Search results for: three angle complex rotation
3995 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders
Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe
Abstract:
The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults
Procedia PDF Downloads 5443994 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People
Authors: Ayman M. Mansour
Abstract:
In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.Keywords: fuzzy logic, inference system, monitoring system, multi-agent system
Procedia PDF Downloads 6113993 Evaluation of Progressive Collapse of Transmission Tower
Authors: Jeong-Hwan Choi, Hyo-Sang Park, Tae-Hyung Lee
Abstract:
The transmission tower is one of the crucial lifeline structures in a modern society, and it needs to be protected against extreme loading conditions. However, the transmission tower is a very complex structure and, therefore, it is very difficult to simulate the actual damage and the collapse behavior of the tower structure. In this study, the actual collapse behavior of the transmission tower due to lateral loading conditions such as wind load is evaluated through the computational simulation. For that, a progressive collapse procedure is applied to the simulation. In this procedure, after running the simulation, if a member of the tower structure fails, the failed member is removed and the simulation run again. The 154kV transmission tower is selected for this study. The simulation is performed by nonlinear static analysis procedure, namely pushover analysis, using OpenSEES, an earthquake simulation platform. Three-dimensional finite element models of those towers are developed.Keywords: transmission tower, OpenSEES, pushover, progressive collapse
Procedia PDF Downloads 3603992 Comparative Analysis of Soil Enzyme Activities between Laurel-Leaved and Cryptomeria japonica Forests
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
Soil enzyme activities in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined to determine levels of mineralization and metabolism. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2 and Pw) trees for analysis. Cellulase, β-xylosidase, and protease activities were higher in BB-1 samples those in BB-2 samples. These activity levels corresponded to the distribution of cellulose and hemicellulose in the soil horizons. Cellulase, β-xylosidase, and chymotrypsin activities were higher in soil from the Pw forest than in that from the BB-2 forest. The relationships between the soil enzymes calculated by Spearman’s rank correlation indicate that the interactions between enzymes in BB-2 samples were more complex than those in Pw samples.Keywords: comparative analysis, enzyme activities, forest soil, Spearman's rank correlation
Procedia PDF Downloads 5973991 Improvement of Realization Quality of Aerospace Products Using Augmented Reality Technology
Authors: Nuran Bahar, Mehmet A. Akcayol
Abstract:
In the aviation industry, many faults may occur frequently during the maintenance processes and assembly operations of complex structured aircrafts because of their high dependencies of components. These faults affect the quality of aircraft parts or developed modules adversely. Technical employee requires long time and high labor force while checking the correctness of each component. In addition, the person must be trained regularly because of the ever-growing and changing technology. Generally, the cost of this training is very high. Augmented Reality (AR) technology reduces the cost of training radically and improves the effectiveness of the training. In this study, the usage of AR technology in the aviation industry has been investigated and the effectiveness of AR with heads-up display glasses has been examined. An application has been developed for comparison of production process with AR and manual one.Keywords: aerospace, assembly quality, augmented reality, heads-up display
Procedia PDF Downloads 3453990 Numerical Solution Speedup of the Laplace Equation Using FPGA Hardware
Authors: Abbas Ebrahimi, Mohammad Zandsalimy
Abstract:
The main purpose of this study is to investigate the feasibility of using FPGA (Field Programmable Gate Arrays) chips as alternatives for the conventional CPUs to accelerate the numerical solution of the Laplace equation. FPGA is an integrated circuit that contains an array of logic blocks, and its architecture can be reprogrammed and reconfigured after manufacturing. Complex circuits for various applications can be designed and implemented using FPGA hardware. The reconfigurable hardware used in this paper is an SoC (System on a Chip) FPGA type that integrates both microprocessor and FPGA architectures into a single device. In the present study the Laplace equation is implemented and solved numerically on both reconfigurable hardware and CPU. The precision of results and speedups of the calculations are compared together. The computational process on FPGA, is up to 20 times faster than a conventional CPU, with the same data precision. An analytical solution is used to validate the results.Keywords: accelerating numerical solutions, CFD, FPGA, hardware definition language, numerical solutions, reconfigurable hardware
Procedia PDF Downloads 3863989 Fundamentals of Theorizing Power in International Relations
Authors: Djehich Mohamed Yousri
Abstract:
The field of political science is one of the sciences in which there is much controversy, in terms of the multiplicity of schools, trends, and goals. This overlap and complexity in the interpretation of the political phenomenon in political science has been linked to other disciplines associated with it, and the science of international relations and the huge amount of theories that have found a wide range and a decisive position after the national tide in the history of Western political thought, especially after the Westphalia Conference 1648, and as a result was approved The new foundations of international politics, the most important of which is respect for state sovereignty. Historical events continued and coincided with scientific, intellectual, and economic developments following the emergence of the industrial revolution, followed by the technological revolutions in all their contents, which led to the rooting and establishment of a comprehensive political system that is more complex and overlapping than it was in the past during the First and Second World Wars. The international situation has become dependent on the digital revolution and its aspirations in The comprehensive transformation witnessed by international political relations after the Cold War.Keywords: theorizing, international relations, approaches to international relations, political science, the political system
Procedia PDF Downloads 1083988 Ibadan-Nigeria Citizenship Behavior Scale: Development and Validation
Authors: Benjamin O. Ehigie, Aderemi Alarape, Nyitor Shenge, Sylvester A. Okhakhume, Timileyin Fashola, Fiyinfunjah Dosumu
Abstract:
Organisational citizenship behaviour (OCB) is a construct in industrial and organisational behaviour that explains a person's voluntary commitment within an organisation, which is outside the scope of his or her contractual tasks. To attain organisational effectiveness the human factor of production is inevitable, hence the importance of employee behaviour. While the concept of organisational citizenship behavior is mostly discussed in the context of the workplace, it is reasoned that the idea could be reflective in relation to national commitment. Many developing countries in Africa, including Nigeria, suffer economic hardship today not necessarily due to poor resources but bad management of the resources. The mangers of their economies are not committed to the tenets of economic growth but engrossed in fraud, corruption, bribery, and other economic vices. It is this backdrop that necessitated the development and validation of the Ibadan-Nigeria Citizenship Behaviour (I-NCB) Scale. The study adopted a cross-sectional survey (online) research design, using 2404 postgraduate students in the Premier University of the country, with 99.2% being Nigerians and 0.8% non-Nigerians. Gender composition was 1,439 (60%) males and 965 (40%) females, 1201 (50%) were employed while 1203 50% unemployed, 74.2% of the employed were in public paid employment, 19.5% in private sector, and 6.3% were self-employed. Through literature review, 78 items were generated. Using 10 lecturers and 21 students, content and face validity were established respectively. Data collected were subjected to reliability and factor analytic statistics at p < .05 level of significance. Results of the content and face validity at 80% level of item acceptance resulted to 60 items; this was further reduced to 50 after item-total correlation using r=.30 criterion. Divergent validity of r= -.28 and convergent validity of r= .44 were obtained by correlating the I-NCB scale with standardized Counterproductive work behaviour (CWB) scale and Organisational Citizenship Behaviour (OCB) scale among the workers. The reliability coefficients obtained were; Cronbach alpha of internal consistency (α = 0.941) and split-half reliability of r = 0.728. Factor analyses of the I-NCB scale with principal component and varimax rotation yielded five factors when Eigenvalue above 1 were extracted. The factors which accounted for larger proportions of the total variance were given factor names as; Altruistic, Attachment, Affective, Civic responsibility and Allegiance. As much as there are vast journals on citizenship behaviour in organisations, there exists no standardized tool to measure citizenship behaviour of a country. The Ibadan-Nigeria Citizenship Behaviour (I-NCB) scale was consequently developed. The scale could be used to select personnel into political positions and senior administrative positions among career workers in Nigeria, with the aim of determining national commitment to service.Keywords: counterproductive work behaviour, CWB, Nigeria Citizenship Behaviour, organisational citizenship behaviour, OCB, Ibadan
Procedia PDF Downloads 2543987 The Effects of a Digital Dialogue Game on Higher Education Students’ Argumentation-Based Learning
Authors: Omid Noroozi
Abstract:
Digital dialogue games have opened up opportunities for learning skills by engaging students in complex problem solving that mimic real world situations, without importing unwanted constraints and risks of the real world. Digital dialogue games can be motivating and engaging to students for fun, creative thinking, and learning. This study explored how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate. A pre-test, post-test design was used with students who were assigned to groups of four and asked to debate a controversial topic with the aim of exploring various 'pros and cons' on the 'Genetically Modified Organisms (GMOs)'. Findings reveal that the Digital dialogue game can facilitate argumentation-based learning. The digital Dialogue game was also evaluated positively in terms of students’ satisfaction and learning experiences.Keywords: argumentation, dialogue, digital game, learning, motivation
Procedia PDF Downloads 3233986 Collective Movement between Two Lego EV3 Mobile Robots
Authors: Luis Fernando Pinedo-Lomeli, Rosa Martha Lopez-Gutierrez, Jose Antonio Michel-Macarty, Cesar Cruz-Hernandez, Liliana Cardoza-Avendaño, Humberto Cruz-Hernandez
Abstract:
Robots are working in industry and services performing repetitive or dangerous tasks, however, when flexible movement capabilities and complex tasks are required, the use of many robots is needed. Also, productivity can be improved by reducing times to perform tasks. In the last years, a lot of effort has been invested in research and development of collective control of mobile robots. This interest is justified as there are many advantages when two or more robots are collaborating in a particular task. Some examples are: cleaning toxic waste, transportation and manipulation of objects, exploration, and surveillance, search and rescue. In this work a study of collective movements of mobile robots is presented. A solution of collisions avoidance is developed. This solution is levered on a communication implementation that allows coordinate movements in different paths were avoiding obstacles.Keywords: synchronization, communication, robots, legos
Procedia PDF Downloads 4363985 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays
Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner
Abstract:
Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation
Procedia PDF Downloads 2943984 Comparison of Water Equivalent Ratio of Several Dosimetric Materials in Proton Therapy Using Monte Carlo Simulations and Experimental Data
Authors: M. R. Akbari , H. Yousefnia, E. Mirrezaei
Abstract:
Range uncertainties of protons are currently a topic of interest in proton therapy. Two of the parameters that are often used to specify proton range are water equivalent thickness (WET) and water equivalent ratio (WER). Since WER values for a specific material is nearly constant at different proton energies, it is a more useful parameter to compare. In this study, WER values were calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and TRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. In FLUKA simulation, a cylindrical phantom, 1000 mm in height and 300 mm in diameter, filled with the studied materials was simulated. A typical mono-energetic proton pencil beam in a wide range of incident energies usually applied in proton therapy (50 MeV to 225 MeV) impinges normally on the phantom. In order to obtain the WER values for the considered materials, cylindrical detectors, 1 mm in height and 20 mm in diameter, were also simulated along the beam trajectory in the phantom. In TRIM calculations, type of projectile, energy and angle of incidence, type of target material and thickness should be defined. The mode of 'detailed calculation with full damage cascades' was selected for proton transport in the target material. The biggest difference in WER values between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. In Al and PMMA, the biggest difference between each code and experimental data was 1.08%, 1.26%, 2.55%, 0.94%, 0.77% and 0.95% for SEICS, FLUKA and SRIM, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference in PMMA and ≤1.08% difference in Al, respectively) with the available experimental data in this study. It is concluded that, FLUKA and TRIM codes have capability for Bragg curves simulation and WER values calculation in the studied materials. They can also predict Bragg peak location and range of proton beams with acceptable accuracy.Keywords: water equivalent ratio, dosimetric materials, proton therapy, Monte Carlo simulations
Procedia PDF Downloads 3273983 Newly Designed Ecological Task to Assess Cognitive Map Reading Ability: Behavioral Neuro-Anatomic Correlates of Mental Navigation
Authors: Igor Faulmann, Arnaud Saj, Roland Maurer
Abstract:
Spatial cognition consists in a plethora of high level cognitive abilities: among them, the ability to learn and to navigate in large scale environments is probably one of the most complex skills. Navigation is thought to rely on the ability to read a cognitive map, defined as an allocentric representation of ones environment. Those representations are of course intimately related to the two geometrical primitives of the environment: distance and direction. Also, many recent studies point to a predominant hippocampal and para-hippocampal role in spatial cognition, as well as in the more specific cluster of navigational skills. In a previous study in humans, we used a newly validated test assessing cognitive map processing by evaluating the ability to judge relative distances and directions: the CMRT (Cognitive Map Recall Test). This study identified in topographically disorientated patients (1) behavioral differences between the evaluation of distances and of directions, and (2) distinct causality patterns assessed via VLSM (i.e., distinct cerebral lesions cause distinct response patterns depending on the modality (distance vs direction questions). Thus, we hypothesized that: (1) if the CMRT really taps into the same resources as real navigation, there would be hippocampal, parahippocampal, and parietal activation, and (2) there exists underlying neuroanatomical and functional differences between the processing of this two modalities. Aiming toward a better understanding of the neuroanatomical correlates of the CMRT in humans, and more generally toward a better understanding of how the brain processes the cognitive map, we adapted the CMRT as an fMRI procedure. 23 healthy subjects (11 women, 12 men), all living in Geneva for at least 2 years, underwent the CMRT in fMRI. Results show, for distance and direction taken together, than the most active brain regions are the parietal, frontal and cerebellar parts. Additionally, and as expected, patterns of brain activation differ when comparing the two modalities. Furthermore, distance processing seems to rely more on parietal regions (compared to other brain regions in the same modality and also to direction). It is interesting to notice that no significant activity was observed in the hippocampal or parahippocampal areas. Direction processing seems to tap more into frontal and cerebellar brain regions (compared to other brain regions in the same modality and also to distance). Significant hippocampal and parahippocampal activity has been shown only in this modality. This results demonstrated a complex interaction of structures which are compatible with response patterns observed in other navigational tasks, thus showing that the CMRT taps at least partially into the same brain resources as real navigation. Additionally, differences between the processing of distances and directions leads to the conclusion that the human brain processes each modality distinctly. Further research should focus on the dynamics of this processing, allowing a clearer understanding between the two sub-processes.Keywords: cognitive map, navigation, fMRI, spatial cognition
Procedia PDF Downloads 2963982 Riding the Crest of the Wave: Inclusive Education in New Zealand
Authors: Barbara A. Perry
Abstract:
In 1996, the New Zealand government and the Ministry of Education announced that they were setting up a "world class system of inclusive education". As a parent of a son with high and complex needs, a teacher, school Principal and Disability studies Lecturer, this author will track the changes in the journey towards inclusive education over the last 20 years. Strategies for partnering with families to ensure educational success along with insights from one of those on the crest of the wave will be presented. Using a narrative methodology the author will illuminate how far New Zealand has come towards this world class system of inclusion promised and share from personal experience some of the highlights and risks in the system. This author has challenged the old structures and been part of the setting up of new structures particularly for providing parent voice and insight; this paper provides a unique view from an insider’s voice as well as a professional in the system.Keywords: disability studies, inclusive education, special education, working with families with children with disability
Procedia PDF Downloads 2543981 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method
Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis
Abstract:
Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses
Procedia PDF Downloads 1333980 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1223979 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design
Authors: Qing K. Zhu
Abstract:
Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise
Procedia PDF Downloads 2543978 Using Scilab® as New Introductory Method in Numerical Calculations and Programming for Computational Fluid Dynamics (CFD)
Authors: Nicoly Coelho, Eduardo Vieira Vilas Boas, Paulo Orestes Formigoni
Abstract:
Faced with the remarkable developments in the various segments of modern engineering, provided by the increasing technological development, professionals of all educational areas need to overcome the difficulties generated due to the good understanding of those who are starting their academic journey. Aiming to overcome these difficulties, this article aims at an introduction to the basic study of numerical methods applied to fluid mechanics and thermodynamics, demonstrating the modeling and simulations with its substance, and a detailed explanation of the fundamental numerical solution for the use of finite difference method, using SCILAB, a free software easily accessible as it is free and can be used for any research center or university, anywhere, both in developed and developing countries. It is known that the Computational Fluid Dynamics (CFD) is a necessary tool for engineers and professionals who study fluid mechanics, however, the teaching of this area of knowledge in undergraduate programs faced some difficulties due to software costs and the degree of difficulty of mathematical problems involved in this way the matter is treated only in postgraduate courses. This work aims to bring the use of DFC low cost in teaching Transport Phenomena for graduation analyzing a small classic case of fundamental thermodynamics with Scilab® program. The study starts from the basic theory involving the equation the partial differential equation governing heat transfer problem, implies the need for mastery of students, discretization processes that include the basic principles of series expansion Taylor responsible for generating a system capable of convergence check equations using the concepts of Sassenfeld, finally coming to be solved by Gauss-Seidel method. In this work we demonstrated processes involving both simple problems solved manually, as well as the complex problems that required computer implementation, for which we use a small algorithm with less than 200 lines in Scilab® in heat transfer study of a heated plate in rectangular shape on four sides with different temperatures on either side, producing a two-dimensional transport with colored graphic simulation. With the spread of computer technology, numerous programs have emerged requiring great researcher programming skills. Thinking that this ability to program DFC is the main problem to be overcome, both by students and by researchers, we present in this article a hint of use of programs with less complex interface, thus enabling less difficulty in producing graphical modeling and simulation for DFC with an extension of the programming area of experience for undergraduates.Keywords: numerical methods, finite difference method, heat transfer, Scilab
Procedia PDF Downloads 3883977 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.Keywords: energy, system, building, cooling, electrical
Procedia PDF Downloads 5763976 MHC Class II DRB1 Gene Polymorphism in Lori Sheep Breed
Authors: Shahram Nanekarani, Majid Goodarzi, Majid Khosravi
Abstract:
The present study aimed at analyzing of ovine major histocompatibility complex class II (Ovar II) DRB1 gene second exon in Lori Sheep breed. The MHC plays a central role in the control of disease resistance and immunological response. Genomic DNA from blood samples of 124 sheep was extracted and a 296 bp MHC exon 2 fragment was amplified using polymerase chain reaction. PCR products were characterized by the restriction fragment length polymorphism technique using Hin1I restriction enzyme. The PCRRFLP patterns showed three genotypes, AA, AB and BB with frequency of 0.282, 0.573 and 0.145, respectively. There was no significant (P > 0.05) deviation from Hardy–Weinberg equilibrium for this locus in this population. The results of the present study indicate that exon 2 of the Ovar-DRB1 gene is highly polymorphic in Lori sheep and could be considered as an important marker assisted selection, for improvement of immunity in sheep.Keywords: MHC-DRB1 gene, polymorphism, PCR-RFLP, lori sheep
Procedia PDF Downloads 4263975 An Integrated Planning Framework for Sustainable Tourism: Case Study of Tunisia
Authors: S. Halioui, I. Arikan, M. Schmidt
Abstract:
Tourism sector in Tunisia faces several problems that range from economic challenges to environmental degradation and social instability. These problems have been intensified because of the increased competition in the tourism market, the political instability, financial crises, and recently terrorism problems have aggravated the situation. As a consequence, a new framework that promotes sustainable tourism in the country and increases its competitiveness is urgently needed. Planning for sustainable tourism sector requires the integration of complex interactions between economic, social and environmental aspects. Sustainable tourism principles can be implemented with the help of Strategic Environmental Assessment (SEA) process, which ensures the full integration of economic, social and environmental considerations while planning for the tourism sector in Tunisia. Results of the paper have broad implications for policy makers and tourism professionals.Keywords: sustainable tourism, strategic environmental assessment, tourism planning, policy
Procedia PDF Downloads 4913974 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation
Procedia PDF Downloads 1013973 Knowledge Elicitation Approach for Formal Ontology Design: An Exploratory Study Applied in Industry for Knowledge Management
Authors: Ouassila Labbani-Narsis, Christophe Nicolle
Abstract:
Building formal ontologies remains a complex process for companies. In the literature, this process is based on the technical knowledge and expertise of domain experts, without further details on the used methodologies. Possible problems of disagreements between experts, expression of tacit knowledge related to high level know-how rarely verbalized, qualification of results by using cases, or simply adhesion of the group of experts, remain currently unsolved. This paper proposes a methodological approach based on knowledge elicitation for the conception of formal, consensual, and shared ontologies. The proposed approach is experimentally tested on industrial collaboration projects in the field of manufacturing (associating knowledge sources from multinational companies) and in the field of viticulture (associating explicit knowledge and implicit knowledge acquired through observation).Keywords: collaborative ontology engineering, knowledge elicitation, knowledge engineering, knowledge management
Procedia PDF Downloads 803972 Molecular Docking Study of Quinazoline and Quinoline Derivatives against EGFR
Authors: Asli Faiza, Khamouli Saida
Abstract:
With the development of computer tools over the past 20 years. Molecular modeling and, more precisely, molecular docking has very quickly entered field of pharmaceutical research. EGFR enzyme involved in cancer disease.Our work consists of studying the inhibition of EGFR (1M17) with deferent inhibitors derived from quinazoline and quinoline by molecular docking. The values of ligands L148 and L177 are the best ligands for inhibit the activity of 1M17 since it forms a stable complex with this enzyme by better binding to the active site. The results obtained show that the ligands L148 and L177 give weak interactions with the active site residues EGFR (1M17), which stabilize the complexes formed of this ligands, which gives a better binding at the level of the active site, and an RMSD of L148 [1,9563 Å] and of L177 [ 1,2483 Å]. [1, 9563, 1.2483] ÅKeywords: docking, EGFR, quinazoline, quinoliène, MOE
Procedia PDF Downloads 723971 Women, Science and Engineering Doctorate Recipients from U.S. Universities
Authors: Cheryl Leggon
Abstract:
Although women in the aggregate are earning more doctorates in science and engineering from U.S. institutions, they continue to concentrate in some fields--e.g., biology--and underrepresented in others--e.g., engineering. Traditionally, most studies of women doctorate recipients in the sciences (including the social, behavioral and economic sciences) or engineering do not report their findings by demographic subgroups. This study extends the literature on these topics by using an intersectional approach to examine decadal trends. Intersectionality suggests that race, gender, and nation are not separate mutually exclusive entities whose impacts are summative, but rather as a confluence of synergistic factors that shape complex social inequities. Drawing on critical aspects of the intersectionality approach is particularly well suited for a more fine-grained analysis of the representation of women doctorate recipients in science and engineering. The implications of the findings are discussed in terms of policies and evidence-based programmatic strategies for enhancing women’s participation in fields in which they are especially underrepresented.Keywords: doctorates, engineering, science, women
Procedia PDF Downloads 2853970 Oil Reservoirs Bifurcation Analysis in the Democratic Republic of Congo: Fractal Characterization Approach of Makelekese MS-25 Field
Authors: Leonard Mike McNelly Longwa, Divine Kusosa Musiku, Dieudonne Nahum Kabeya
Abstract:
In this paper, the bifurcation analysis of oilfields in the Democratic Republic of Congo is presented in order to enhance petroleum production in an intense tectonic evolution characterized by distinct compressive and extensive phases and the digenetic transformation in the reservoirs during burial geological configuration. The use of porous media in the Makelekese MS-25 field has been established to simulate the boundaries within 3 sedimentary basins open to exploration including the coastal basin with an area of 5992 km², a central basin with an area of 800,000 km², the western branch of the East African Rift in which there are 50,000 km². The fractal characterization of complex hydro-dynamic fractures in oilfields is developed to facilitate the oil production process based on the reservoirs bifurcation model.Keywords: reservoir bifurcation, fractal characterization, permeability, conductivity, skin effect
Procedia PDF Downloads 1333969 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1793968 Virtual Experiments on Coarse-Grained Soil Using X-Ray CT and Finite Element Analysis
Authors: Mohamed Ali Abdennadher
Abstract:
Digital rock physics, an emerging field leveraging advanced imaging and numerical techniques, offers a promising approach to investigating the mechanical properties of granular materials without extensive physical experiments. This study focuses on using X-Ray Computed Tomography (CT) to capture the three-dimensional (3D) structure of coarse-grained soil at the particle level, combined with finite element analysis (FEA) to simulate the soil's behavior under compression. The primary goal is to establish a reliable virtual testing framework that can replicate laboratory results and offer deeper insights into soil mechanics. The methodology involves acquiring high-resolution CT scans of coarse-grained soil samples to visualize internal particle morphology. These CT images undergo processing through noise reduction, thresholding, and watershed segmentation techniques to isolate individual particles, preparing the data for subsequent analysis. A custom Python script is employed to extract particle shapes and conduct a statistical analysis of particle size distribution. The processed particle data then serves as the basis for creating a finite element model comprising approximately 500 particles subjected to one-dimensional compression. The FEA simulations explore the effects of mesh refinement and friction coefficient on stress distribution at grain contacts. A multi-layer meshing strategy is applied, featuring finer meshes at inter-particle contacts to accurately capture mechanical interactions and coarser meshes within particle interiors to optimize computational efficiency. Despite the known challenges in parallelizing FEA to high core counts, this study demonstrates that an appropriate domain-level parallelization strategy can achieve significant scalability, allowing simulations to extend to very high core counts. The results show a strong correlation between the finite element simulations and laboratory compression test data, validating the effectiveness of the virtual experiment approach. Detailed stress distribution patterns reveal that soil compression behavior is significantly influenced by frictional interactions, with frictional sliding, rotation, and rolling at inter-particle contacts being the primary deformation modes under low to intermediate confining pressures. These findings highlight that CT data analysis combined with numerical simulations offers a robust method for approximating soil behavior, potentially reducing the need for physical laboratory experiments.Keywords: X-Ray computed tomography, finite element analysis, soil compression behavior, particle morphology
Procedia PDF Downloads 403967 Analyzing Data Protection in the Era of Big Data under the Framework of Virtual Property Layer Theory
Authors: Xiaochen Mu
Abstract:
Data rights confirmation, as a key legal issue in the development of the digital economy, is undergoing a transition from a traditional rights paradigm to a more complex private-economic paradigm. In this process, data rights confirmation has evolved from a simple claim of rights to a complex structure encompassing multiple dimensions of personality rights and property rights. Current data rights confirmation practices are primarily reflected in two models: holistic rights confirmation and process rights confirmation. The holistic rights confirmation model continues the traditional "one object, one right" theory, while the process rights confirmation model, through contractual relationships in the data processing process, recognizes rights that are more adaptable to the needs of data circulation and value release. In the design of the data property rights system, there is a hierarchical characteristic aimed at decoupling from raw data to data applications through horizontal stratification and vertical staging. This design not only respects the ownership rights of data originators but also, based on the usufructuary rights of enterprises, constructs a corresponding rights system for different stages of data processing activities. The subjects of data property rights include both data originators, such as users, and data producers, such as enterprises, who enjoy different rights at different stages of data processing. The intellectual property rights system, with the mission of incentivizing innovation and promoting the advancement of science, culture, and the arts, provides a complete set of mechanisms for protecting innovative results. However, unlike traditional private property rights, the granting of intellectual property rights is not an end in itself; the purpose of the intellectual property system is to balance the exclusive rights of the rights holders with the prosperity and long-term development of society's public learning and the entire field of science, culture, and the arts. Therefore, the intellectual property granting mechanism provides both protection and limitations for the rights holder. This perfectly aligns with the dual attributes of data. In terms of achieving the protection of data property rights, the granting of intellectual property rights is an important institutional choice that can enhance the effectiveness of the data property exchange mechanism. Although this is not the only path, the granting of data property rights within the framework of the intellectual property rights system helps to establish fundamental legal relationships and rights confirmation mechanisms and is more compatible with the classification and grading system of data. The modernity of the intellectual property rights system allows it to adapt to the needs of big data technology development through special clauses or industry guidelines, thus promoting the comprehensive advancement of data intellectual property rights legislation. This paper analyzes data protection under the virtual property layer theory and two-fold virtual property rights system. Based on the “bundle of right” theory, this paper establishes specific three-level data rights. This paper analyzes the cases: Google v. Vidal-Hall, Halliday v Creation Consumer Finance, Douglas v Hello Limited, Campbell v MGN and Imerman v Tchenquiz. This paper concluded that recognizing property rights over personal data and protecting data under the framework of intellectual property will be beneficial to establish the tort of misuse of personal information.Keywords: data protection, property rights, intellectual property, Big data
Procedia PDF Downloads 433966 Functional Switching of Serratia marcescens Transcriptional Regulator from Activator to Inhibitor of Quorum Sensing by Exogenous Addition
Authors: Norihiro Kato, Yuriko Takayama
Abstract:
Some gram-negative bacteria enable the simultaneous activation of gene expression involved in N-acylhomoserine lactone (AHL) dependent cell-to-cell communication system. Such regulatory system for the bacterial group behavior is termed as quorum sensing (QS) because a diffusible AHL signal can accumulate around the cell during the increase of the cell density and trigger activation of the sequential QS process. By blocking the QS, the expression of diverse genes related to infection, antibiotic production, and biofilm formation is inhibited. Conditioning of QS by regulation of the DNA-receptor-AHL interaction is a potential target for enhancing host defenses against pathogenicity. We focused on engineered application of transcriptional regulator SpnR produced in opportunistic human pathogen Serratia marcescens. The SpnR can interact with AHL signals at an N-terminal domain and also with a promoter region of a QS target gene at a C-terminal domain. As the initial process of the QS activation, the SpnR forms a complex with the AHL to enhance the expression of pig cluster; the SpnR normally acts as an activator for the expression of the QS-dependent gene. In this research, we attempt to artificially control QS by changing the role of SpnR. The QS-dependent prodigiosin production is expected to inhibit by externally added SpnR in the culture broth of AS-1 strain because the AHL concentration was kept below the threshold by AHL-SpnR complex formation. Maltose-binding protein (MBP)-tagged SpnR (MBP-SpnR) was overexpressed in Escherichia coli and purified using an affinity chromatography equipped with an amylose resin column. The specific interaction between AHL and MBP-SpnR was demonstrated by quartz crystal microbalance (QCM) sensor. AHL with amino end-group was coupled with COOH-terminated self-assembled monolayer prepared on a gold electrode of 27-MHz quartz crystal sensor using water-soluble carbodiimide. After the injection of MBP-SpnR into a cup-type sensor cell filled with the buffer solution, time course of resonant frequency change (ΔFs) was determined. A decrease of ΔFs clearly showed the uptake of MBP-SpnR onto the AHL-immobilized electrode. Furthermore, no binding affinity was observed after the heat-inactivation of MBP-SpnR at 80ºC. These results suggest that MBP-SpnR possesses a specific affinity for AHL. MBP-SpnR was added to the culture medium as an AHL trap to study inhibitory effects on intracellularly accumulated prodigiosin. With approximately 2 µM MBP-SpnR, the amount of prodigiosin induced was half that of the control without any additives. In conclusion, the function of SpnR could be switched by adding it to the cell culture. Exogenously added MBP-SpnR possesses high affinity for AHL derived from cells and acts as an inhibitor of AHL-mediated QS.Keywords: intracellular signaling, microbial biotechnology, quorum sensing, transcriptional regulator
Procedia PDF Downloads 268