Search results for: conjugated linoleic acid
403 Repeatable Surface Enhanced Raman Spectroscopy Substrates from SERSitive for Wide Range of Chemical and Biological Substances
Authors: Monika Ksiezopolska-Gocalska, Pawel Albrycht, Robert Holyst
Abstract:
Surface Enhanced Raman Spectroscopy (SERS) is a technique used to analyze very low concentrations of substances in solutions, even in aqueous solutions - which is its advantage over IR. This technique can be used in the pharmacy (to check the purity of products); forensics (whether at a crime scene there were any illegal substances); or medicine (serving as a medical test) and lots more. Due to the high potential of this technique, its increasing popularity in analytical laboratories, and simultaneously - the absence of appropriate platforms enhancing the SERS signal (crucial to observe the Raman effect at low analyte concentration in solutions (1 ppm)), we decided to invent our own SERS platforms. As an enhancing layer, we have chosen gold and silver nanoparticles, because these two have the best SERS properties, and each has an affinity for the other kind of particles, which increases the range of research capabilities. The next step was to commercialize them, which resulted in the creation of the company ‘SERSitive.eu’ focusing on production of highly sensitive (Ef = 10⁵ – 10⁶), homogeneous and reproducible (70 - 80%) substrates. SERStive SERS substrates are made using the electrodeposition of silver or silver-gold nanoparticles technique. Thanks to a very detailed analysis of data based on studies optimizing such parameters as deposition time, temperature of the reaction solution, applied potential, used reducer, or reagent concentrations using a standardized compound - p-mercaptobenzoic acid (PMBA) at a concentration of 10⁻⁶ M, we have developed a high-performance process for depositing precious metal nanoparticles on the surface of ITO glass. In order to check a quality of the SERSitive platforms, we examined the wide range of the chemical compounds and the biological substances. Apart from analytes that have great affinity to the metal surfaces (e.g. PMBA) we obtained very good results for those fitting less the SERS measurements. Successfully we received intensive, and what’s more important - very repetitive spectra for; amino acids (phenyloalanine, 10⁻³ M), drugs (amphetamine, 10⁻⁴ M), designer drugs (cathinone derivatives, 10⁻³ M), medicines and ending with bacteria (Listeria, Salmonella, Escherichia coli) and fungi.Keywords: nanoparticles, Raman spectroscopy, SERS, SERS applications, SERS substrates, SERSitive
Procedia PDF Downloads 151402 Levels of Heavy Metals and Arsenic in Sediment and in Clarias Gariepinus, of Lake Ngami
Authors: Nashaat Mazrui, Oarabile Mogobe, Barbara Ngwenya, Ketlhatlogile Mosepele, Mangaliso Gondwe
Abstract:
Over the last several decades, the world has seen a rapid increase in activities such as deforestation, agriculture, and energy use. Subsequently, trace elements are being deposited into our water bodies, where they can accumulate to toxic levels in aquatic organisms and can be transferred to humans through fish consumption. Thus, though fish is a good source of essential minerals and omega-3 fatty acids, it can also be a source of toxic elements. Monitoring trace elements in fish is important for the proper management of aquatic systems and the protection of human health. The aim of this study was to determine concentrations of trace elements in sediment and muscle tissues of Clarias gariepinus at Lake Ngami, in the Okavango Delta in northern Botswana, during low floods. The fish were bought from local fishermen, and samples of muscle tissue were acid-digested and analyzed for iron, zinc, copper, manganese, molybdenum, nickel, chromium, cadmium, lead, and arsenic using inductively coupled plasma optical emission spectroscopy (ICP-OES). Sediment samples were also collected and analyzed for the elements and for organic matter content. Results show that in all samples, iron was found in the greatest amount while cadmium was below the detection limit. Generally, the concentrations of elements in sediment were higher than in fish except for zinc and arsenic. While the concentration of zinc was similar in the two media, arsenic was almost 3 times higher in fish than sediment. To evaluate the risk to human health from fish consumption, the target hazard quotient (THQ) and cancer risk for an average adult in Botswana, sub-Saharan Africa, and riparian communities in the Okavango Delta was calculated for each element. All elements were found to be well below regulatory limits and do not pose a threat to human health except arsenic. The results suggest that other benthic feeding fish species could potentially have high arsenic levels too. This has serious implications for human health, especially riparian households to whom fish is a key component of food and nutrition security.Keywords: Arsenic, African sharp tooth cat fish, Okavango delta, trace elements
Procedia PDF Downloads 192401 Molecular Diagnosis of a Virus Associated with Red Tip Disease and Its Detection by Non Destructive Sensor in Pineapple (Ananas comosus)
Authors: A. K. Faizah, G. Vadamalai, S. K. Balasundram, W. L. Lim
Abstract:
Pineapple (Ananas comosus) is a common crop in tropical and subtropical areas of the world. Malaysia once ranked as one of the top 3 pineapple producers in the world in the 60's and early 70's, after Hawaii and Brazil. Moreover, government’s recognition of the pineapple crop as one of priority commodities to be developed for the domestics and international markets in the National Agriculture Policy. However, pineapple industry in Malaysia still faces numerous challenges, one of which is the management of disease and pest. Red tip disease on pineapple was first recognized about 20 years ago in a commercial pineapple stand located in Simpang Renggam, Johor, Peninsular Malaysia. Since its discovery, there has been no confirmation on its causal agent of this disease. The epidemiology of red tip disease is still not fully understood. Nevertheless, the disease symptoms and the spread within the field seem to point toward viral infection. Bioassay test on nucleic acid extracted from the red tip-affected pineapple was done on Nicotiana tabacum cv. Coker by rubbing the extracted sap. Localised lesions were observed 3 weeks after inoculation. Negative staining of the fresh inoculated Nicotiana tabacum cv. Coker showed the presence of membrane-bound spherical particles with an average diameter of 94.25nm under transmission electron microscope. The shape and size of the particles were similar to tospovirus. SDS-PAGE analysis of partial purified virions from inoculated N. tabacum produced a strong and a faint protein bands with molecular mass of approximately 29 kDa and 55 kDa. Partial purified virions of symptomatic pineapple leaves from field showed bands with molecular mass of approximately 29 kDa, 39 kDa and 55kDa. These bands may indicate the nucleocapsid protein identity of tospovirus. Furthermore, a handheld sensor, Greenseeker, was used to detect red tip symptoms on pineapple non-destructively based on spectral reflectance, measured as Normalized Difference Vegetation Index (NDVI). Red tip severity was estimated and correlated with NDVI. Linear regression models were calibrated and tested developed in order to estimate red tip disease severity based on NDVI. Results showed a strong positive relationship between red tip disease severity and NDVI (r= 0.84).Keywords: pineapple, diagnosis, virus, NDVI
Procedia PDF Downloads 791400 Inhibition of Glutamate Carboxypeptidase Activity Protects Retinal Ganglionic Cell Death Induced by Ischemia-Reperfusion by Reducing the Astroglial Activation in Rat
Authors: Dugeree Otgongerel, Kyong Jin Cho, Yu-Han Kim, Sangmee Ahn Jo
Abstract:
Excessive activation of glutamate receptor is thought to be involved in retinal ganglion cell (RGC) death after ischemia- reperfusion damage. Glutamate carboxypeptidase II (GCPII) is an enzyme responsible for the synthesis of glutamate. Several studies showed that inhibition of GCPII prevents or reduces cellular damage in brain diseases. Thus, in this study, we examined the expression of GCPII in rat retina and the role of GCPII in acute high IOP ischemia-reperfusion damage of eye by using a GCPII inhibitor, 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Animal model of ischemia-reperfusion was induced by raising the intraocular pressure for 60 min and followed by reperfusion for 3 days. Rats were randomly divided into four groups: either intra-vitreous injection of 2-PMPA (11 or 110 ng per eye) or PBS after ischemia-reperfusion, 2-PMPA treatment without ischemia-reperfusion and sham-operated normal control. GCPII immunoreactivity in normal rat retina was detected weakly in retinal nerve fiber layer (RNFL) and retinal ganglionic cell layer (RGL) and also inner plexiform layer (IPL) and outer plexiform layer (OPL) strongly where are co-stained with an anti-GFAP antibody, suggesting that GCPII is expressed mostly in Muller and astrocytes. Immunostaining with anti-BRN antibody showed that ischemia- reperfusion caused RGC death (31.5 %) and decreased retinal thickness in all layers of damaged retina, but the treatment of 2-PMPA twice at 0 and 48 hour after reperfusion blocked these retinal damages. GCPII level in RNFL layer was enhanced after ischemia-reperfusion but was blocked by PMPA treatment. This result was confirmed by western blot analysis showing that the level of GCPII protein after ischemia- reperfusion increased by 2.2- fold compared to control, but this increase was blocked almost completely by 110 ng PMPA treatment. Interestingly, GFAP immunoreactivity in the retina after ischemia- reperfusion followed by treatment with PMPA showed similar pattern to GCPII, increase after ischemia-reperfusion but reduction to the normal level by PMPA treatment. Our data demonstrate that increase of GCPII protein level after ischemia-reperfusion injury is likely to cause glial activation and/or retinal cell death which are mediated by glutamate, and GCPII inhibitors may be useful in treatment of retinal disorders in which glutamate excitotoxicity is pathogenic.Keywords: glutamate carboxypepptidase II, glutamate excitotoxicity, ischemia-reperfusion, retinal ganglion cell
Procedia PDF Downloads 340399 Influence of Genotype, Explant, and Hormone Treatment on Agrobacterium-Transformation Success in Salix Callus Culture
Authors: Lukas J. Evans, Danilo D. Fernando
Abstract:
Shrub willows (Salix spp.) have many characteristics which make them suitable for a variety of applications such as riparian zone buffers, environmental contaminant sequestration, living snow fences, and biofuel production. In some cases, these functions are limited due to physical or financial obstacles associated with the number of individuals needed to reasonably satisfy that purpose. One way to increase the efficiency of willows is to bioengineer them with the genetic improvements suitable for the desired use. To accomplish this goal, an optimized in vitro transformation protocol via Agrobacterium tumefaciens is necessary to reliably express genes of interest. Therefore, the aim of this study is to observe the influence of tissue culture with different willow cultivars, hormones, and explants on the percentage of calli expressing reporter gene green florescent protein (GFP) to find ideal transformation conditions. Each callus was produced from 1 month old open-pollinated seedlings of three Salix miyabeana cultivars (‘SX61’, ‘WT1’, and ‘WT2’) from three different explants (lamina, petiole, and internodes). Explants were cultured for 1 month on an MS media with different concentrations of 6-Benzylaminopurine (BAP) and 1-Naphthaleneacetic acid (NAA) (No hormones, 1 mg⁻¹L BAP only, 3 mg⁻¹L NAA only, 1 mg⁻¹L BAP and 3 mg⁻¹L NAA, and 3 mg⁻¹L BAP and 1 mg⁻¹L NAA) to produce a callus. Samples were then treated with Agrobacterium tumefaciens at an OD600 of 0.6-0.8 to insert the transgene GFP for 30 minutes, co-cultivated for 72 hours, and selected on the same media type they were cultured on with added 7.5 mg⁻¹L of Hygromycin for 1 week before GFP visualization under a UV dissecting scope. Percentage of GFP expressing calli as well as the average number of fluorescing GFP units per callus were recorded and results were evaluated through an ANOVA test (α = 0.05). The WT1 internode-derived calli on media with 3 mg-1L NAA+1 mg⁻¹L BAP and mg⁻¹L BAP alone produced a significantly higher percentage of GFP expressing calli than each other group (19.1% and 19.4%, respectively). Additionally, The WT1 internode group cultured with 3 mg⁻¹L NAA+1 mg⁻¹L BAP produced an average of 2.89 GFP units per callus while the group cultivated with 1 mg⁻¹L BAP produced an average of 0.84 GFP units per callus. In conclusion, genotype, explant choice, and hormones all play a significant role in increasing successful transformation in willows. Future studies to produce whole callus GFP expression and subsequent plantlet regeneration are necessary for a complete willow transformation protocol.Keywords: agrobacterium, callus, Salix, tissue culture
Procedia PDF Downloads 123398 Limos Lactobacillus Fermentum from Buffalo Milk Is Suitable for Potential Biotechnological Process Development
Authors: Sergio D’Ambrosioa, Azza Dobousa, Chiara Schiraldia, Donatella Ciminib
Abstract:
Probiotics are living microorganisms that give beneficial effects while consumed. Lactic acid bacteria and bifidobacteria are among the most representative strains assessed as probiotics and exploited as food supplements. Numerous studies demonstrated their potential as a therapeutic candidate for a variety of diseases (restoring gut flora, lowering cholesterol, immune response-enhancing, anti-inflammation and anti-oxidation activities). These beneficial actions are also due to biomolecules produced by probiotics, such as exopolysaccharides (EPSs), that demonstrate plenty of beneficial properties such as antimicrobial, antitumor, anti-biofilm, antiviral and immunomodulatory activities. Limosilactobacillus fermentum is a widely studied member of probiotics; however, few data are available on the development of fermentation and downstream processes for the production of viable biomasses for potential industrial applications. However, few data are available on the development of fermentation processes for the large-scale production of probiotics biomass for industrial applications and for purification processes of EPSs at an industrial scale. For this purpose, L. fermentum strain was isolated from buffalo milk and used as a test example for biotechnological process development. The strain was able to produce up to 109 CFU/mL on a (glucose-based) semi-defined medium deprived of animal-derived raw materials up to the pilot scale (150 L), demonstrating improved results compared to commonly used, although industrially not suitable, media-rich of casein and beef extract. Biomass concentration via microfiltration on hollow fibers, and subsequent spray-drying allowed to recover of about 5.7 × 1010CFU/gpowder of viable cells, indicating strain resistance to harsh processing conditions. Overall, these data demonstrate the possibility of obtaining and maintaining adequate levels of viable L. fermentum cells by using a simple approach that is potentially suitable for industrial development. A downstream EPS purification protocol based on ultrafiltration, precipitation and activated charcoal treatments showed a purity of the recovered polysaccharides of about 70-80%.Keywords: probiotics, fermentation, exopolysaccharides (EPSs), purification
Procedia PDF Downloads 82397 Blood Ketones as a Point of Care Testing in Paediatric Emergencies
Authors: Geetha Jayapathy, Lakshmi Muthukrishnan, Manoj Kumar Reddy Pulim , Radhika Raman
Abstract:
Introduction: Ketones are the end products of fatty acid metabolism and a source of energy for vital organs such as the brain, heart and skeletal muscles. Ketones are produced in excess when glucose is not available as a source of energy or it cannot be utilized as in diabetic ketoacidosis. Children admitted in the emergency department often have starvation ketosis which is not clinically manifested. Decision on admission of children to the emergency room with subtle signs can be difficult at times. Point of care blood ketone testing can be done at the bedside even in a primary level care setting to supplement and guide us in our management decisions. Hence this study was done to explore the utility of this simple bedside parameter as a supplement in assessing pediatric patients presenting to the emergency department. Objectives: To estimate blood ketones of children admitted in the emergency department. To analyze the significance of blood ketones in various disease conditions. Methods: Blood ketones using point of care testing instrument (ABOTTprecision Xceed Pro meters) was done in patients getting admitted in emergency room and in out-patients (through sample collection centre). Study population: Children aged 1 month to 18 years were included in the study. 250 cases (In-patients) and 250 controls (out-patients) were collected. Study design: Prospective observational study. Data on details of illness and physiological status were documented. Blood ketones were compared between the two groups and all in patients were categorized into various system groups and analysed. Results: Mean blood ketones were high in in-patients ranging from 0 to 7.2, with a mean of 1.28 compared to out-patients ranging from 0 to 1.9 with a mean of 0.35. This difference was statistically significant with a p value < 0.001. In-patients with shock (mean of 4.15) and diarrheal dehydration (mean of 1.85) had a significantly higher blood ketone values compared to patients with other system involvement. Conclusion: Blood ketones were significantly high (above the normal range) in pediatric patients who are sick requiring admission. Patients with various forms of shock had very high blood ketone values as found in diabetic ketoacidosis. Ketone values in diarrheal dehydration were moderately high correlating to the degree of dehydration.Keywords: admission, blood ketones, paediatric emergencies, point of care testing
Procedia PDF Downloads 208396 Transcriptomic Analysis for Differential Expression of Genes Involved in Secondary Metabolite Production in Narcissus Bulb and in vitro Callus
Authors: Aleya Ferdausi, Meriel Jones, Anthony Halls
Abstract:
The Amaryllidaceae genus Narcissus contains secondary metabolites, which are important sources of bioactive compounds such as pharmaceuticals indicating that their biological activity extends from the native plant to humans. Transcriptome analysis (RNA-seq) is an effective platform for the identification and functional characterization of candidate genes as well as to identify genes encoding uncharacterized enzymes. The biotechnological production of secondary metabolites in plant cell or organ cultures has become a tempting alternative to the extraction of whole plant material. The biochemical pathways for the production of secondary metabolites require primary metabolites to undergo a series of modifications catalyzed by enzymes such as cytochrome P450s, methyltransferases, glycosyltransferases, and acyltransferases. Differential gene expression analysis of Narcissus was obtained from two conditions, i.e. field and in vitro callus. Callus was obtained from modified MS (Murashige and Skoog) media supplemented with growth regulators and twin-scale explants from Narcissus cv. Carlton bulb. A total of 2153 differentially expressed transcripts were detected in Narcissus bulb and in vitro callus, and 78.95% of those were annotated. It showed the expression of genes involved in the biosynthesis of alkaloids were present in both conditions i.e. cytochrome P450s, O-methyltransferase (OMTs), NADP/NADPH dehydrogenases or reductases, SAM-synthetases or decarboxylases, 3-ketoacyl-CoA, acyl-CoA, cinnamoyl-CoA, cinnamate 4-hydroxylase, alcohol dehydrogenase, caffeic acid, N-methyltransferase, and NADPH-cytochrome P450s. However, cytochrome P450s and OMTs involved in the later stage of Amaryllidaceae alkaloids biosynthesis were mainly up-regulated in field samples. Whereas, the enzymes involved in initial biosynthetic pathways i.e. fructose biphosphate adolase, aminotransferases, dehydrogenases, hydroxyl methyl glutarate and glutamate synthase leading to the biosynthesis of precursors; tyrosine, phenylalanine and tryptophan for secondary metabolites were up-regulated in callus. The knowledge of probable genes involved in secondary metabolism and their regulation in different tissues will provide insight into the Narcissus plant biology related to alkaloid production.Keywords: narcissus, callus, transcriptomics, secondary metabolites
Procedia PDF Downloads 143395 Rhizosphere Microbial Communities in Fynbos Endemic Legumes during Wet and Dry Seasons
Authors: Tiisetso Mpai, Sanjay K. Jaiswal, Felix D. Dakora
Abstract:
The South African Cape fynbos biome is a global biodiversity hotspot. This biome contains a diversity of endemic shrub legumes, including Polhillia, Wiborgia, and Wiborgiella species, which are important for ecotourism as well as for improving soil fertility status. This is due to their proven N₂-fixing abilities when in association with compatible soil bacteria. In fact, Polhillia, Wiborgia, and Wiborgiella species have been reported to derive over 61% of their needed nitrogen through biological nitrogen fixation and to exhibit acid and alkaline phosphatase activity in their rhizospheres. Thus, their interactions with soil microbes may explain their survival mechanisms under the continued summer droughts and acidic, nutrient-poor soils in this region. However, information regarding their rhizosphere microbiome is still unavailable, yet it is important for Fynbos biodiversity management. Therefore, the aim of this study was to assess the microbial community structures associated with rhizosphere soils of Polhillia pallens, Polhillia brevicalyx, Wiborgia obcordata, Wiborgia sericea, and Wiborgiella sessilifolia growing at different locations of the South African Cape fynbos, during the wet and dry seasons. The hypothesis is that the microbial communities in these legume rhizospheres are the same type and are not affected by the growing season due to the restricted habitat of these wild fynbos legumes. To obtain the results, DNA was extracted from 0.5 g of each rhizosphere soil using PowerSoil™ DNA Isolation Kit, and sequences were obtained using the 16S rDNA Miseq Illumina technology. The results showed that in both seasons, bacteria were the most abundant microbial taxa in the rhizosphere soils of all five legume species, with Actinobacteria showing the highest number of sequences (about 30%). However, over 19.91% of the inhabitants in all five legume rhizospheres were unclassified. In terms of genera, Mycobacterium and Conexibacter were common in rhizosphere soils of all legumes in both seasons except for W. obcordata soils sampled during the dry season, which had Dehalogenimonas as the major inhabitant (6.08%). In conclusion, plant species and season were found to be the main drivers of microbial community structure in Cape fynbos, with the wet season being more dominant in shaping microbial diversity relative to the dry season. Wiborgia obcordata had a greater influence on microbial community structure than the other four legume species.Keywords: 16S rDNA, Cape fynbos, endemic legumes, microbiome, rhizosphere
Procedia PDF Downloads 151394 Home Made Rice Beer Waste (Choak): A Low Cost Feed for Sustainable Poultry Production
Authors: Vinay Singh, Chandra Deo, Asit Chakrabarti, Lopamudra Sahoo, Mahak Singh, Rakesh Kumar, Dinesh Kumar, H. Bharati, Biswajit Das, V. K. Mishra
Abstract:
The most widely used feed resources in poultry feed, like maize and soybean, are expensive as well as in short supply. Hence, there is a need to utilize non-conventional feed ingredients to cut down feed costs. As an alternative, brewery by-products like brewers’ dried grains are potential non-conventional feed resources. North-East India is inhabited by many tribes, and most of these tribes prepare their indigenous local brew, mostly using rice grains as the primary substrate. Choak, a homemade rice beer waste, is an excellent and cheap source of protein and other nutrients. Fresh homemade rice beer waste (rice brewer’s grain) was collected locally. The proximate analysis indicated 28.53% crude protein, 92.76% dry matter, 5.02% ether extract, 7.83% crude fibre, 2.85% total ash, 0.67% acid insoluble ash, 0.91% calcium, and 0.55% total phosphorus. A feeding trial with 5 treatments (incorporating rice beer waste at the inclusion levels of 0,10,20,30 & 40% by replacing maize and soybean from basal diet) was conducted with 25 laying hens per treatment for 16 weeks under completely randomized design in order to study the production performance, blood-biochemical parameters, immunity, egg quality and cost economics of laying hens. The results showed substantial variations (P<0.01) in egg production, egg mass, FCR per dozen eggs, FCR per kg egg mass, and net FCR. However, there was not a substantial difference in either body weight or feed intake or in egg weight. Total serum cholesterol reduced significantly (P<0.01) at 40% inclusion of rice beer waste. Additionally, the egg haugh unit grew considerably (P<0.01) when the graded levels of rice beer waste increased. The inclusion of 20% rice brewers dried grain reduced feed cost per kg egg mass and per dozen egg production by Rs. 15.97 and 9.99, respectively. Choak (homemade rice beer waste) can thus be safely incorporated into the diet of laying hens at a 20% inclusion level for better production performance and cost-effectiveness.Keywords: choak, rice beer waste, laying hen, production performance, cost economics
Procedia PDF Downloads 59393 Identification and Molecular Profiling of A Family I Cystatin Homologue from Sebastes schlegeli Deciphering Its Putative Role in Host Immunity
Authors: Don Anushka Sandaruwan Elvitigala, P. D. S. U. Wickramasinghe, Jehee Lee
Abstract:
Cystatins are a large superfamily of proteins which act as reversible inhibitors of cysteine proteases. Papain proteases and cysteine cathepsins are predominant substrates of cystatins. Cystatin superfamily can be further clustered into three groups as Stefins, Cystatins, and Kininogens. Among them, stefines are also known as family 1 cystatins which harbors cystatin Bs and cystatin As. In this study, a homologue of family one cystatins more close to cystatin Bs was identified from Korean black rockfish (Sebastes schlegeli) using a prior constructed cDNA (complementary deoxyribonucleic acid) database and designated as RfCyt1. The full-length cDNA of RfCyt1 consisted of 573 bp, with a coding region of 294 bp. It comprised a 5´-untranslated region (UTR) of 55 bp, and 3´-UTR of 263 bp. The coding sequence encodes a polypeptide consisting of 97 amino acids with a predicted molecular weight of 11kDa and theoretical isoelectric point of 6.3. The RfCyt1 shared homology with other teleosts and vertebrate species and consisted conserved features of cystatin family signature including single cystatin-like domain, cysteine protease inhibitory signature of pentapeptide (QXVXG) consensus sequence and N-terminal two conserved neighboring glycine (⁸GG⁹) residues. As expected, phylogenetic reconstruction developed using the neighbor-joining method showed that RfCyt1 is clustered with the cystatin family 1 members, in which more closely with its teleostan orthologues. An SYBR Green qPCR (quantitative polymerase chain reaction) assay was performed to quantify the RfCytB transcripts in different tissues in healthy and immune stimulated fish. RfCyt1 was ubiquitously expressed in all tissue types of healthy animals with gill and spleen being the highest. Temporal expression of RfCyt1 displayed significant up-regulation upon infection with Aeromonas salmonicida. Recombinantly expressed RfCyt1 showed concentration-dependent papain inhibitory activity. Collectively these findings evidence for detectable protease inhibitory and immunity relevant roles of RfCyt1 in Sebastes schlegeli.Keywords: Sebastes schlegeli, family 1 cystatin, immune stimulation, expressional modulation
Procedia PDF Downloads 136392 Exploring Penicillin Resistance in Gonococcal Penicillin Binding Protein-2: Molecular Docking and Ligand Interaction Analysis
Authors: Sinethemba Yakobi, Lindiwe Zuma, Ofentse Pooe
Abstract:
Gonococcal infections present a notable public health issue, and the major approach for treatment involves using β-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research clarifies the structural effects of particular mutations, such as inserting an aspartate residue at position 345 (Asp-345a) in the PBP2 protein. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely P551S and F504L, significantly impact the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasizing its exceptional binding affinity and potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for creating potent inhibitors and medicinal therapies to combat infectious illnesses.Keywords: phytochemicals, penicillin-binding protein 2, gonococcal infection, ligand-protein interaction, binding energy, neisseria gonorrhoeae FA19, neisseria gonorrhoeae FA6140, flavonoids
Procedia PDF Downloads 69391 Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin
Authors: Sayani Chatterjee, Kusum Lata Pangtey, Sarita Singh, Harvir Singh
Abstract:
Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well.Keywords: asphaltene, biomarkers, correlation, mild oxidation, occluded hydrocarbon
Procedia PDF Downloads 158390 Irradiated-Chitosan and Methyl Jasmonate Modulate the Growth, Physiology and Alkaloids Production in Catharanthus roseus (l.) G. Don.
Authors: Moin Uddin, M. Masroor A. Khan, Faisal Rasheed, Tariq Ahmad Dar, Akbar Ali, Lalit Varshney
Abstract:
Oligomers, obtained by exposing the natural polysaccharides (alginate, carrageenan, chitosan, etc.) to cobalt-60 generated gamma radiation may prove as potent plant growth promoters when applied as foliar sprays to the plants. They function as endogenous growth elicitors, triggering the synthesis of different enzymes and modulating various plant responses by exploiting the gene expression. Exogenous application of Jasmonic acid or of its methyl ester, methyl jasmonate (MeJ) has been reported to increase the secondary metabolites production in medicinal and aromatic plants. Keeping this in mind, three pot experiments were conducted to test whether the foliar application of irradiated-chitosan (IC) and MeJ, applied alone or in combination, could augment the active constituents as well as growth, physiological and yield attributes of Catharanthus roseus, which carries anticancer alkaloids, viz. vincristine and vinblastine, in its leaves in addition to various other useful alkaloids. Totally, 5 spray treatments, comprising various aqueous solutions of IC [20, 40, 80 and 160 mg L-1 (Experiment 1)], MeJ (10, 20, 30 and 40 mg L-1 (Experiment 2)] and those of IC+MeJ [40+20, 40+30, 80+20, 80+30, 160+20 and 160+30 mg L-1 (Experiment 3)], were applied at seven days interval. Total leaf-alkaloids content as well as growth, physiological and yield parameters, evaluated at 120 days after sowing, were significantly enhanced by IC application. IC application could not increase the leaf-content of vincristine and vinblastine; nonetheless, it significantly augmented the yield of these alkaloids owing to enhancing the dry mass of leaves per plant. MeJ application, particularly at 30 mg L-1, increased both content (17%) and yield (48%) of total leaf-alkaloids as well as the content and yield of vincristine ( 29 and 63%, respectively) and vinblastine (14 and 44%, respectively) alkaloids, though it significantly decreased most other parameters studied, particularly at higher concentrations (30 and 40 mg L-1 of MeJ). As compared to the control (water-spray treatment), collective application of IC (80 mg L-1) and MeJ (20 mg L-1) resulted in the highest values of most of the parameters studied. However, 80 mg L-1 of IC applied with 30 mg L-1 of MeJ gave the best results for the content and yield of total as well as anticancer leaf-alkaloids (vincristine and vinblastine). Comparing the control, it increased the content and yield of total leaf-alkaloids (37 and 118%, respectively) and those of vincristine (65 and 163%, respectively) and vinblastine (31 and 107%, respectively). Conclusively, the applied technique significantly enhanced the production of total as well as anticancer alkaloids of Catharanthus roseus.Keywords: anticancer alkaloids (vincristine and vinblastine), catharanthus roseus, irradiated chitosan, methyl jasmonate
Procedia PDF Downloads 392389 The Comparison Study of Methanol and Water Extract of Chuanxiong Rhizoma: A Fingerprint Analysis
Authors: Li Chun Zhao, Zhi Chao Hu, Xi Qiang Liu, Man Lai Lee, Chak Shing Yeung, Man Fei Xu, Yuen Yee Kwan, Alan H. M. Ho, Nickie W. K. Chan, Bin Deng, Zhong Zhen Zhao, Min Xu
Abstract:
Background: Chuangxiong Rhizoma (Chuangxion, CX) is one of the most frequently used herbs in Chinese medicine because of its wide therapeutic effects such as vasorelaxation and anti-inflammation. Aim: The purposes of this study are (1) to perform non-targeted / targeted analyses of CX methanol extract and water extract, and compare the present data with previously LC-MS or GC-MS fingerprints; (2) to examine the difference between CX methanol extract and water extract for preliminarily evaluating whether current compound markers of methanol extract from crude CX materials could be suitable for quality control of CX water extract. Method: CX methanol extract was prepared according to the Hong Kong Chinese Materia Medica Standards. DG water extract was prepared by boiling with pure water for three times (one hour each). UHPLC-Q-TOF-MS/MS fingerprint analysis was performed by C18 column (1.7 µm, 2.1 × 100 mm) with Agilent 1290 Infinity system. Experimental data were analyzed by Agilent MassHunter Software. A database was established based on 13 published LC-MS and GC-MS CX fingerprint analyses. Total 18 targeted compounds in database were selected as markers to compare present data with previous data, and these markers also used to compare CX methanol extract and water extract. Result: (1) Non-targeted analysis indicated that there were 133 compounds identified in CX methanol extract, while 325 compounds in CX water extract that was more than double of CX methanol extract. (2) Targeted analysis further indicated that 9 in 18 targeted compounds were identified in CX methanol extract, while 12 in 18 targeted compounds in CX water extract that showed a lower lose-rate of water extract when compared with methanol extract. (3) By comparing CX methanol extract and water extract, Senkyunolide A (+1578%), Ferulic acid (+529%) and Senkyunolide H (+169%) were significantly higher in water extract when compared with methanol extract. (4) Other bioactive compounds such as Tetramethylpyrazine were only found in CX water extract. Conclusion: Many new compounds in both CX methanol and water extracts were found by using UHPLC Q-TOF MS/MS analysis when compared with previous published reports. A new standard reference including non-targeted compound profiling and targeted markers functioned especially for quality control of CX water extract (herbal decoction) should be established in future. (This project was supported by Hong Kong Baptist University (FRG2/14-15/109) & Natural Science Foundation of Guangdong Province (2014A030313414)).Keywords: Chuanxiong rhizoma, fingerprint analysis, targeted analysis, quality control
Procedia PDF Downloads 495388 Role of NaOH in the Synthesis of Waste-derived Solid Hydroxy Sodalite Catalyst for the Transesterification of Waste Animal Fat to Biodiesel
Authors: Thomas Chinedu Aniokete, Gordian Onyebuchukwu Mbah, Michael Daramola
Abstract:
A sustainable NaOH integrated hydrothermal protocol was developed for the synthesis of waste-derived hydroxy sodalite catalysts for transesterification of waste animal fat (WAF) with a high per cent free fatty acid (FFA) to biodiesel. In this work, hydroxy sodalite catalyst was synthesized from two complex waste materials namely coal fly ash (CFA) and waste industrial brine (WIB). Measured amounts of South African CFA and WIB obtained from a coal mine field were mixed with NaOH solution at different concentrations contained in secured glass vessels equipped with magnetic stirrers and formed consistent slurries after aging condition at 47 oC for 48 h. The slurries were then subjected to hydrothermal treatments at 140 oC for 48 h, washed thoroughly and separated by the action of a centrifuge on the mixture. The resulting catalysts were calcined in a muffle furnace for 2 h at 200 oC and subsequently characterized for different effects using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and Bennett Emmet Teller (BET) adsorption-desorption techniques. The produced animal fat methyl ester (AFME) was analyzed using the gas chromatography-mass spectrometry (GC-MS) method. Results of the investigation indicate profoundly an enhanced catalyst purity, textural property and desired morphology due to the action of NaOH. Similarly, the performance evaluation with respect to catalyst activity reveals a high catalytic conversion efficiency of 98 % of the high FFA WAF to biodiesel under the following reaction conditions; a methanol-to-WAF ratio of 15:1, amount of SOD catalyst of 3 wt % with a stirring speed of 300-500 rpm, a reaction temperature of 60 oC and a reaction time of 8 h. There was a recovered 96 % stable catalyst after reactions and potentially recyclable, thus contributing to the economic savings to the process that had been a major bottleneck to the production of biodiesel. This NaOH route for synthesizing waste-derived hydroxy sodalite (SOD) catalyst is a sustainable and eco-friendly technology that speaks directly to the global quest for renewable-fossil fuel controversy enforcing sustainable development goal 7.Keywords: coal fly ash, waste industrial brine, waste-derived hydroxy sodalite catalyst, sodium hydroxide, biodiesel, transesterification, biomass conversion
Procedia PDF Downloads 34387 Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of Single Cell Proteins and Polyhydroxyalkanoates From Organic Waste
Authors: P. Joris, E. Lombard, X. Cameleyre, G. Navarro, A. Paillet, N. Gorret, S. E. Guillouet
Abstract:
Today, on the international space station, multiple supplies are needed per year to supply food and spare parts and to take out waste. But as it is planned to go longer and further into space these supplies will no longer be possible. The astronaut life support system must be able of continuously transform waste into valuable compounds. Two types of production were identified as critical and could be be supplemented by microorganisms. On the one hand, since microgravity causes rapid muscle loss, single cell proteins (SCPs) could be used as protein rich feed or food. On the other hand, having enough building materials to build an advanced habitat will not be possible only by transporting space goods from earth to mars for example. The bacterium Cupriavidus. necator is well known for its ability to produce a large amount of proteins or of polyhydroxyalkanoate biopolymers (PHAs) depending on its implementation. By coupling the life support system to a 3D-printer, astronauts could be supplied with an unlimited amount of building materials. Additionally, based on the design of the life support system, waste streams have been identified: urea from the crew urine and volatile fatty acids (VFAs) from a first stage of organic waste (excrement and food waste) treatment through anaerobic digestion. Thus, the objective of this, within the Spaceship.Fr project, was to demonstrate the feasibility of producing SCPs and PHAs from VFAs and urea in bioreactor. Because life support systems operate continuously as loops, continuous culture experiments were chosen and the effect of the bioreactor dilution rate on biomass composition was investigated. Total transformation of the carbon source into biomass with high SCP or PHA content was achieved in all cases. We will present the transformation performances of VFAs and urea by the bacteria in bioreactor in terms of titers, yields and productivities but also in terms of the quality of SCP and PHA produced, nucleic acid content. We will further discuss the envisioned integration of our process within life support systems.Keywords: life support system, space travel, waste treatment, single cell proteins, polyhydroxyalkanoates, bioreactor
Procedia PDF Downloads 121386 Waste Management Option for Bioplastics Alongside Conventional Plastics
Authors: Dan Akesson, Gauthaman Kuzhanthaivelu, Martin Bohlen, Sunil K. Ramamoorthy
Abstract:
Bioplastics can be defined as polymers derived partly or completely from biomass. Bioplastics can be biodegradable such as polylactic acid (PLA) and polyhydroxyalkonoates (PHA); or non-biodegradable (biobased polyethylene (bio-PE), polypropylene (bio-PP), polyethylene terephthalate (bio-PET)). The usage of such bioplastics is expected to increase in the future due to new found interest in sustainable materials. At the same time, these plastics become a new type of waste in the recycling stream. Most countries do not have separate bioplastics collection for it to be recycled or composted. After a brief introduction of bioplastics such as PLA in the UK, these plastics are once again replaced by conventional plastics by many establishments due to lack of commercial composting. Recycling companies fear the contamination of conventional plastic in the recycling stream and they said they would have to invest in expensive new equipment to separate bioplastics and recycle it separately. This project studies what happens when bioplastics contaminate conventional plastics. Three commonly used conventional plastics were selected for this study: polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In order to simulate contamination, two biopolymers, either polyhydroxyalkanoate (PHA) or thermoplastic starch (TPS) were blended with the conventional polymers. The amount of bioplastics in conventional plastics was either 1% or 5%. The blended plastics were processed again to see the effect of degradation. The results from contamination showed that the tensile strength and the modulus of PE was almost unaffected whereas the elongation is clearly reduced indicating the increase in brittleness of the plastic. Generally, it can be said that PP is slightly more sensitive to the contamination than PE. This can be explained by the fact that the melting point of PP is higher than for PE and as a consequence, the biopolymer will degrade more quickly. However, the reduction of the tensile properties for PP is relatively modest. Impact strength is generally a more sensitive test method towards contamination. Again, PE is relatively unaffected by the contamination but for PP there is a relatively large reduction of the impact properties already at 1% contamination. PET is polyester, and it is, by its very nature, more sensitive to degradation than PE and PP. PET also has a much higher melting point than PE and PP, and as a consequence, the biopolymer will quickly degrade at the processing temperature of PET. As for the tensile strength, PET can tolerate 1% contamination without any reduction of the tensile strength. However, when the impact strength is examined, it is clear that already at 1% contamination, there is a strong reduction of the properties. The thermal properties show the change in the crystallinity. The blends were also characterized by SEM. Biphasic morphology can be seen as the two polymers are not truly blendable which also contributes to reduced mechanical properties. The study shows that PE is relatively robust against contamination, while polypropylene (PP) is sensitive and polyethylene terephthalate (PET) can be quite sensitive towards contamination.Keywords: bioplastics, contamination, recycling, waste management
Procedia PDF Downloads 225385 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes
Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert
Abstract:
The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry
Procedia PDF Downloads 89384 The Effects of Orally Administered Bacillus Coagulans and Inulin on Prevention and Progression of Rheumatoid Arthritis in Rats
Authors: Khadijeh Abhari, Seyed Shahram Shekarforoush, Saeid Hosseinzadeh
Abstract:
Probiotics have been considered as an approach to treat and prevent a wide range of inflammatory diseases. The spore forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic, inulin, also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. An in vivo trial was conducted to evaluate the effects of probiotic B. coagulans, and inulin, either separately or in combination, on down regulate immune responses and progression of rheumatoid arthritis using induced arthritis rat model. Forty-eight male Wistar rats were randomly divided into 6 groups and fed as follow: 1) control: Normal healthy rats fed by standard diet, 2) Disease control (RA): Arthritic induced (RA) rats fed by standard diet, 3) Prebiotic (PRE): RA+ 5% w/w long chain inulin, 4) Probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) Synbiotic (SYN): RA+ 5% w/w long chain inulin and 109 spores/day B. coagulans and 6) Treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with mentioned diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund’s adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by biochemical parameters and paw thickness. Biochemical assay for Fibrinogen (Fn), Serum Amyloid A (SAA), TNF-α and Alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28 and 35 (1, 2 and 3 weeks post RA induction). Pretreatment with PRE, PRO and SYN diets significantly inhibit SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in production of pro-inflammatory cytokines, TNF-α, was seen in PRE, PRO and SYN groups (P < 0.001) which was similar to the effect of the anti-inflammatory drug Indomethacin. Further, there were no significant anti-inflammatory effects observed following different treatments using α1AGp as a RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001). Conclusion: Results of this study support that oral intake of probiotic B. coagulans and inulin are able to improve biochemical and clinical parameters of induced RA in rat.Keywords: rheumatoid arthritis, bacillus coagulans, inulin, animal model
Procedia PDF Downloads 356383 Exploration of Probiotics and Anti-Microbial Agents in Fermented Milk from Pakistani Camel spp. Breeds
Authors: Deeba N. Baig, Ateeqa Ijaz, Saloome Rafiq
Abstract:
Camel is a religious and culturally significant animal in Asian and African regions. In Pakistan Dromedary and Bactrian are common camel breeds. Other than the transportation use, it is a pivotal source of milk and meat. The quality of its milk and meat is predominantly dependent on the geographical location and variety of vegetation available for the diet. Camel milk (CM) is highly nutritious because of its reduced cholesterol and sugar contents along with enhanced minerals and vitamins level. The absence of beta-lactoglobulin (like human milk), makes CM a safer alternative for infants and children having Cow Milk Allergy (CMA). In addition to this, it has a unique probiotic profile both in raw and fermented form. Number of Lactic acid bacteria (LAB) including lactococcus, lactobacillus, enterococcus, streptococcus, weissella, pediococcus and many other bacteria have been detected. From these LAB Lactobacilli, Bifidobacterium and Enterococcus are widely used commercially for fermentation purpose. CM has high therapeutic value as its effectiveness is known against various ailments like fever, arthritis, asthma, gastritis, hepatitis, Jaundice, constipation, postpartum care of women, anti-venom, dropsy etc. It also has anti-diabetic, anti-microbial, antitumor potential along with its robust efficacy in the treatment of auto-immune disorders. Recently, the role of CM has been explored in brain-gut axis for the therapeutics of neurodevelopmental disorders. In this connection, a lot of grey area was available to explore the probiotics and therapeutics latent in the CM available in Pakistan. Thus, current study was designed to explore the predominant probiotic flora and antimicrobial potential of CM from different local breeds of Pakistan. The probiotics have been identified through biochemical, physiological and ribo-typing methods. In addition to this, bacteriocins (antimicrobial-agents) were screened through PCR-based approach. Results of this study revealed that CM from different breeds of camel depicted a number of similar probiotic candidates along with the range of limited variability. However, the nucleotide sequence analysis of selected anti-listerial bacteriocins exposed least variability. As a conclusion, the CM has sufficient probiotic availability and significant anti-microbial potential.Keywords: bacteriocins, camel milk, probiotics potential, therapeutics
Procedia PDF Downloads 133382 Production and Evaluation of Physicochemical, Nutritional, Sensorial and Microbiological Properties of Mixed Fruit Juice Blend Prepared from Apple, Orange and Mosambi
Authors: Himalaya Patir, Bitupon Baruah, Sanjay Gayary, Subhajit Ray
Abstract:
In recent age significant importance is given for the development of nutritious and health beneficial foods. Fruit juices collected from different fruits when blended that improves not only the physicochemical and nutritional properties but also enhance the sensorial or organoleptic properties. The study was carried out to determine the physico-chemical, nutritional, microbiological analysis and sensory evaluation of mixed fruit juice blend. Juice of orange (Citrus sinensis), apple (Malus domestica), mosambi (Citrus limetta) were blended in the ratio of sample-I (30% apple:30% orange:40% mosambi), sample-II ( 40% apple :30% orange :30% mosambi), sample-III (30% apple :40% orange :30% mosambi) , sample-IV (50% apple :30% orange :20% mosambi), sample-V (30% apple:20% orange:50% mosambi), sample-VI (20% apple :50% orange :30% mosambi) to evaluate all quality characteristics. Their colour characteristics in terms of hue angle, chroma and colour difference (∆E) were evaluated. The physico-chemical parameters analysis carried out were total soluble solids (TSS), total titratable acidity (TTA), pH, acidity (FA), volatile acidity (VA), pH, and vitamin C. There were significant differences (p˂0.05) in the TSS of the samples. However, sample-V (30% apple: 20% orange: 50% mosambi) provides the highest TSS of 9.02gm and significantly differed from other samples (p˂0.05). Sample-IV (50% apple: 30% orange: 20% mosambi) was shown the highest titratable acidity (.59%) in comparison to other samples. The highest value of pH was found as 5.01 for sample-IV (50% apple: 30% orange: 20% mosambi). Sample-VI (20% apple: 50% orange :30% mosambi) blend has the highest hue angle, chroma and colour changes of 72.14,25.29 and 54.48 and vitamin C, i.e. Ascorbic acid (.33g/l) content compared to other samples. The nutritional compositions study showed that, sample- VI (20% apple: 50% orange: 30% mosambi) has the significantly higher carbohydrate (51.67%), protein (.78%) and ash (1.24%) than other samples, while sample-V (30% apple: 20% orange: 50% mosambi) has higher dietary fibre (12.84%) and fat (2.82%) content. Microbiological analysis of all samples in terms of total plate count (TPC) ranges from 44-60 in 101 dilution and 4-5 in 107 dilutions and was found satisfactory. Moreover, other pathogenic bacterial count was found nil. The general acceptability of the mixed fruit juice blend samples were moderately liked by the panellists, and sensorial quality studies showed that sample-V (30% apple: 20% orange: 50% mosambi) contains highest overall acceptability of 8.37 over other samples and can be considered good for consumption.Keywords: microbiological, nutritional, physico-chemical, sensory properties
Procedia PDF Downloads 178381 Investigation of Dry-Blanching and Freezing Methods of Fruits
Authors: Epameinondas Xanthakis, Erik Kaunisto, Alain Le-Bail, Lilia Ahrné
Abstract:
Fruits and vegetables are characterized as perishable food matrices due to their short shelf life as several deterioration mechanisms are being involved. Prior to the common preservation methods like freezing or canning, fruits and vegetables are being blanched in order to inactivate deteriorative enzymes. Both conventional blanching pretreatments and conventional freezing methods hide drawbacks behind their beneficial impacts on the preservation of those matrices. Conventional blanching methods may require longer processing times, leaching of minerals and nutrients due to the contact with the warm water which in turn leads to effluent production with large BOD. An important issue of freezing technologies is the size of the formed ice crystals which is also critical for the final quality of the frozen food as it can cause irreversible damage to the cellular structure and subsequently to degrade the texture and the colour of the product. Herein, the developed microwave blanching methodology and the results regarding quality aspects and enzyme inactivation will be presented. Moreover, heat transfer phenomena, mass balance, temperature distribution, and enzyme inactivation (such as Pectin Methyl Esterase and Ascorbic Acid Oxidase) of our microwave blanching approach will be evaluated based on measurements and computer modelling. The present work is part of the COLDμWAVE project which aims to the development of an innovative environmentally sustainable process for blanching and freezing of fruits and vegetables with improved textural and nutritional quality. In this context, COLDµWAVE will develop tailored equipment for MW blanching of vegetables that has very high energy efficiency and no water consumption. Furthermore, the next steps of this project regarding the development of innovative pathways in MW assisted freezing to improve the quality of frozen vegetables, by exploring in depth previous results acquired by the authors, will be presented. The application of MW assisted freezing process on fruits and vegetables it is expected to lead to improved quality characteristics compared to the conventional freezing. Acknowledgments: COLDμWAVE has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grand agreement No 660067.Keywords: blanching, freezing, fruits, microwave blanching, microwave
Procedia PDF Downloads 267380 Effect of Feeding Broilers on Diets Enriching With Omega-3 Fatty Acids Sources
Authors: Khalid Mahmoud Gaafar
Abstract:
In human diets , ω-6 and ω-3 are important essential fatty acids for immunity and health. However, considerable alteration in dietary patterns and contents has resulted in change of the consumption of such fatty acids ,with subsequent increase in the consumption of ω-6 fatty acids and a marked decrease in the consumption of ω-3 fatty acids. This dietary alteration has led to an imbalance in the ratio for ω-6/ω-3, which at 20:1 now differs considerably from the original ratio (1:1). Therefore, dietary supplements such as eggs and meat enriched with omega 3 are necessary to increase the consumption of ω-3 to meet the recommended need for ω-3. Foods that supply ω-6 fatty acids include soybean, palm , sunflower, and rapeseed oils, whereas foods that supply ω-3 fatty acids such as linseed and fish oils. Lin seed oils contain Alpha – linolenic acid (ALA), which can be converted to DHA and EPA in the birds body, with linseed oil containing more than 50% ALA. On the other hand, high doses of omega 6 sources in the diet may have deleterious effects on humans. Maintaining an optimum ratio of ω-3 and ω-6fatty acids not only improves performance but also prevents these health risks. The ratio of n-6:ω-3 fatty acids also plays an important role in the immune response, production performance of broilers and designing meat enriched with ω-3 polyunsaturated fatty acids (PUFAs). Birds of three experimental groups fed on basal starter (0-2nd weeks), grower (3rd -4th weeks) and finisher (5th week) rations. The first is control group fed during the grower-finisher periods on basic diet with two replicate (one fed on basic diet contain vegetable oil and the other don’t) without any additives. The three experimental groups (T1 – T2 –T3) fed during the grower- finisher periods on diets free from vegetable oils and contain of 5% of extruded mixture of soybean and linseed (60%:40%). The second (T2) and third (T3) experimental groups supplemented with vitamin B12 and enzyme mixture. The first experimental groups don’t receive vitamins or enzymes. The obtained results showed a significant increased growth performance, immune response, highest antioxidant activity and serum HDL with lowest serum LDL and triglycerides levels in all experimental groups compared with control group, which was highly significant in group fed on vitamin B6.Keywords: omega fatty acids, broiler, feeding, human health, growth performance, immunity
Procedia PDF Downloads 113379 In Silico Analysis of Deleterious nsSNPs (Missense) of Dihydrolipoamide Branched-Chain Transacylase E2 Gene Associated with Maple Syrup Urine Disease Type II
Authors: Zainab S. Ahmed, Mohammed S. Ali, Nadia A. Elshiekh, Sami Adam Ibrahim, Ghada M. El-Tayeb, Ahmed H. Elsadig, Rihab A. Omer, Sofia B. Mohamed
Abstract:
Maple syrup urine (MSUD) is an autosomal recessive disease that causes a deficiency in the enzyme branched-chain alpha-keto acid (BCKA) dehydrogenase. The development of disease has been associated with SNPs in the DBT gene. Despite that, the computational analysis of SNPs in coding and noncoding and their functional impacts on protein level still remains unknown. Hence, in this study, we carried out a comprehensive in silico analysis of missense that was predicted to have a harmful influence on DBT structure and function. In this study, eight different in silico prediction algorithms; SIFT, PROVEAN, MutPred, SNP&GO, PhD-SNP, PANTHER, I-Mutant 2.0 and MUpo were used for screening nsSNPs in DBT including. Additionally, to understand the effect of mutations in the strength of the interactions that bind protein together the ELASPIC servers were used. Finally, the 3D structure of DBT was formed using Mutation3D and Chimera servers respectively. Our result showed that a total of 15 nsSNPs confirmed by 4 software (R301C, R376H, W84R, S268F, W84C, F276C, H452R, R178H, I355T, V191G, M444T, T174A, I200T, R113H, and R178C) were found damaging and can lead to a shift in DBT gene structure. Moreover, we found 7 nsSNPs located on the 2-oxoacid_dh catalytic domain, 5 nsSNPs on the E_3 binding domain and 3 nsSNPs on the Biotin Domain. So these nsSNPs may alter the putative structure of DBT’s domain. Furthermore, we detected all these nsSNPs are on the core residues of the protein and have the ability to change the stability of the protein. Additionally, we found W84R, S268F, and M444T have high significance, and they affected Leucine, Isoleucine, and Valine, which reduces or disrupt the function of BCKD complex, E2-subunit which the DBT gene encodes. In conclusion, based on our extensive in-silico analysis, we report 15 nsSNPs that have possible association with protein deteriorating and disease-causing abilities. These candidate SNPs can aid in future studies on Maple Syrup Urine Disease type II base in the genetic level.Keywords: DBT gene, ELASPIC, in silico analysis, UCSF chimer
Procedia PDF Downloads 201378 Safety Evaluation of Post-Consumer Recycled PET Materials in Chilean Industry by Overall Migration Tests
Authors: Evelyn Ilabaca, Ximena Valenzuela, Alejandra Torres, María José Galotto, Abel Guarda
Abstract:
One of the biggest problems in food packaging industry, especially with the plastic materials, is the fact that these materials are usually obtained from non-renewable resources and also remain as waste after its use, causing environmental issues. This is an international concern and particular attention is given to reduction, reuse and recycling strategies for decreasing the waste from plastic packaging industry. In general, polyethylenes represent most plastic waste and recycling process of post-consumer polyethylene terephthalate (PCR-PET) has been studied. US Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and Southern Common Market (MERCOSUR) have generated different legislative documents to control the use of PCR-PET in the production of plastic packaging intended direct food contact in order to ensure the capacity of recycling process to remove possible contaminants that can migrate into food. Consequently, it is necessary to demonstrate by challenge test that the recycling process is able to remove specific contaminants, obtaining a safe recycled plastic to human health. These documents establish that the concentration limit for substitute contaminants in PET is 220 ppb (ug/kg) and the specific migration limit is 10 ppb (ug/kg) for each contaminant, in addition to assure the sensorial characteristics of food are not affected. Moreover, under the Commission Regulation (EU) N°10/2011 on plastic materials and articles intended to come into contact with food, it is established that overall migration limit is 10 mg of substances per 1 dm2 of surface area of the plastic material. Thus, the aim of this work is to determine the safety of PCR-PET-containing food packaging materials in Chile by measuring their overall migration, and their comparison with the established limits at international level. This information will serve as a basis to provide a regulation to control and regulate the use of recycled plastic materials in the manufacture of plastic packaging intended to be in direct contact with food. The methodology used involves a procedure according to EN-1186:2002 with some modifications. The food simulants used were ethanol 10 % (v/v) and acetic acid 3 % (v/v) as aqueous food simulants, and ethanol 95 % (v/v) and isooctane as substitutes of fatty food simulants. In this study, preliminary results showed that Chilean food packaging plastics with different PCR-PET percentages agree with the European Legislation for food aqueous character.Keywords: contaminants, polyethylene terephthalate, plastic food packaging, recycling
Procedia PDF Downloads 276377 Therapeutic Effect of Cichorium Intybus Aerial Parts Extract against Oxidative Stress and Nephropathy Induced by Streptozotocin in Rats
Authors: Josline Salib, Sayed El-Toumy, Abeer Salama, Enayat Omara, Emad Hassan
Abstract:
Diabetic nephropathy is an important cause of morbidity and mortality and is now among the most common causes of end-stage renal failure (ESRF) in developed countries. Thus, the aim of the present study was to investigate the phenolic compounds content of Cichorium intybus aerial parts extracts as well as the therapeutic effects on diabetic nephropathy, oxidative stress, and anti-inflammatory by characterizing biochemical, histopathological changes and immunohistochemistry in an experimental diabetic rat model as compared with Amaryl. Ten known compounds of flavonoids, coumarins and phenolic acid derivatives were isolated from the C. intybus aqueous methanolic extract. Structures of the isolated compounds were established by chromatography, UV and 1D⁄2D 1H⁄ 13C spectroscopy. The aqueous methanol extract of C. intybus aerial parts was administered to Streptozotocin diabetes rats at doses (100 and 200 mg/kg) for 21 days. After treatment, blood glucose, serum insulin, urea, creatinine, and TNF-α were evaluated. Enzymatic scavengers including catalase (CAT), glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) were determined to evaluate the oxidative status in the renal tissue. Diabetic rats treated with C. intybus extract showed a dose-dependent reduction of fasting blood glucose and kidney antioxidant status in comparison to the diabetic control group. The extract was able to enhance the antioxidant defenses of the kidney by increasing the reduced GSH and CAT content and decreasing MDA content in addition to significantly decreasing kidney nitric oxide content compared to diabetic control rats. Furthermore, the histopathological findings in C. intybus extract administered rats were observed at markedly lesser extent than the diabetic control group. Also, inducible nitric oxide synthase (iNOS) levels were decreased significantly after the administration of high-dose C. intybus extract in diabetic rats. Showing significant antihyperglycemic and antioxidant properties of C. intybus aerial parts extract, which is attributed to its polyphenolic content, may offer a potential source for the treatment of diabetes.Keywords: antioxidant activity, anti-diabetic nephropathy, cichorium intybus aerial parts, phenolic compounds
Procedia PDF Downloads 120376 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis
Authors: Asowata Osamede
Abstract:
Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.Keywords: power-conversion, meteonorm, PV panels, DC-DC converters
Procedia PDF Downloads 147375 Proteomic Analysis of Cytoplasmic Antigen from Brucella canis to Characterize Immunogenic Proteins Responded with Naturally Infected Dogs
Authors: J. J. Lee, S. R. Sung, E. J. Yum, S. C. Kim, B. H. Hyun, M. Her, H. S. Lee
Abstract:
Canine brucellosis is a critical problem in dogs leading to reproductive diseases which are mainly caused by Brucella canis. There are, nonetheless, not clear symptoms so that it may go unnoticed in most of the cases. Serodiagnosis for canine brucellosis has not been confirmed. Moreover, it has substantial difficulties due to broad cross-reactivity between the rough cell wall antigens of B. canis and heterospecific antibodies present in normal, uninfected dogs. Thus, this study was conducted to characterize the immunogenic proteins in cytoplasmic antigen (CPAg) of B. canis, which defined the antigenic sensitivity of the humoral antibody responses to B. canis-infected dogs. In analysis of B. canis CPAg, first, we extracted and purified the cytoplasmic proteins from cultured B. canis by hot-saline inactivation, ultrafiltration, sonication, and ultracentrifugation step by step according to the sonicated antigen extract method. For characterization of this antigen, we checked the sort and range of each protein on SDS-PAGE and verified the immunogenic proteins leading to reaction with antisera of B. canis-infected dogs. Selected immunodominant proteins were identified using MALDI-MS/MS. As a result, in an immunoproteomic assay, several polypeptides in CPAg on one or two-dimensional electrophoresis (DE) were specifically reacted to antisera from B. canis-infected dogs but not from non-infected dogs. The polypeptides with approximate 150, 80, 60, 52, 33, 26, 17, 15, 13, 11 kDa on 1-DE were dominantly recognized by antisera from B. canis-infected dogs. In the immunoblot profiles on 2-DE, ten immunodominant proteins in CPAg were detected with antisera of infected dogs between pI 3.5-6.5 at approximate 35 to 10 KDa, without any nonspecific reaction with sera in non-infected dogs. Ten immunodominant proteins identified by MALDI-MS/MS were identified as superoxide dismutase, bacteroferritin, amino acid ABC transporter substrate-binding protein, extracellular solute-binding protein family3, transaldolase, 26kDa periplasmic immunogenic protein, Rhizopine-binding protein, enoyl-CoA hydratase, arginase and type1 glyceraldehyde-3-phosphate dehydrogenase. Most of these proteins were determined by their cytoplasmic or periplasmic localization with metabolism and transporter functions. Consequently, this study discovered and identified the prominent immunogenic proteins in B. canis CPAg, highlighting that those antigenic proteins may accomplish a specific serodiagnosis for canine brucellosis. Furthermore, we will evaluate those immunodominant proteins for applying to the advanced diagnostic methods with high specificity and accuracy.Keywords: Brucella canis, Canine brucellosis, cytoplasmic antigen, immunogenic proteins
Procedia PDF Downloads 147374 Novel Adomet Analogs as Tools for Nucleic Acids Labeling
Authors: Milda Nainyte, Viktoras Masevicius
Abstract:
Biological methylation is a methyl group transfer from S-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases), which represent more than 3 % of the proteins in the cell. As a general mechanism, the methyl group from AdoMet replaces a hydrogen atom of nucleophilic center producing methylated DNA and S-adenosyl-L-homocysteine (AdoHcy). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. Two types of MTase catalyzed labeling of biopolymers are known, referred as two-step and one-step. During two-step labeling, an alkylating fragment is transferred onto DNA in a sequence-specific manner and then the reporter group, such as biotin, is attached for selective visualization using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at 100 %, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the one-step labeling, AdoMet analog is designed with the reporter group already attached to the functional group. Thus, the one-step labeling method would be more comfortable tool for labeling of biopolymers in order to prevent additional chemical reactions and selection of reaction conditions. Also, time costs would be reduced. However, effective AdoMet analog appropriate for one-step labeling of biopolymers and containing cleavable bond, required for reduction of PCR interferation, is still not known. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of Activated Groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Herein we describe synthetic procedures for the preparation of N-biotinoyl-N’-(pent-4-ynoyl)cystamine starting from the coupling of cystamine with pentynoic acid and finally attaching the biotin as a reporter group. The synthesis of the first AdoMet based cofactor containing a cleavable reporter group and appropriate for one-step labeling was developed.Keywords: adoMet analogs, DNA alkylation, cofactor, methyltransferases
Procedia PDF Downloads 195