Search results for: radiation therapy enhancement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4573

Search results for: radiation therapy enhancement

1543 Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar

Authors: Seyed Mohamad Rasool Mirkarimi, David Chiaramonti, Samir Bensaid

Abstract:

Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion.

Keywords: hydrogen production, catalytic methane decomposition, biochar, activated biochar, carbon-based catalyts

Procedia PDF Downloads 81
1542 Effective Sexual Assault Treatment as Viewed by Survivors and Expert Therapists

Authors: Avigail Moor

Abstract:

Rape and sexual assault have been widely linked to severe psychological sequelae, the recovery from which often requires professional help. Thanks to the current shift in societal attitudes towards sexual violence, the victim's perspective is increasingly being heard. The present study is yet another step in that direction. Through the investigation of what recovered survivors of sexual assault identify as the therapeutic interventions that most assisted them in overcoming their trauma, guidelines for optimal sexual assault treatment are established. These receive further support from a comparison with expert therapists as to what they view as being most conducive to recovery from rape. In-depth semi-structured interviews were conducted with 15 survivors who have experienced a successful course of therapy and 15 therapists with extensive expertise in the field. The results document considerable agreement between the two perspectives, which share much in common. First, irrespective of the specific techniques involved, both survivors and therapists placed the greatest importance on a respectful and validating therapeutic relationship, that operates to counter the dehumanization and degradation entailed in the assault. In addition, specific interventions were identified, which include the reprocessing of all rape-specific peri-traumatic reactions coupled with the intentional countering of their consequences within the therapeutic relationship. Together, these reports provide a detailed account of post-rape treatment needs and the interventions required for their effective resolution.

Keywords: sexual assault, rape, treatment efficacy, survivors

Procedia PDF Downloads 143
1541 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement

Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini

Abstract:

Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.

Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis

Procedia PDF Downloads 138
1540 Root Cause Analysis of Surveillance Quality in Tanjung Priok Port to Prevent Epidemic Potential Disease as a Form of Bioterrorism Threat

Authors: Dina A. Amu, Fifi N. Afifah, Catur Rosidati, Tirton Nefianto

Abstract:

Indonesia was shaken up by the avian influenza cases that had caused the country suffered losses of millions of dollars. The avian influenza case had even been suspected as a bioterrorism attack since it was an uncommon case in epidemiology. Furthermore, this avian influenza virus is a high pathogenic one and Indonesia has the highest case of fatality rate in the world. Bioterrorism threats or epidemic potential disease outbreaks currently does not exist in Tanjung Priok port yet. However, the surveillance system enhancement on epidemic potential diseases should be taken as a prevention, especially because Indonesia is currently facing the ASEAN Economic Society (AES). Therefore, this research evaluates the health surveillance system which is organized by Control, Quarantine and Surveillance Department, Health Office of Tanjung Priok Port. This study uses qualitative-evaluative method which utilizes Urgency Seriousness Growth (USG) method to determine priority issues and Root Cause analysis to determine the cause of prior problem. The result of this research shows that the implementation of epidemic potential disease surveillance in Tanjung Priok port has not done in the best possible way. It is because the lack of time allocation and the succinctness of the check list of ship's environmental health inspection. Therefore, Health Ministry of Indonesia should recruit more employees at the health office of Tanjung Priok port, hold a simulation of ship's inspection and simplify the list for ship's environmental health inspection.

Keywords: surveillance, epidemic potential disease, port health, bioterrorism

Procedia PDF Downloads 363
1539 Key Performance Indicators of Cold Supply Chain Practices in Agriculture Sector: Empirical Study on the Egyptian Export Companies

Authors: Ahmed Barakat, Nourhan Ahmed Saad, Mahmoud Hammad

Abstract:

Tracking and monitoring agricultural products, cold chain activities, and transportation in real-time can effectively ensure both the quality and safety of agricultural products, as well as reduce overall logistics costs. Effective supply chain practices are one of the main requirements for enhancing agricultural business in Egypt. Cold chain is among the best practices for the storage and transportation of perishable goods and has potential within the agricultural sector in Egypt. This practice has the scope of reducing the wastage of food and increasing the profitability with a reduction in costs. Even though it has several implementation challenges for the farmers, traders, and people involved in the entire supply chain, it has highlighted better benefits for all and for the export of goods for the economic progression for Egypt. The aim of this paper is to explore cold supply chain practices for the agriculture sector in Egypt, to enhance the export performance of fresh goods. In this context, this study attempts to explore those aspects of the performance of cold supply chain practices that can enhance the functioning of the agriculture sector in Egypt from the perspective of export companies (traders) and farmers. Based on the empirical results obtained by data collection from the farmers and traders, the study argues that there is a significant association between cold supply chain practices and enhancement of the agriculture value chain. The paper thus highlights the contribution of the study with final conclusions and limitations with scope for future research.

Keywords: agriculture sector, cold chain management, export companies, non-traded goods, supply chain management

Procedia PDF Downloads 162
1538 FACTS Based Stabilization for Smart Grid Applications

Authors: Adel. M. Sharaf, Foad H. Gandoman

Abstract:

Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.

Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)

Procedia PDF Downloads 412
1537 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs

Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou

Abstract:

We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.

Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties

Procedia PDF Downloads 436
1536 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units

Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov

Abstract:

The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.

Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis

Procedia PDF Downloads 273
1535 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials

Authors: Chongyang Ye, Rong Liu

Abstract:

Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.

Keywords: elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis

Procedia PDF Downloads 119
1534 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE

Procedia PDF Downloads 100
1533 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)

Authors: Mahmoud A. Abdulhamid

Abstract:

Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.

Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation

Procedia PDF Downloads 96
1532 Effect of Low-Intensity Laser on Severe Tinnitus in Idiopathic Sudden Hearing Loss Patients

Authors: Z. Mowafy Emam Mowafy, Ahmed R. Sayed, M. El Sayed Mohmmed Hassan

Abstract:

Purpose: to evaluate the effect of low intensity laser on severe tinnitus in idiopathic sudden hearing loss patients. Methods of evaluation (Visual analogue scale and tinnitus handicap inventory scale):- Thirty patients who had unilateral tinnitus with sensorineural hearing loss were participated in the study. Subjects aged from 40 to 50 were randomly divided into two equal groups: group (A): composed of 15 patients who received the routine medical care (Systemic steroids) in addition to the low-intensity laser therapy (LILT) while group (B): composed of 15 patients who received only the routine medical care. Continuous 632.8nm He-Ne laser was used with 5mW power for 15 min\day, 3 days per week for 3 months. Results and conclusion: Results showed that application of the LILT had a valuable effect on severe tinnitus in idiopathic sudden hearing loss patients as evidenced by the highly decreased visual analogue scale and tinnitus handicap inventory scale.

Keywords: idiopathic sudden hearing loss, low intensity laser, tinnitus, tinnitus handicap inventory scale and visual analogue scale

Procedia PDF Downloads 395
1531 Nanoparticulated (U,Gd)O2 Characterization

Authors: A. Fernandez Zuvich, I. Gana Watkins, H. Zolotucho, H. Troiani, A. Caneiro, M. Prado, A. L. Soldati

Abstract:

The study of actinide nanoparticles (NPs) has attracted the attention of the scientific community not only because the lack of information about their ecotoxicological effects but also because the use of NPs could open a new way in the production of nuclear energy. Indeed, it was recently demonstrated that UO2 NPs sintered pellets exhibit closed porosity with improved fission gas retention and radiation-tolerance , ameliorated mechanical properties, and less detriment of the thermal conductivity upon use, making them an interesting option for new nuclear fuels. In this work, we used a combination of diffraction and microscopy tools to characterize the morphology, the crystalline structure and the composition of UO2 nanoparticles doped with 10%wt Gd2O3. The particles were synthesized by a modified sol-gel method at low temperatures. X-ray Diffraction (XRD) studies determined the presence of a unique phase with the cubic structure and Fm3m spatial group, supporting that Gd atoms substitute U atoms in the fluorite structure of UO2. In addition, Field Emission Gun Scanning (FEG-SEM) and Transmission (FEG-TEM) Electron Microscopy images revealed the presence of micrometric agglomerates of nanoparticles, with rounded morphology and an average crystallite size < 50 nm. Energy Dispersive Spectroscopy (EDS) coupled to TEM determined the presence of Gd in all the analyzed crystallites. Besides, FEG-SEM-EDS showed a homogeneous concentration distribution at the micrometer scale indicating that the small size of the crystallites compensates the variation in composition by averaging a large number of crystallites. These techniques, as combined tools resulted thus essential to find out details of morphology and composition distribution at the sub-micrometer scale, and set a standard for developing and analyzing nanoparticulated nuclear fuels.

Keywords: actinide nanoparticles, burnable poison, nuclear fuel, sol-gel

Procedia PDF Downloads 332
1530 Successful Management of a Boy with Mild Persistent Asthma: A Longitudinal Case

Authors: A. Lubis, L. Setiawati, A. R. Setyoningrum, A. Suryawan, Irwanto

Abstract:

Asthma is a condition that causing chronic health problems in children. In addition to basic therapy against disease, we must try to reduce the impact of chronic health problems and also optimize their medical aspect of growth and development. A boy with mild asthma attack frequent episode did not showed any improvement with medical treatment and his asthma control test was 11. From radiologic examination he got hyperaerated lung and billateral sinusitis maxillaris; skin test results were house dust, food and pet allergy; an overweight body; bad school grades; psychological and environmental problem. We followed and evaluated this boy in 6 months, treated holistically. Even we could not do much on environmental but no more psychological and school problems, his on a good bodyweight and his asthma control test was 22. A case of a child with mild asthma attack frequent episode was reported. Asthma clinical course show no significant improvement when other predisposing factor is not well-controlled and a child’s growth and development may be affected. Improving condition of the patient can be created with the help of loving and caring way of nurturing from the parents and supportive peer group. Therefore, continuous and consistent monitoring is required because prognosis of asthma is generally good when regularly and properly controlled.

Keywords: asthma, chronic health problems, growth, development

Procedia PDF Downloads 229
1529 Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation

Authors: A. A. Abid

Abstract:

The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before

Keywords: EMIC waves, temperature anisotropy of hot protons, energization of the cold proton, magnetospheric multiscale (MMS) satellite observations

Procedia PDF Downloads 122
1528 Investigation of Type and Concentration Effects of Solvent on Chemical Properties of Saffron Edible Extract

Authors: Sharareh Mohseni

Abstract:

Purpose: The objective of this study was to find a suitable solvent to produce saffron edible extract with improved chemical properties. Design/methodology/approach: Dried and pulverized stigmas of C. sativus L. (10g) was extracted with 300 ml of solvents including: distillated water (DW), ethanol/DW, methanol/DW, propylene glycol/DW, heptan/DW, and hexan/DW, for 3 days at 25°C and then centrifuged at 3000 rpm. Then the extracts were evaporated using rotary evaporator at 40°C. The fiber and solvent-free extracts were then analyzed by UV spectrophotometer to detect saffron quality parameters including crocin, picrocrocin and safranal. Findings: Distilled water/ethanol mixture as the extraction solvent, caused larger amounts of the plant constituents to diffuse out to the extract compared to other treatments and also control. Polar solvents including distilled water, ethanol, and propylene glycol (except methanol) were more effective in extracting crocin, picrocrocin, and saffranal than non-polar solvents. Social implications: Due to an enhancement of color and flavor, saffron extract is economical compared to natural saffron. Saffron Extract saves on preparation time and reduces the amount of saffron required for imparting the same flavor, as compared to dry saffron. Liquid extract is easier to use and standardize in food preparations compared to dry stamens and can be dosed precisely compared to natural saffron. Originality/value: No research had been done on production of saffron edible extract using the solvent studied in this survey. The novelty of this research is high and the results can be used industrially.

Keywords: Crocus sativus L., saffron extract, solvent extraction, distilled water

Procedia PDF Downloads 448
1527 Effect of Zirconium (Zr) Amount on Mechanical and Metallurgical Behavior of ZE41A Magnesium Alloy

Authors: Emrah Yaliniz, Ali Kalkanli

Abstract:

ZE41A magnesium alloy has been extensively used in aerospace industry, especially for use in rotorcraft transmission casings. Due to the improved mechanical properties, the latest generation of magnesium casting alloy EV31A-T6 (Elektron 21® specified in AMS 4429) is seen as a potential replacement for ZE41A in terms of strength. Therefore, the necessity of enhancement has been arisen for ZE41A in order to avoid fully replacement. The main element affecting the strength of ZE41A is Zirconium (Zr), which acts as a grain refiner. The specified range of Zr element for ZE41A alloy is between 0.4 wt % and 1.0 wt % (unless otherwise stated by weight percentage after this point) as stated in AMS 4439. This paper investigates the effects of Zr amount on tensile and metallurgical properties of ZE41A magnesium alloy. The Zr alloying amount for the research has been chosen as 0.5 % and 1 %, which are standard amounts in a commercial alloy (average of 0.4-0.6%) and maximum percent in the standard, separately. 1 % Zr amount has been achieved via Zirmax (66.7 Mg-33.3 Zr) master alloy addition. The ultimate tensile strength of ZE41A with 1% Zr has been increased up to about 220-225 MPa in comparison to 200 MPa given in AMS 4439. The reason for the increase in strength with the addition of Zirmax is based on the decrease in grain size, which was measured about 30 µm. Optical microscope, scanning electron microscopy (SEM) and X-ray Diffraction (XRD) were used to detect the change in the microstructural futures via alloying. The zirconium rich coring at the center of the grains was observed in addition to the grain boundary intermetallic phases and bulk Mg-rich matrix. The solidification characteristics were also identified by using the cooling curve obtained from the sand casting mold during cooling of the alloys.

Keywords: aerospace, grain refinement, magnesium, sand casting, ZE41A

Procedia PDF Downloads 319
1526 Cyclic NGR Peptide Anchored Block Co-Polymeric Nanoparticles as Dual Targeting Drug Delivery System for Solid Tumor Therapy

Authors: Madhu Gupta, G. P. Agrawa, Suresh P. Vyas

Abstract:

Certain tumor cells overexpress a membrane-spanning molecule aminopeptidase N (CD13) isoform, which is the receptor for peptides containing the NGR motif. NGR-modified Docetaxel (DTX)-loaded PEG-b-PLGA polymeric nanoparticles (cNGR-DNB-NPs) were developed and evaluated for their in vitro potential in HT-1080 cell line. The cNGR-DNB-NPs containing particles were about 148 nm in diameter with spherical shape and high encapsulation efficiency. Cellular uptake was confirmed both qualitatively and quantitatively by Confocal Laser Scanning Microscopy (CLSM) and flow cytometry. Both quantitatively and qualitatively results confirmed the NGR conjugated nanoparticles revealed the higher uptake of nanoparticles by CD13-overexpressed tumor cells. Free NGR inhibited the cellular uptake of cNGR-DNB-NPs, revealing the mechanism of receptor mediated endocytosis. In vitro cytotoxicity studies demonstrated that cNGR-DNB-NPs, formulation was more cytotoxic than unconjugated one, which were consistent well with the observation of cellular uptake. Hence, the selective delivery of cNGR-DNB-NPs formulation in CD13-overexpressing tumors represents a potential approach for the design of nanocarrier-based dual targeted delivery systems for targeting the tumor cells and vasculature.

Keywords: solid Tumor, docetaxel, targeting, NGR ligand

Procedia PDF Downloads 482
1525 Distribution of Gamma-Radiation Levels in Core Sediment Samples in Gulf of İzmir, Eastern Aegean Sea, Turkey

Authors: D. Kurt, İ. F. Barut, Z. Ü. Yümün, E. Kam

Abstract:

After development of the industrial revolution, industrial plants and settlements have spread widely on the sea coasts. This concentration also brings environmental pollution in the sea. This study focuses on the Gulf of İzmir where is located in West of Turkey and it is a fascinating natural gulf of the Eastern Aegean Sea. Investigating marine current sediment is extremely important to detect pollution. Natural radionuclides’ pollution of the marine environment which is also known as a significant environmental anxiety. Ground drilling cores (the depth of each sediment is variant) were collected from the Gulf of İzmir’s four different locations which were Karşıyaka, İnciraltı, Çeşmealtı and Bayraklı. These sediment cores were put in preserving bags with weight around 1 kg, and they were dried at room temperature in a week for moisture removal. Then, they were sieved with 1 mm sieve holes, and finally these powdered samples were relocation to polyethylene Marinelli beakers of 100 ml versions. Each prepared sediment was waited to reach radioactive equilibrium between uranium and thorium for 40 days. Gamma spectrometry measurements were settled using a HPG (High- Purity Germanium) semiconductor detector. Semiconductor detectors are very good at separating power of the energy, they are easily able to differentiate peaks that are pretty close to each other. That is why, gamma spectroscopy’s usage is common for the determination of the activities of U - 238, Th - 232, Ra - 226, Cr - 137 and K - 40 in Bq kg⁻¹. In this study, the results display that the average concentrations of activities’ values are in respectively; 2.2 ± 1.5 Bq/ kg⁻¹, 0.98 ± 0.02 Bq/ kg⁻¹, 8 ± 0.96 Bq/ kg⁻¹, 0.93 ± 0.14 Bq/ kg⁻¹, and 76.05 ± 0.93 Bq/ kg⁻¹. The outcomes of the study are able to be used as a criterion for forthcoming research and the obtained data would be pragmatic for radiological mapping of the precise areas.

Keywords: gamma, Gulf of İzmir (Eastern Aegean Sea-Turkey), natural radionuclides, pollution

Procedia PDF Downloads 258
1524 Development of Nanostructrued Hydrogel for Spatial and Temporal Controlled Release of Active Compounds

Authors: Shaker Alsharif, Xavier Banquy

Abstract:

Controlled drug delivery technology represents one of the most rapidly advancing areas of science in which chemists and chemical engineers are contributing to human health care. Such delivery systems provide numerous advantages compared to conventional dosage forms including improved efficacy, and improved patient compliance and convenience. Such systems often use synthetic polymers as carriers for the drugs. As a result, treatments that would not otherwise be possible are now in conventional use. The role of bilayered vesicles as efficient carriers for drugs, vaccines, diagnostic agents and other bioactive agents have led to a rapid advancement in the liposomal drug delivery system. Moreover, the site avoidance and site-specific drug targeting therapy could be achieved by formulating a liposomal product, so as to reduce the cytotoxicity of many potent therapeutic agents. Our project focuses on developing and building hydrogel with nanoinclusion of liposomes loaded with active compounds such as proteins and growth factors able to release them in a controlled fashion. In order to achieve that, we synthesize several liposomes of two different phospholipids concentrations encapsulating model drug. Then, formulating hydrogel with specific mechanical properties embedding the liposomes to manage the release of active compound.

Keywords: controlled release, hydrogel, liposomes, active compounds

Procedia PDF Downloads 447
1523 The Integration of ICT in EFL Classroom and Its Impact on Teacher Development

Authors: Tayaa Karima, Bouaziz Amina

Abstract:

Today's world is knowledge-based; everything we do is somehow connected with technology which it has a remarkable influence on socio-cultural and economic developments, including educational settings. This type of technology is supported in many teaching/learning setting where the medium of instruction is through computer technology, and particularly involving digital technologies. There has been much debate over the use of computers and the internet in foreign language teaching for more than two decades. Various studies highlights that the integration of Information Communications Technology (ICT) in foreign language teaching will have positive effects on both the teachers and students to help them be aware of the modernized world and meet the current demands of the globalised world. Information and communication technology has been gradually integrated in foreign learning environment as a platform for providing learners with learning opportunities. Thus, the impact of ICT on language teaching and learning has been acknowledged globally, this is because of the fundamental role that it plays in the enhancement of teaching and learning quality, modify the pedagogical practice, and motivate learners. Due to ICT related developments, many Maghreb countries regard ICT as a tool for changes and innovations in education. Therefore, the ministry of education attempted to set up computer laboratories and provide internet connection in the schools. Investment in ICT for educational innovations and improvement purposes has been continuing the need of teacher who will employ it in the classroom as vital role of the curriculum. ICT does not have an educational value in itself, but it becomes precious when teachers use it in learning and teaching process. This paper examines the impacts of ICT on teacher development rather than on teaching quality and highlights some challenges facing using ICT in the language learning/teaching.

Keywords: information communications technology (ICT), integration, foreign language teaching, teacher development, learning opportunity

Procedia PDF Downloads 388
1522 Revisiting Pedestrians’ Appraisals of Urban Streets

Authors: Norhaslina Hassan, Sherina Rezvanipour, Amirhosein Ghaffarian Hoseini, Ng Siew Cheok

Abstract:

The walkability features of urban streets are prominent factors that are often focused on achieving a pedestrian-friendly environment. The limited attention that walkability enhancements devote to pedestrians' experiences or perceptions, on the other hand, raises the question of whether walkability enhancement is sufficient for pedestrians to enjoy using the streets. Thus, this paper evaluates the relationship between the socio-physical components of urban streets and pedestrians’ perceptions. A total of 1152 pedestrians from five urban streets in two major Malaysian cities, Kuala Lumpur, and George Town, Penang, participated in this study. In particular, this study used pedestrian preference scores towards socio-physical attributes that exist in urban streets to assess their impact on pedestrians’ appraisals of street likeability, comfort, and safety. Through analysis, the principal component analysis extracted eight socio-physical components, which were then tested via an ordinal regression model to identify their impact on pedestrian street likeability, comfort (visual, auditory, haptic and olfactory), and safety (physical safety, environmental safety, and security). Furthermore, a non-parametric Kruskal Wallis test was used to identify whether the results were subjected to any socio-demographic differences. The results found that all eight components had some degree of effect on the appraisals. It was also revealed that pedestrians’ preferences towards the attributes as well as their appraisals significantly varied based on their age, gender, ethnicity and education. These results and their implications for urban planning are further discussed in this paper.

Keywords: pedestrian appraisal, pedestrian perception, street sociophysical attributes, walking experience

Procedia PDF Downloads 124
1521 Physical Dynamics of Planet Earth and Their Implications for Global Climate Change and Mitigation: A Case Study of Sistan Plain, Balochistan Region, Southeastern Iran

Authors: Hamidoddin Yousefi, Ahmad Nikbakht

Abstract:

The Sistan Plain, situated in the Balochistan region of southeastern Iran, is renowned for its arid climatic conditions and prevailing winds that persist for approximately 120 days annually. The region faces multiple challenges, including drought susceptibility, exacerbated by wind erosion, temperature fluctuations, and the influence of policies implemented by neighboring Afghanistan and Iran. This study focuses on investigating the characteristics of jet streams within the Sistan Plain and their implications for global climate change. Various models are employed to analyze convective mass fluxes, horizontal moisture transport, temporal variance, and the calculation of radiation convective equilibrium within the atmosphere. Key considerations encompass the distribution of relative humidity, dry air, and absolute humidity. Moreover, the research aims to predict the interplay between jet streams and human activities, particularly regarding their environmental impacts and water scarcity. The investigation encompasses both local and global environmental consequences, drawing upon historical climate change data and comprehensive field research. The anticipated outcomes of this study hold substantial potential for mitigating global climate change and its associated environmental ramifications. By comprehending the dynamics of jet streams and their interconnections with human activities, effective strategies can be formulated to address water scarcity and minimize environmental degradation.

Keywords: Sistani plain, Baluchistan, Hamoun lake, climate change, jet streams, environmental impact, water scarcity, mitigation

Procedia PDF Downloads 73
1520 The Effects of Maternal Exposure Riboflavin to Prevent Uterus Arsenic Damage in Offspring Rats

Authors: Ali Olfati, Parichehr Nouri

Abstract:

Objective: In this study, we have investigated for the first time in the literature the efficacy of riboflavin [VB2] in preventing uterus As₂O₃ damage. Methods: Rats received 40 μg LHRHa for estrus synchronization. 48 pregnant Wistar rats were included. Four groups were formed with 7 rats in each group: Sham, 1.5 mg arsenic trioxide (As₂O₃/L) alone or in combination with VB2 [20 and 40 mg/L] in drinking water [for 21 days continuously]. Similar to maternal generation treatment, the F1-female generation was also arranged [for 35 days continuously until puberty]. Results: Data indicated that As₂O₃ reduced body weight and feed intake (p<0.05). Furthermore, the serum malondialdehyde levels in the As₂O₃ group were significantly higher than that of the control group (p<0.05). At the same time, total antioxidative status and the activities of glutathione peroxidase, superoxide dismutase, and catalase were reduced (p<0.05). Meanwhile, As₂O₃ remarkably increased the production of inflammatory markers [interleukin 6 and C-reactive protein](p<0.05). As₂O₃ administration induced uterus apoptosis-related genes by upregulating caspase-3, iNOS, and Bax genes and downregulating Bcl-2 gene of pubertal F1-female rats (p<0.05). Conclusion: Our observation indicated that VB2 therapy is potentially an effective strategy to modifying the detrimental effects of As₂O₃ in pubertal F1-female rats via suppresses oxidative damages.

Keywords: As₂O₃, inflammation, puberty, vitamin B2

Procedia PDF Downloads 143
1519 Process Optimization and Automation of Information Technology Services in a Heterogenic Digital Environment

Authors: Tasneem Halawani, Yamen Khateeb

Abstract:

With customers’ ever-increasing expectations for fast services provisioning for all their business needs, information technology (IT) organizations, as business partners, have to cope with this demanding environment and deliver their services in the most effective and efficient way. The purpose of this paper is to identify optimization and automation opportunities for the top requested IT services in a heterogenic digital environment and widely spread customer base. In collaboration with systems, processes, and subject matter experts (SMEs), the processes in scope were approached by analyzing four-year related historical data, identifying and surveying stakeholders, modeling the as-is processes, and studying systems integration/automation capabilities. This effort resulted in identifying several pain areas, including standardization, unnecessary customer and IT involvement, manual steps, systems integration, and performance measurement. These pain areas were addressed by standardizing the top five requested IT services, eliminating/automating 43 steps, and utilizing a single platform for end-to-end process execution. In conclusion, the optimization of IT service request processes in a heterogenic digital environment and widely spread customer base is challenging, yet achievable without compromising the service quality and customers’ added value. Further studies can focus on measuring the value of the eliminated/automated process steps to quantify the enhancement impact. Moreover, a similar approach can be utilized to optimize other IT service requests, with a focus on business criticality.

Keywords: automation, customer value, heterogenic, integration, IT services, optimization, processes

Procedia PDF Downloads 107
1518 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 115
1517 PPRA Regulates DNA Replication Initiation and Cell Morphology in Escherichia coli

Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra

Abstract:

PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provides better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.

Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity

Procedia PDF Downloads 69
1516 Theoretical Investigations and Simulation of Electromagnetic Ion Cyclotron Waves in the Earth’s Magnetosphere Through Magnetospheric Multiscale Mission

Authors: A. A. Abid

Abstract:

Wave-particle interactions are considered to be the paramount in the transmission of energy in collisionless space plasmas, where electromagnetic fields confined the charged particles movement. One of the distinct features of energy transfer in collisionless plasma is wave-particle interaction which is ubiquitous in space plasmas. The three essential populations of the inner magnetosphere are cold plasmaspheric plasmas, ring-currents, and radiation belts high energy particles. The transition region amid such populations initiates wave-particle interactions among distinct plasmas and the wave mode perceived in the magnetosphere is the electromagnetic ion cyclotron (EMIC) wave. These waves can interact with numerous particle species resonantly, accompanied by plasma particle heating is still in debate. In this work we paid particular attention to how EMIC waves impact plasma species, specifically how they affect the heating of electrons and ions during storm and substorm in the Magnetosphere. Using Magnetospheric Multiscale (MMS) mission and electromagnetic hybrid simulation, this project will investigate the energy transfer mechanism (e.g., Landau interactions, bounce resonance interaction, cyclotron resonance interaction, etc.) between EMIC waves and cold-warm plasma populations. Other features such as the production of EMIC waves and the importance of cold plasma particles in EMIC wave-particle interactions will also be worth exploring. Wave particle interactions, electromagnetic hybrid simulation, electromagnetic ion cyclotron (EMIC) waves, Magnetospheric Multiscale (MMS) mission, space plasmas, inner magnetosphere

Keywords: MMS, magnetosphere, wave particle interraction, non-maxwellian distribution

Procedia PDF Downloads 62
1515 Interdialytic Acupuncture Is an Add-on Option for Preserving Residual Renal Function: A Case Series Report

Authors: Lai Tzu-Hsuan, Lai Jung-Nien, Lin Jaung-Geng, Kao Shung-Te, Hsuan-Kuang Jung

Abstract:

Background: Whether acupuncture therapy contributes to preserving residual renal function (RRF) remains largely unknown. This case series evidenced the potential beneficial effects of acupuncture for preserving RRF in five patients with the end-stage renal disease under hemodialysis (HD) treatment. Participants: Five patients on HD receiving eight sessions of weekly 30-min interdialytic acupuncture (Inter-A) with residual urine volume (rUV) and residual glomerular filtration rate (rGFR) recorded once every two weeks were included for analysis. Outcomes: Changes in rUV and rGFR calculated using 24-hour urine collection data were analyzed to assess RRF. Variations in hemoglobin, urea Kt/V and serum albumin levels measured monthly were analyzed to evaluate HD adequacy. Results: After eight Inter-A sessions, mean (standard deviation (SD)) rUV and rGFR increased from 612 (184) ml/day and 1.48 (.94) ml/min/1.73 m2 at baseline to 803(289) ml/day and 2.04(1.17) ml/min/1.73m2 at 2- and 4-week follow-up, respectively. The mean percentage difference increased by 31% in rUV and 38% in rGFR. Routine measurements on HD adequacy also showed improvement. Conclusions: Acupuncture might be an optional add-on treatment for HD population with poor control of water; however, further well-designed controlled trials are warranted.

Keywords: end-stage renal disease, hemodialysis, acupuncture, residual renal function, residual urine volume

Procedia PDF Downloads 129
1514 Comparative Study of Dermal Regeneration Template Made by Bovine Collagen with and without Silicone Layer in the Treatment of Post-Burn Contracture

Authors: Elia Caldini, Cláudia N. Battlehner, Marcelo A. Ferreira, Rolf Gemperli, Nivaldo Alonso, Luiz P. Vana

Abstract:

The advent of dermal regenerate templates has fostered major advances in the treatment of acute burns and their sequelae, in the last two decades. Both data on morphological aspects of the newly-formed tissue, and clinical trials comparing different templates, are still lacking. The goal of this study was to prospectively analyze the outcome of patients treated with two of the existing templates, followed by thin skin autograft. They are both made of bovine collagen, one includes a superficial silicone layer. Surgery was performed on patients with impaired mobility resulting from burn sequelae (n = 12 per template). Negative pressure therapy was applied post-surgically; patients were monitored for 12 months. Data on scar skin quality (Vancouver and POSAS evaluation scales), rate of joint mobility recovery, and graft contraction were recorded. Improvement in mobility and skin quality were demonstrated along with graft contraction, in all patients. The silicone-coupled template showed the best performance in all aspects.

Keywords: dermal regeneration template, artificial skin, skin quality, scar contracture

Procedia PDF Downloads 147