speed, agility with ball, agility without ball and dribbling time were measured before and after supplementation. In addition, the rate of heart rate and blood pressure changes were measured before and after the YOYO test. The results showed that the test pump had no significant effect on improving speed, agility with ball, agility without ball, dribbling time and heart rate changes and diastolic blood pressure, and only affect the maximum oxygen consumption and systolic blood pressure (P <0.05). In general, the use of the test-pump supplement does not have a significant effect on the physiological and functional performance of futsal women. The results of this study showed that the use of supplementary pump tests on women's futsal heart rate changes after loading period had a significant difference between the two groups in resting heart rate with heart rate after exercise and 5 minutes after exercise. However, it did not have a significant effect on the increase in heart rate. Supplementation significantly increased systolic blood pressure after exercise compared to resting blood pressure, as well as a significant increase in systolic blood pressure after exercise compared to resting systolic blood pressure and 5 minutes after exercise in both groups from the loading period. On the other hand, there was a significant difference in systolic blood pressure in both placebo and supplemented groups.

Keywords: test pump supplement, women, speed, dribble, agility, maximum oxygen consumption, cardiovascular

Procedia PDF Downloads 174
1349 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 274
1348 Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers

Authors: Jonathan Rodriguez, Dominga Guerrero, Surupa Shaw

Abstract:

Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature.

Keywords: aerodynamics, CFD, freightage, pickup cover

Procedia PDF Downloads 166
1347 Kinetic Studies of Bioethanol Production from Salt-Pretreated Sugarcane Leaves

Authors: Preshanthan Moodley, E. B. Gueguim Kana

Abstract:

This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz, and logistic models to the experimental data with high coefficients of determination R² > 0.97. A maximum specific growth rate (µₘₐₓ) of 0.153 h⁻¹ was obtained under SSA-F and SSA-U whereas, 0.150 h⁻¹ was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pₘ) of 31.06 g/L compared to 30.49, 23.26 and 21.79g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up.

Keywords: lignocellulosic bioethanol, microwave pretreatment, sugarcane leaves, kinetics

Procedia PDF Downloads 120