Search results for: nuclear waste disposal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3762

Search results for: nuclear waste disposal

702 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling

Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel

Abstract:

Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.

Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia

Procedia PDF Downloads 378
701 Tensile Behavior of Oil Palm Fiber Concrete (OPFC) with Different Fiber Volume

Authors: Khairul Zahreen Mohd Arof, Rahimah Muhamad

Abstract:

Oil palm fiber (OPF) is a fibrous material produced from the waste of palm oil industry which is suitable to be used in construction industry. The applications of OPF in concrete can reduce the material costs and enhance concrete behavior. Dog-bone test provides significant results for investigating the behavior of fiber reinforced concrete under tensile loading. It is able to provide stress-strain profile, modulus of elasticity, stress at cracking point and total crack width. In this research, dog-bone tests have been conducted to analyze total crack width, stress-strain profile, and modulus of elasticity of OPFC. Specimens are in a dog-bone shape with a long notch in the middle as compared to the end, to ensure cracks occur only within the notch. Tests were instrumented using a universal testing machine Shimadzu 300kN, a linear variable differential transformer and two strain gauges. A total of nine specimens with different fibers at fiber volume fractions of 0.75%, 1.00%, and 1.25% have been tested to analyze the behavior under tensile loading. Also, three specimens of plain concrete fiber have been tested as control specimens. The tensile test of all specimens have been carried out for concrete age exceed 28 days. It shows that OPFC able to reduce total crack width. In addition, OPFC has higher cracking stress than plain concrete. The study shows plain concrete can be improved with the addition of OPF.

Keywords: cracks, crack width, dog-bone test, oil palm fiber concrete

Procedia PDF Downloads 344
700 Identification of Nutrient Sensitive Signaling Pathways via Analysis of O-GlcNAcylation

Authors: Michael P. Mannino, Gerald W. Hart

Abstract:

The majority of glucose metabolism proceeds through glycolytic pathways such as glycolysis or pentose phosphate pathway, however, about 5% is shunted through the hexosamine biosynthetic pathway, producing uridine diphosphate N-acetyl glucosamine (UDP-GlcNAc). This precursor can then be incorporated into complex oligosaccharides decorating the cell surface or remain as an intracellular post-translational-modification (PTM) of serine/threonine residues (O-GlcNAcylation, OGN), which has been identified on over 4,000 cytosolic or nuclear proteins. Intracellular OGN has major implications on cellularprocesses, typically by modulating protein localization, protein-protein interactions, protein degradation, and gene expression. Additionally, OGN is known to have an extensive cross-talk with phosphorylation, be in a competitive or cooperative manner. Unlike other PTMs there are only two cycling enzymes that are capable of adding or removing the GlcNAc moiety, O-linked N-aceytl glucosamine Transferase (OGT) and O-linked N-acetyl glucoamidase (OGA), respectively. The activity of OGT has been shown to be sensitive to cellular UDP-GlcNAc levels, even changing substrate affinity. Owing to this and that the concentration of UDP-GlcNAc is related to the metabolisms of glucose, amino acid, fatty acid, and nucleotides, O-GlcNAc is often referred to as a nutrient sensing rheostat. Indeed OGN is known to regulate several signaling pathways as a result of nutrient levels, such as insulin signaling. Dysregulation of OGN is associated with several disease states such as cancer, diabetes, and neurodegeneration. Improvements in glycomics over the past 10-15 years has significantly increased the OGT substrate pool, suggesting O-GlcNAc’s involvement in a wide variety of signaling pathways. However, O-GlcNAc’s role at the receptor level has only been identified in a case-by-case basis of known pathways. Examining the OGN of the plasma membrane (PM) may better focus our understanding of O-GlcNAc-effected signaling pathways. In this current study, PM fractions were isolated from several cell types via ultracentrifugation, followed by purification and MS/MS analysis in several cell lines. This process was repeated with or without OGT/OGA inhibitors or with increased/decreased glucose levels in media to ascertain the importance of OGN. Various pathways are followed up on in more detailed studies employing methods to localize OGN at the PM specifically.

Keywords: GlcNAc, nutrient sensitive, post-translational-modification, receptor

Procedia PDF Downloads 112
699 Evaluation of Azo Dye Toxicity Using Some Haematological and Histopathological Alterations in Fish Catla Catla

Authors: Jagruti Barot

Abstract:

The textile industry plays a major role in the economy of India and on the other side of the coin it is the major source for water pollution. As azo dyes is the largest dye class they are extensively used in many fields such as textile industry, leather tanning industry, paper production, food, colour photography, pharmaceuticals and medicine, cosmetic, hair colourings, wood staining, agricultural, biological and chemical research etc. In addition to these, they can have acute and/or chronic effects on organisms depending on their concentration and length of exposure when they discharged as effluent in the environment. The aim of this study was to assess the genotoxic and histotoxic potentials of environmentally relevant concentrations of RR 120 on Catla catla, important edible freshwater fingerlings. For this, healthy Catla catla fingerlings were procured from the Government Fish Farm and acclimatized in 100 L capacity and continuously aerated glass aquarium in laboratory for 15 days. According to APHA some physic-chemical parameters were measured and maintained such as temperature, pH, dissolve oxygen, alkalinity, total hardness. Water along with excreta had been changed every 24 hrs. All fingerlings were fed artificial food palates once a day @ body weight. After 15 days fingerlings were grouped in 5 (10 in each) and exposed to various concentrations of RR 120 (Control, 10, 20, 30 and 40 mg/L) and samples (peripheral blood and gills, kidney) were collected and analyzed at 96 hrs. of interval. All results were compared with the control. Micronuclei (MN), nuclear buds (NB), fragmented-apoptotic (FA) and bi-nucleated (BN) cells in blood cells and in tissues (gills and kidney cells) were observed. Prominent histopathological alterations were noticed in gills such as aneurism, hyperplasia, degenerated central axis, lifting of gill epithelium, curved secondary gill lamellae etc. Similarly kidney showed some detrimental changes like shrunken glomeruli with increased periglomerular space, degenerated renal tubules etc. Both haematological and histopathological changes clearly reveal the toxic potential of RR 120. This work concludes that water pollution assessment can be done by these two biomarkers which provide baseline to the further chromosomal or molecular work.

Keywords: micronuclei, genotoxicity, RR 120, Catla catla

Procedia PDF Downloads 207
698 Simulation of Lean Principles Impact in a Multi-Product Supply Chain

Authors: Matteo Rossini, Alberto Portioli Staudacher

Abstract:

The market competition is moving from the single firm to the whole supply chain one because of increasing competition and growing need for operational efficiencies and customer orientation. Supply chain management allows companies to look beyond their organizational boundaries to develop and leverage resources and capabilities of their supply chain partners. This leads to create competitive advantages in the marketplace and because of this SCM has acquired strategic importance. Lean Approach is a management strategy that focuses on reducing every type of waste present in an organization. This approach is becoming more and more popular among supply chain managers. The supply chain application of lean approach is low diffused. It is not well studied which are the impacts of lean approach principles in a supply chain context. In literature there are only few studies simulating the lean approach performance in single products supply chain. This research work studies the impacts of lean principles implementation along a supply chain. To achieve this, a simulation model of a three-echelon multiproduct product supply chain has been built. Kanban system (and several priority policies) and setup time reduction degrees are implemented in the lean-configured supply chain to apply pull and lot-sizing decrease principles respectively. To evaluate the benefits of lean approach, lean supply chain is compared with an EOQ-configured supply chain. The simulation results show that Kanban system and setup-time reduction improve inventory stock level. They also show that logistics efforts are affected to lean implementation degree. The paper concludes describing performances of lean supply chain in different contexts.

Keywords: inventory policy, Kanban, lean supply chain, simulation study, supply chain management, planning

Procedia PDF Downloads 357
697 A Generalised Propensity Score Analysis to Investigate the Influence of Agricultural Research Systems on Greenhouse Gas Emissions

Authors: Spada Alessia, Fiore Mariantonietta, Lamonaca Emilia, Contò Francesco

Abstract:

Bioeconomy can give the chance to face new global challenges and can move ahead the transition from a waste economy to an economy based on renewable resources and sustainable consumption. Air pollution is a grave issue in green challenges, mainly caused by anthropogenic factors. The agriculture sector is a great contributor to global greenhouse gases (GHGs) emissions due to lacking efficient management of the resources involved and research policies. In particular, livestock sector contributes to emissions of GHGs, deforestation, and nutrient imbalances. More effective agricultural research systems and technologies are crucial in order to improve farm productivity but also to reduce the GHGs emissions. Using data from FAOSTAT statistics and concern the EU countries; the aim of this research is to evaluate the impact of ASTI R&D (Agricultural Science and Technology Indicators) on GHGs emissions for countries EU in 2015 by generalized propensity score procedures, estimating a dose-response function, also considering a set of covariates. Expected results show the existence of the influence of ASTI R&D on GHGs across EU countries. Implications are crucial: reducing GHGs emissions by means of R&D based policies and correlatively reaching eco-friendly management of required resources by means of green available practices could have a crucial role for fair intra-generational implications.

Keywords: agricultural research systems, dose-response function, generalized propensity score, GHG emissions

Procedia PDF Downloads 278
696 Generation of Renewable Energy Through Photovoltaic Panels, Albania Photovoltaic Capacity

Authors: Dylber Qema

Abstract:

Driven by recent developments in technology and the growing concern about the sustainability and environmental impact of conventional fuel use, the possibility of producing clean and sustainable energy in significant quantities from renewable energy sources has sparked interest all over the world. Solar energy is one of the sources for the generation of electricity, with no emissions or environmental pollution. The electricity produced by photovoltaics can supply a home or business and can even be sold or exchanged with the grid operator. A very positive effect of using photovoltaic modules is that they do not produce greenhouse gases and do not produce chemical waste, unlike all other forms of energy production. Photovoltaics are becoming one of the largest investments in the field of renewable generating units. Improving the reliability of the electric power system is one of the most important impacts of the installation of photovoltaics (PV). Renewable energy sources are so large that they can meet the energy demands of the whole world, thus enabling sustainable supply as well as reducing local and global atmospheric emissions. Albania is rated by experts as one of the most favorable countries in Europe for the production of electricity from solar panels. But the country currently produces about 1% of its energy from the sun, while the rest of the needs are met by hydropower plants and imports. Albania has very good characteristics in terms of solar radiation (about 1300–1400 kW/m2). Solar energy has great potential and is a permanent source of energy with greater economic efficiency. Photovoltaic energy is also seen as an alternative, as long periods of drought in Albania have produced crises and high costs for securing energy in the foreign market.

Keywords: capacity, ministry of tourism and environment, obstacles, photovoltaic energy, sustainable

Procedia PDF Downloads 59
695 Human Lens Metabolome: A Combined LC-MS and NMR Study

Authors: Vadim V. Yanshole, Lyudmila V. Yanshole, Alexey S. Kiryutin, Timofey D. Verkhovod, Yuri P. Tsentalovich

Abstract:

Cataract, or clouding of the eye lens, is the leading cause of vision impairment in the world. The lens tissue have very specific structure: It does not have vascular system, the lens proteins – crystallins – do not turnover throughout lifespan. The protection of lens proteins is provided by the metabolites which diffuse inside the lens from the aqueous humor or synthesized in the lens epithelial layer. Therefore, the study of changes in the metabolite composition of a cataractous lens as compared to a normal lens may elucidate the possible mechanisms of the cataract formation. Quantitative metabolomic profiles of normal and cataractous human lenses were obtained with the combined use of high-frequency nuclear magnetic resonance (NMR) and ion-pairing high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. The quantitative content of more than fifty metabolites has been determined in this work for normal aged and cataractous human lenses. The most abundant metabolites in the normal lens are myo-inositol, lactate, creatine, glutathione, glutamate, and glucose. For the majority of metabolites, their levels in the lens cortex and nucleus are similar, with the few exceptions including antioxidants and UV filters: The concentrations of glutathione, ascorbate and NAD in the lens nucleus decrease as compared to the cortex, while the levels of the secondary UV filters formed from primary UV filters in redox processes increase. That confirms that the lens core is metabolically inert, and the metabolic activity in the lens nucleus is mostly restricted by protection from the oxidative stress caused by UV irradiation, UV filter spontaneous decomposition, or other factors. It was found that the metabolomic composition of normal and age-matched cataractous human lenses differ significantly. The content of the most important metabolites – antioxidants, UV filters, and osmolytes – in the cataractous nucleus is at least ten fold lower than in the normal nucleus. One may suppose that the majority of these metabolites are synthesized in the lens epithelial layer, and that age-related cataractogenesis might originate from the dysfunction of the lens epithelial cells. Comprehensive quantitative metabolic profiles of the human eye lens have been acquired for the first time. The obtained data can be used for the analysis of changes in the lens chemical composition occurring with age and with the cataract development.

Keywords: cataract, lens, NMR, LC-MS, metabolome

Procedia PDF Downloads 322
694 Space Debris: An Environmental Hazard

Authors: Anwesha Pathak

Abstract:

Space law refers to all legal provisions that may regulate or apply to space travel, as well as to space-related activity. Although there is undoubtedly a core corpus of “space law,” rather than designating a conceptually distinct single kind of law, the phrase can be seen as a label applied to a bucket that includes a variety of different laws and regulations. Similar to ‘family law' or ‘environmental law' "space law" refers to a variety of laws that are identified by the subject matter they address rather than by the logical extension of a single legal concept. The word "space law" refers to the Law of Space, which can cover anything from the specifics of an insurance agreement for a specific space launch to the most general guidelines that direct state behaviour in space. Space debris, often referred to as space junk, space pollution, space waste, space trash, or space garbage, is a term used to describe abandoned human-made objects in space, primarily in Earth orbit. These include disused spacecraft, discarded launch vehicle stages, mission-related detritus, and fragmentation material from the destruction of disused rocket bodies and spacecraft, which is particularly prevalent in Earth orbit. Other types of space debris, besides abandoned human-made objects in orbit, include pieces left over from collisions, erosion, and disintegration, or even paint specks, solidified liquids ejected from spacecraft, and unburned components from solid rocket engines. The initial action of launching or using a spacecraft in near-Earth orbit imposes an external cost on others that is typically not taken into account or fully accounted for in the cost by the launcher or payload owner.

Keywords: space, outer space treaty, geostationary orbit, satellites, spacecrafts

Procedia PDF Downloads 91
693 Using Low-Calorie Gas to Generate Heat and Electricity

Authors: Аndrey Marchenko, Oleg Linkov, Alexander Osetrov, Sergiy Kravchenko

Abstract:

The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat.

Keywords: gas engine, low-calorie gas, methane, pre-combustion chamber, utilization

Procedia PDF Downloads 264
692 Latitudinal Impact on Spatial and Temporal Variability of 7Be Activity Concentrations in Surface Air along Europe

Authors: M. A. Hernández-Ceballos, M. Marín-Ferrer, G. Cinelli, L. De Felice, T. Tollefsen, E. Nweke, P. V. Tognoli, S. Vanzo, M. De Cort

Abstract:

This study analyses the latitudinal impact of the spatial and temporal distribution on the cosmogenic isotope 7Be in surface air along Europe. The long-term database of the 6 sampling sites (Ivalo, Helsinki, Berlin, Freiburg, Sevilla and La Laguna), that regularly provide data to the Radioactivity Environmental Monitoring (REM) network managed by the Joint Research Centre (JRC) in Ispra, were used. The selection of the stations was performed attending to different factors, such as 1) heterogeneity in terms of latitude and altitude, and 2) long database coverage. The combination of these two parameters ensures a high degree of representativeness of the results. In the later, the temporal coverage varies between stations, being used in the present study sampling stations with a database more or less continuously from 1984 to 2011. The mean values of 7Be activity concentration presented a spatial distribution value ranging from 2.0 ± 0.9 mBq/m3 (Ivalo, north) to 4.8 ± 1.5 mBq/m3 (La Laguna, south). An increasing gradient with latitude was observed from the north to the south, 0.06 mBq/m3. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. The analyses of the data indicated a dynamic range of 7Be activity for solar cycle and phase (maximum or minimum), having been observed different impact on stations according to their location. The results indicated a significant seasonal behavior, with the maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached and in the month registered. Due to the large heterogeneity in the temporal pattern with which the individual radionuclide analyses were performed in each station, the 7Be monthly index was calculated to normalize the measurements and perform the direct comparison of monthly evolution among stations. Different intensity and evolution of the mean monthly index were observed. The knowledge of the spatial and temporal distribution of this natural radionuclide in the atmosphere is a key parameter for modeling studies of atmospheric processes, which are important phenomena to be taken into account in the case of a nuclear accident.

Keywords: Berilium-7, latitudinal impact in Europe, seasonal and monthly variability, solar cycle

Procedia PDF Downloads 337
691 Scientific Production on Lean Supply Chains Published in Journals Indexed by SCOPUS and Web of Science Databases: A Bibliometric Study

Authors: T. Botelho de Sousa, F. Raphael Cabral Furtado, O. Eduardo da Silva Ferri, A. Batista, W. Augusto Varella, C. Eduardo Pinto, J. Mimar Santa Cruz Yabarrena, S. Gibran Ruwer, F. Müller Guerrini, L. Adalberto Philippsen Júnior

Abstract:

Lean Supply Chain Management (LSCM) is an emerging research field in Operations Management (OM). As a strategic model that focuses on reduced cost and waste with fulfilling the needs of customers, LSCM attracts great interest among researchers and practitioners. The purpose of this paper is to present an overview of Lean Supply Chains literature, based on bibliometric analysis through 57 papers published in indexed journals by SCOPUS and/or Web of Science databases. The results indicate that the last three years (2015, 2016, and 2017) were the most productive on LSCM discussion, especially in Supply Chain Management and International Journal of Lean Six Sigma journals. India, USA, and UK are the most productive countries; nevertheless, cross-country studies by collaboration among researchers were detected, by social network analysis, as a research practice, appearing to play a more important role on LSCM studies. Despite existing limitation, such as limited indexed journal database, bibliometric analysis helps to enlighten ongoing efforts on LSCM researches, including most used technical procedures and collaboration network, showing important research gaps, especially, for development countries researchers.

Keywords: Lean Supply Chains, Bibliometric Study, SCOPUS, Web of Science

Procedia PDF Downloads 347
690 Biomass Energy: "The Boon for the Would"

Authors: Shubham Giri Goswami, Yogesh Tiwari

Abstract:

In today’s developing world, India and other countries are developing different instruments and accessories for the better standard and life to be happy and prosper. But rather than this we human-beings have been using different energy sources accordingly, many persons such as scientist, researchers etc have developed many Energy sources like renewable and non-renewable energy sources. Like fossil fuel, coal, gas, petroleum products as non-renewable sources, and solar, wind energy as renewable energy source. Thus all non-renewable energy sources, these all Created pollution as in form of air, water etc. due to ultimate use of these sources by human the future became uncertain. Thus to minimize all this environmental affects and destroy the healthy environment we discovered a solution as renewable energy source. Renewable energy source in form of biomass energy, solar, wind etc. We found different techniques in biomass energy, that good energy source for people. The domestic waste, and is a good source of energy as daily extract from cow in form of dung and many other domestic products naturally can be used eco-friendly fertilizers. Moreover, as from my point of view the cow is able to extract 08-12 kg of dung which can be used to make wormy compost fertilizers. Furthermore, the calf urine as insecticides and use of such a compounds will lead to destroy insects and thus decrease communicable diseases. Therefore, can be used by every person and biomass energy can be in those areas such as rural areas where non-renewable energy sources cannot reach easily. Biomass can be used to develop fertilizers, cow-dung plants and other power generation techniques, and this energy is clean and pollution free and is available everywhere thus saves our beautiful planet or blue or life giving planet called as “EARTH”. We can use the biomass energy, which may be boon for the world in future.

Keywords: biomass, energy, environment, human, pollution, renewable, solar energy, sources, wind

Procedia PDF Downloads 526
689 Revitalization of Industrial Brownfields in Historical Districts

Authors: Adel Menchawy, Noha Labib

Abstract:

Many cities have quarters that confer on them sense of identity and place through its cultural history. They are often vital part of the cities charm and appeal, their functional and visual qualities are important to the city’s image and identity. Brownfield sites present an important part of our built landscape. They provide tangible and intangible links to our past and have great potential to play significant roles in the future of our cities, towns and rural environments. Brownfield sites are places that were previously industrial factories or areas that might have had waste kept at that location or been exposed to many types of hazards. Thus its redevelopment revitalizes and strengthens towns and communities as it helps in economic growth, builds community pride and protects public health and the environment Three case studies are discussed in this paper; the first one is the city of Sterling which was developed and revitalized entirely and became a city with identity after it was derelict, the Second is the city of Castlefield with was a place no one was eager to visit now it became a touristic area. And finally the city of Cleveland which adopted a strategy that transferred it from being a polluted, derelict place into a mixed use development city Brownfield revitalization offers a great opportunity to transfer the city from being derelict, useless and contaminated into a place where tourists would love to come. Also it will increase the economy of the place, increase the social level, it can improve energy efficiency, reduce natural consumption, clean air, water and land and take advantage of existing buildings and sites and transfers them into an adaptive reuse after being remediated

Keywords: Brownfield Revitalization, Sustainable Brownfield, Historical conservation, Adaptive reuse

Procedia PDF Downloads 266
688 Green Concrete for Sustainable Indonesia Structures: Lightweight Concrete Using Oil Palm Shell as Coarse Aggregate with Superplasticizer and Fly Ash

Authors: Feny Acelia Silaban

Abstract:

The development of Indonesia’s infrastructure in many islands is significantly increased through the years. Based on this condition, concrete materials which are extracted from natural resources are over exploited and slowly becoming rare, thus the demand for alternative materials becomes so urgently crucial. Oil Palm is one of the biggest commodities in Indonesia with the total amount of 31 million tons in the last 2014. The production of palm oil also generates lots of solid wastes in the form of Oil Palm Shell (OPS). Constructing more environmentally sustainable structures can be achieved by producing lightweight concrete using the Oil Palm Shell (OPS). This paper investigated the effects of OPS and combination of Superplasticizer and fly ash proportion of lightweight concrete mix design to the compressive strength, flexure strength, modulus of elasticity, shrinkage behavior, and water absorption. The Oil Palm Shell had undergone special treatment by washing it with hot water and soap to reduce the oil content. This experiment used four different proportions of Superplasticizer with fly ash and 30 % OPS proportion from the weight of total compositions mixture by the result of trial mix. The experiment result showed that using OPS coarse aggregates and Superplasticizer with fly ash, the average of 28-day compressive strength reached 30-35 MPa. The highest 28-day compressive strength comes from 1.2 % Superplasticizer with 5 % fly ash proportion samples with the strength by 33 MPa. The sample with proportion of 1 % Superplasticizer and 7.5 % fly ash has the highest shrinkage value compared to other proportions. The characteristic of OPS as coarse aggregates is in a standard range of natural coarse aggregates. In general, this lightweight concrete using OPS coarse aggregate and Superplasticizer has high potential to be green-structural lightweight concrete alternative in Indonesia.

Keywords: lightweight concrete, oil palm shell, waste materials, superplasticizer

Procedia PDF Downloads 259
687 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 90
686 Let-7 Mirnas Regulate Inflammatory Cytokine Production in Bovine Endometrial Cells after Lipopolysaccharide Challenge by Targeting TNFα

Authors: S. Ibrahim, D. Salilew-Wondim, M. Hoelker, C. Looft, E. Tholen, C. Grosse-Brinkhaus, K. Schellander, C. Neuhoff, D. Tesfaye

Abstract:

Bovine endometrial cells appear to have a key role in innate immune defense of the female genital tract. A better understanding of molecular changes in microRNAs (miRNAs) and their target genes expression may identify reliable prognostic indicators for cows that will resolve inflammation and resume cyclicity. In the current study, we hypothesized that let-7 miRNAs family has a primary role in the innate immune defence of the endometrium tissue against bacterial infection, which is partly achieved via regulating mRNA stability of pro-inflammatory cytokines at the post-transcriptional level. Therefore, we conducted two experiments. In the first experiment, primary bovine endometrial cells were challenged with clinical (3.0 μg/ml) and sub-clinical (0.5 μg/ml) doses of lipopolysaccharide (LPS) for 24h. In the 2nd experiment, we have investigated the potential role of let-7 miRNAs (let-7a and let-7f) using gain and loss of function approaches. Additionally, tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 induced transcript 1 (TGFB1I1) and serum deprivation response (SDPR) genes were validated using reporter assay. Here we addressed for the first time that let-7 miRNAs have a precise role in bovine endometrium, where LPS dysregulated let-7 miRNAs family expression was associated with an increased pro-inflammatory cytokine level by directly/indirectly targeting the TNFα, interleukin 6 (IL6), nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), TGFβ1I1 and SDPR genes. To our knowledge, this is the first study showing that TNFα, TGFβ1I1 and SDPR were identified and validated as novel let-7 miRNAs targets and could have a distinct role in inflammatory immune response of LPS challenged bovine endometrial cells. Our data represent a new finding by which uterine homeostasis is maintained through functional regulation of let-7a by down-regulation of pro-inflammatory cytokines expression (TNFα and IL6) at the mRNA and protein levels. These findings suggest that LPS serves as a negative regulator of let-7 miRNAs expression and provides a mechanism for the persistent pro-inflammatory phenotype, which is a hallmark of bovine subclinical endometritis.

Keywords: bovine endometrial cells, let-7, lipopolysaccharide, pro-inflammatory cytokines

Procedia PDF Downloads 380
685 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries

Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna

Abstract:

Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.

Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling

Procedia PDF Downloads 247
684 Water Quality and Coastal Management Profile Assessment of Puerto Galera Bay, Philippines

Authors: Ma. Manna Farrel B. Pinto

Abstract:

As global industrialization progresses, the environment remains to be at risk of disturbances brought by developments of cities and communities. Impacts of flourishing industries such as tourism require rapid growth of establishments and may threaten ecosystems and natural resources. Puerto Galera as a biosphere reserve and declared as the Center of the World’s Center of Marine Shorefish Biodiversity is on the brink of ecological deterioration as tourism further develops in its coastal areas. Apparently, attempts were initiated to establish a baseline for designation of protection in the economic and coastal marine zones of Puerto Galera but continuity of its implementation and coordination of concerned units remains deficient. Indications of eutrophication have been observed based on water quality analysis although parameter values still comply with the national standards for coastal waters. Water quality data, biodiversity and hydrodynamic information, gathered from studies, and local government units were analysed to assess the condition of the coast as well as acting policies implemented by the local authorities. Sources of contaminants were also located in its three main communities, and their shores wherein in recommendations for installing wastewater treatment facilities and further improvement of policies of waste discharge must be addressed. With a conceptual framework proposed in the study, a comprehensive data analysis and coordinated management are necessary to form an integrated coastal management for further protection and preservation of the sustainable coastal marine ecosystem of Puerto Galera.

Keywords: coastal management, environmental management, integrated resource management, Puerto Galera

Procedia PDF Downloads 267
683 Preliminary Flow Sheet for Recycling of Spent Lithium-Ion Batteries

Authors: Mohammad Ali Rajaeifar, Oliver Heidrich

Abstract:

Nowadays, Li-ion batteries are vastly disseminated and the battery market is expected to experience a huge growth during next decade especially in terms of traction batteries. As the automotive industry moving towards the electrification of the powertrain, more raw/critical materials and energy are extracted while on the other hand, concerns are made regarding the scarcity of the materials as well as environmental issues regarding the destiny of the spent batteries. In this regards, recycling could play a vital role in the supply chain, leading reutilization of key battery materials and also reducing environmental burden related to the use of batteries. The aim of this paper is to review the previous and state-of-the-art treatments for recycling of Li-ion batteries. All the treatments method from mechanical, mild-thermal, pyrometallurgical and hydrometallurgical as well as combined methods for recycling of Li-ion batteries were considered in the study. There are various treatment methods that are economical, but they are not environmentally friendly or vice versa. This is due to the fact that the benefits of the Li-ion batteries recycling could be affected by different factors such as the amount of spent batteries available, the quality of the recovered material, the energy and material consumption by the process itself and environmental burdens caused by required logistics. Finally, a preliminary work sheet of possible route for recycling of spent Li-ion batteries was presented through the course of this study. Overall, it is worth quoting that recycling processes generally consumes a great deal of energy and auxiliary materials. Moreover, the collection of spent products from waste streams represents additional environmental efforts. Therefore, developing and optimizing efficient collection and separation technologies is essential to achieve sustainability goals.

Keywords: hydrometallurgical treatment, Li-ion batteries, mild-thermal treatment, mechanical treatment, recycling, pyrometallurgical treatment

Procedia PDF Downloads 111
682 Integrating Cost-Benefit Assessment and Contract Design to Support Industrial Symbiosis Deployment

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) is the realization of Industrial Ecology (I.E) principles in production systems in function. I.S consists in the use of waste materials, fatal energy, recirculated utilities and infrastructure/service sharing as resources for production. Environmental benefits can be achieved from resource conservation but economic profitability is required by the participating actors. I.S indeed involves several actors with their own objectives and resources so that each one must be satisfied by ex-ante arrangements to commit toward I.S execution (investments and transactions). Following the Resource-Based View of transactions we build a modular framework to assess global I.S profitability and to specify each actor’s contributions to costs and benefits in line with their resource endowments and performance requirements formulations. I.S projects specificities implied by the need for customization (asset specificity, non-homogeneity) induce the use of long-term contracts for transactions following Transaction costs economics arguments. Thus we propose first a taxonomy of costs and value drivers for I.S and an assignment to each actor of I.S specific risks that we identified as load profiles mismatch, quality problems and value fluctuations. Then appropriate contractual guidelines (pricing, cost sharing and warranties) that support mutual profitability are derived from the detailed identification of contributions by the cost-benefits model. This analytical framework helps identifying what points to focus on when bargaining over contracting for transactions and investments. Our methodology is applied to I.S archetypes raised from a literature survey on eco-industrial parks initiatives and practitioners interviews.

Keywords: contracts, cost-benefit analysis, industrial symbiosis, risks

Procedia PDF Downloads 340
681 Vitamin D Levels in Relation to Thyroid Disorders

Authors: Binaya Tamang, Buddhhi Raj Pokhrel, Narayan Gautam

Abstract:

Background: There may be a connection between thyroid function and vitamin D status since both bind to similar nuclear hormone receptors and have similar response regions on gene promoters. The purpose of the current study was to investigate the relationship between thyroid hormones and vitamin D levels in females who were attending a tertiary care center in western Nepal and were either hypothyroid or euthyroid. Methods: This hospital-based cross-sectional study was carried out between March 2020 and March 2021 by the Biochemistry department of the Universal College of Medical Sciences (UCMS), Bhairahawa, Province No. 5, Nepal, in cooperation with Internal medicine. Prior to the study, institutional review committee approval (UCMS/IRC/008/20) was acquired from UCMS. Women who visited the Internal Medicine OPD of UCMS and were advised to get a thyroid function test (TFT) were included in the study population. Only those who were willing to participate in the study were enrolled after the goals and advantages of the study had been explained to them. Participants who had recently used vitamin D supplements and medications that affected thyroid hormones were excluded. The participants gave their consent verbally and in writing. After getting the consent, a convenient sample technique was applied. Serum was isolated after drawing 3 ml of blood in a plain vial. Chemiluminescence assay was used to analyze vitamin D and thyroid hormones (MAGLUMI 2000). SPSS version 16.0 for Windows was used to conduct the statistical analysis. Statistical significance was defined as a P-value < 0.05. Results: Majority of the study population (n=214, 71%) had insufficient serum vitamin D levels. Among the thyroid groups, the median Vitamin D levels were significantly lower in hypothyroid (16.88 ng/ml) as compared to the euthyroid groups (25.01 ng/ml) (P<0.001). Similarly, serum Vitamin D levels were considerably lower in the obese population (16.86 ng/ml) as compared to the normal BMI group (24.90 ng/ml) (P<0.001) as well as in the vegetarian (15.43 ng.ml) than mixed diet consumer (24.89 ng/ml) (P<0.01). Even after the adjustment for these variables, the Vitamin D levels were significantly lower in the hypothyroid population than in the euthyroid group (P<0.001). Conclusion: Comparing the hypothyroid population to the euthyroid, the median serum vitamin D levels were considerably lower. We were alarmed to see that the majority of euthyroid participants also had low levels of vitamin D. Therefore if left untreated, low vitamin D levels in hypothyroid patients could worsen their health further.

Keywords: vitamin D, thyroid hormones, euthyroid, hypothyroid, Nepal

Procedia PDF Downloads 142
680 Kinetics Analysis of Lignocellulose Hydrolysis and Glucose Consumption Using Aspergillus niger in Solid State

Authors: Akida Mulyaningtyas, Wahyudi Budi Sediawan

Abstract:

One decisive stage in bioethanol production from plant biomass is the hydrolysis of lignocellulosic materials into simple sugars such as glucose. The produced glucose is then fermented into ethanol. This stage is popularly done in biological method by using cellulase that is produced by certain fungi. As it is known, glucose is the main source of nutrition for most microorganisms. Therefore, cutting cellulose into glucose is actually an attempt of microorganism to provide nutrition for itself. So far, this phenomenon has received less attention while it is necessary to identify the quantity of sugar consumed by the microorganism. In this study, we examined the phenomenon of sugar consumption by microorganism on lignocellulosic hydrolysis. We used oil palm empty fruit bunch (OPEFB) as the source of lignocellulose and Aspergillus niger as cellulase-producing fungus. In Indonesia, OPEFB is plantation waste that is difficult to decompose in nature and causes environmental problems. First, OPEFB was pretreated with 1% of NaOH at 170 oC to destroy lignin that hindered A.niger from accessing cellulose. The hydrolysis was performed by growing A.niger on pretreated OPEFB in solid state to minimize the possibility of contamination. The produced glucose was measured every 24 hours for 9 days. We analyzed the kinetics of both reactions, i.e., hydrolysis and glucose consumption, simultaneously. The constants for both reactions were assumed to follow the Monod equation. The results showed that the reaction constant of glucose consumption (μC) was higher than of cellulose hydrolysis (μH), i.e., 11.8 g/L and 0.62 g/L for glucose consumption and hydrolysis respectively. However, in general, the reaction rate of hydrolysis is greater than of glucose consumption since the cellulose concentration as substrate in hydrolysis is much higher than glucose as substrate in the consumption reaction.

Keywords: Aspergillus niger, bioethanol, hydrolysis, kinetics

Procedia PDF Downloads 169
679 Investigating the Effectiveness of a 3D Printed Composite Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.

Keywords: additive manufacturing, carbon fiber, composite tooling, molds

Procedia PDF Downloads 114
678 Green Synthesis of Spinach Derived Carbon Dots for Photocatalytic Generation of Hydrogen from Sulfide Wastewater

Authors: Priya Ruban, Thirunavoukkarasu Manikkannan, Sakthivel Ramasamy

Abstract:

Sulfide is one of the major pollutants of tannery effluent which is mainly generated during the process of unhairing. Recovery of Hydrogen green fuel from sulfide wastewater using photocatalysis is a ‘Cleaner Production Method’, since renewable solar energy is utilized. It has triple advantages of the generation of H2, waste minimization and odor or pollution control. Designing of safe and green photocatalysts and developing suitable solar photoreactor is important for promoting this technology to large-scale application. In this study, green photocatalyst i.e., spinach derived carbon dots (SCDs 5 wt % and 10 wt %)/TiO2 nanocomposite was synthesized for generation of H2 from sulfide wastewater using lab-scale solar photocatalytic reactor. The physical characterization of the synthesized solar light responsive nanocomposites were studied by using DRS UV-Vis, XRD, FTIR and FESEM analysis. The absorption edge of TiO2 nanoparticles is extended to visible region by the incorporation of SCDs, which was used for converting noxious pollutant sulfide into eco-friendly solar fuel H2. The SCDs (10 wt%)-TiO2 nanocomposite exhibits enhanced photocatalytic hydrogen production i.e. ~27 mL of H2 (180 min) from simulated sulfide wastewater under LED visible light irradiation which is higher as compared to SCDs. The enhancement in the photocatalytic generation of H2 is attributed to combining of SCDs which increased the charge mobility. This work may provide new insights to usage of naturally available and cheap materials to design novel nanocomposite as a visible light active photocatalyst for the generation of H2 from sulfide containing wastewater.

Keywords: carbon dots, hydrogen fuel, hydrogen sulfide, photocatalysis, sulfide wastewater

Procedia PDF Downloads 388
677 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw

Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor

Abstract:

As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.

Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition

Procedia PDF Downloads 96
676 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 289
675 Water Quality of Cengkareng Drain in Maritime Security Perspective

Authors: Febri Ramadhan, Sigid Hariyadi, Niken Tunjung Murti Pratiwi, Budiman Djoko Said

Abstract:

The scope about maritime security copes all of the problems emanating from maritime domain. Those problems can give such threats to national security of the state. One of threats taking place nowadays in maritime domain is about pollution. Pollution coming from many sources may increase water-borne disease risk that can cause the instability of national security. Pollution coming from many sources may increase water-borne disease risk. Hence the pollution makes an improper condition of environments for humans and others biota dwelling in the waters. One of the tools that can determine about pollution is by measuring about the water quality of its waters. In this case, what brings the waste and pollutants is there an activity of tidal waves introducing substances or energy into the natural environment. Cengkareng Drain is one of the water channels which is affected by tidal waves. Cengkareng Drain was become an observation area to examine the relation between water quality and tide waves. This research was conducted monthly from July to November 2015. Sampling of water was conducted every ebb and tide in every observation. Pollution index showed that the level of pollution on Cengkareng drain was moderately polluted, with the score about 7.7-8.6. Based on the results of t-test and analysis of similarity, the characteristic of water quality on rising tide does not significantly differ from the characteristic of water quality on ebbing tide. Therefore, we need a proper management as a means to control the pollutants in order to make good maritime security strategy.

Keywords: maritime security, Cengkareng drain, water quality, tidal waves

Procedia PDF Downloads 216
674 The Role of Phycoremediation in the Sustainable Management of Aquatic Pollution

Authors: Raymond Ezenweani, Jeffrey Ogbebor

Abstract:

The menace of aquatic pollution has become increasingly of great concern and the effects of this pollution as a result of anthropogenic activities cannot be over emphasized. Phycoremediation is the application of algal remediation technology in the removal of harmful products from the environment. Harmful products also known as pollutants are usually introduced into the environment through variety of processes such as industrial discharge, agricultural runoff, flooding, and acid rain. This work has to do with the capability of algae in the efficient removal of different pollutants, ranging from hydrocarbons, eutrophication, agricultural chemicals and wastes, heavy metals, foul smell from septic tanks or dumps through different processes such as bioconversion, biosorption, bioabsorption and biodecomposition. Algae are capable of bioconversion of environmentally persistent compounds to degradable compounds and also capable of putting harmful bacteria growth into check in waste water remediation. Numerous algal organisms such as Nannochloropsis spp, Chlorella spp, Tetraselmis spp, Shpaerocystics spp, cyanobacteria and different macroalgae have been tested by different researchers in laboratory scale and shown to have 100% efficiency in environmental remediation. Algae as a result of their photosynthetic capacity are also efficient in air cleansing and management of global warming by sequestering carbon iv oxide in air and converting it into organic carbon, thereby making food available for the other organisms in the higher trophic level of the aquatic food chain. Algae play major role in the sustenance of the aquatic ecosystem by their virtue of being photosynthetic. They are the primary producers and their role in environmental sustainability is remarkable.

Keywords: Algae , Pollutant, ., Phycoremediation, Aquatic, Sustainability

Procedia PDF Downloads 126
673 Temperature Dependence and Seasonal Variation of Denitrifying Microbial Consortia from a Woodchip Bioreactor in Denmark

Authors: A. Jéglot, F. Plauborg, M. K. Schnorr, R. S. Sørensen, L. Elsgaard

Abstract:

Artificial wetlands such as woodchip bioreactors are efficient tools to remove nitrate from agricultural wastewater with a minimized environmental impact. However, the temperature dependence of the microbiological nitrate removal prevents the woodchip bioreactors from being an efficient system when the water temperature drops below 8℃. To quantify and describe the temperature effects on nitrate removal efficiency, we studied nitrate-reducing enrichments from a woodchip bioreactor in Denmark based on samples collected in Spring and Fall. Growth was quantified as optical density, and nitrate and nitrous oxide concentrations were measured in time-course experiments to compare the growth of the microbial population and the nitrate conversion efficiencies at different temperatures. Ammonia was measured to indicate the importance of dissimilatory nitrate reduction to ammonia (DNRA) in nitrate conversion for the given denitrifying community. The temperature responses observed followed the increasing trend proposed by the Arrhenius equation, indicating higher nitrate removal efficiencies at higher temperatures. However, the growth and the nitrous oxide production observed at low temperature provided evidence of the psychrotolerance of the microbial community under study. The assays conducted showed higher nitrate removal from the microbial community extracted from the woodchip bioreactor at the cold season compared to the ones extracted during the warmer season. This indicated the ability of the bacterial populations in the bioreactor to evolve and adapt to different seasonal temperatures.

Keywords: agricultural waste water treatment, artificial wetland, denitrification, psychrophilic conditions

Procedia PDF Downloads 122