Search results for: adsorption heavy metal
1229 Central Solar Tower Model
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
It is presented a model of two subsystems of Central Solar Tower to produce steam in applications to help in energy consumption. The first subsystem consists of 24 heliostats constructed of adaptive and mobile metal structures to track the apparent movement of the sun on its focus and covered by 96 layers of mirror of 150 mm at width and 220 mm at length, totaling an area of concentration of 3.2 m². Thereby obtaining optical parameters essential to reflection of sunlight by the reflector surface and absorption of this light by focus located in the light receiver, which is inserted in the second subsystem, which is at the top of a tower. The tower was built in galvanized iron able to support the absorber, and a gas cylinder to cool the equipment. The area illuminated by the sun was 9 x 10-2m2, yielding a concentration factor of 35.22. It will be shown the processes of manufacture and assembly of the Mini-Central Tower proposal, which has as main characteristics the construction and assembly facilities, in addition to reduced cost. Data of tests to produce water vapor parameters are presented and determined to diagnose the efficiency of the mini-solar central tower. It will be demonstrated the thermal, economic and material viability of the proposed system.Keywords: solar oven, solar cooker, composite material, low cost, sustainable development
Procedia PDF Downloads 4181228 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe
Authors: Innocent C. Ezenwa, Takashi Yoshino
Abstract:
Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field
Procedia PDF Downloads 1441227 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum
Authors: Krasimira Georgieva, Yordan Denev
Abstract:
Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.Keywords: urea formaldehyde resins, gas-filled thermostes, phosphogypsum, mechanical properties
Procedia PDF Downloads 1091226 Optimizing Power in Sequential Circuits by Reducing Leakage Current Using Enhanced Multi Threshold CMOS
Authors: Patikineti Sreenivasulu, K. srinivasa Rao, A. Vinaya Babu
Abstract:
The demand for portability, performance and high functional integration density of digital devices leads to the scaling of complementary metal oxide semiconductor (CMOS) devices inevitable. The increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. MTCMOS technology provides low leakage and high performance operation by utilizing high speed, low Vt (LVT) transistors for logic cells and low leakage, high Vt (HVT) devices as sleep transistors. Sleep transistors disconnect logic cells from the supply and/or ground to reduce the leakage in the sleep mode. In this technology, energy consumption while doing the mode transition and minimum time required to turn ON the circuit upon receiving the wake up signal are issues to be considered because these can adversely impact the performance of VLSI circuit. In this paper we are introducing an enhancing method of MTCMOS technology to optimize the power in MTCMOS sequential circuits.Keywords: power consumption, ultra-low power, leakage, sub threshold, MTCMOS
Procedia PDF Downloads 4081225 High Temperature Behavior of a 75Cr3C2–25NiCr Coated T91 Boiler Steel in an Actual Industrial Environment of a Coal Fired Boiler
Authors: Buta Singh Sidhu, Sukhpal Singh Chatha, Hazoor Singh Sidhu
Abstract:
In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. 75Cr3C2-25NiCr coating deposited on T91 steel imparted better hot corrosion resistance than the uncoated steel. Inferior resistance of bare T91 steel is attributed to the formation of pores and loosely bounded oxide scale rich in Fe2O3.Keywords: 75Cr3C2-25NiCr, HVOF process, boiler steel, coal fired boilers
Procedia PDF Downloads 6101224 Determination of Nanomolar Mercury (II) by Using Multi-Walled Carbon Nanotubes Modified Carbon Zinc/Aluminum Layered Double Hydroxide-3(4-Methoxyphenyl) Propionate Nanocomposite Paste Electrode
Authors: Illyas Md Isa, Sharifah Norain Mohd Sharif, Norhayati Hashim
Abstract:
A mercury(II) sensor was developed by using multi-walled carbon nano tubes (MWCNTs) paste electrode modified with Zn/Al layered double hydroxide-3(4-methoxyphenyl) propionate nano composite (Zn/Al-HMPP). The optimum conditions by cyclic voltammetry were observed at electrode composition 2.5% (w/w) of Zn/Al-HMPP/MWCNTs, 0.4 M potassium chloride, pH 4.0, and scan rate of 100 mVs-1. The sensor exhibited wide linear range from 1x10-3 M to 1x10-7 M Hg2+ and 1x10-7 M to 1x10-9 M Hg2+, with a detection limit of 1 x 10-10 M Hg2+. The high sensitivity of the proposed electrode towards Hg(II) was confirmed by double potential-step chronocoulometry which indicated these values; diffusion coefficient 1.5445 x 10-9 cm2 s-1, surface charge 524.5 µC s-½ and surface coverage 4.41 x 10-2 mol cm-2. The presence of 25-fold concentration of most metal ions had no influence on the anodic peak current. With characteristics such as high sensitivity, selectivity and repeatability the electrode was then proposed as the appropriate alternative for the determination of mercury.Keywords: Cyclic voltammetry, Mercury(II), Modified carbon paste electrode, Nanocomposite
Procedia PDF Downloads 4331223 Tribological Response of Self-Mated Zircaloy-4 under Varying Conditions
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are widely used for the core components of a pressurized heavy water reactor (PHWR) or Canada deuterium (CANDU) reactor due to their low neutron absorption cross-section and excellent mechanical properties. The components made of Zirconium alloys are subjected to flow-induced vibrations, resulting in fretting wear at the interface of; pressure tubes and bearing pads, pressure tubes and calandria tubes, and calandria tubes and Liquid injection shutdown system (LISS) nozzles. There is a need to explore the tribological response under such conditions. Present work simulates the contact between calandria tube and LISS nozzle of PHWR/CANDU reactor as cylinder-on-cylinder contact configuration. Reciprocating tribo-tests were conducted on Zircaloy-4 (Zr-4) under the self-mated condition at varying amplitude, frequency, and sliding time. To understand the active wear mechanism, worn surfaces were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The change in amplitude severely affects the wear than other factors. The wear mechanism transits from adhesion to abrasion with increasing test amplitude. The dominant wear mechanisms are micro-cutting and micro-plowing followed by delamination in some areas. However, the coefficient of friction has indifferent behaviors.Keywords: zircaloy-4, tribology, calandria tube, LISS nozzle, PHWR
Procedia PDF Downloads 2111222 Helping Others and Mental Health: A Qualitative Study Exploring Perspectives of Youth Engaging in Prosocial Activities
Authors: Saima Hirani, Emmanuela Ojukwu, Nilanga Aki Bandara
Abstract:
Background: Mental health challenges that begin during the youth age period may continue across the entire life course. One way to support youth mental health is to encourage youth engagement in prosocial activities. This study aimed to explore youth’s perceptions about helping others and mental well-being, barriers, and enablers for youth to initiate and continue prosocial activities, and strategies for developing the attribute of helping others in youth. Methods: We conducted a qualitative study using semi-structured, virtual interviews with 18 young individuals (aged 16-24 years) living in Vancouver, British Columbia, Canada. Results: Youth perceived helping others as a source of feeling peace and calm, finding meaning in life, experiencing social connection and promoting self-care, and relieving stress. Participants reported opportunities to learn new skills, the role of religion, social connections, previous positive experiences, and role modeling as enablers for their prosocial behaviour. Heavy time commitment, negative behaviour from others, self-doubt, and late exposure to such activities were considered barriers by youth when participating in prosocial activities. Youth also brought forward key recommendations for engaging youth in helping others. Conclusions: The findings of this study support the notion that youth have positive experiences when engaging in helping others and that involving young people in prosocial activities could be used as a protective intervention for promoting youth mental health and overall well-being.Keywords: helping others, prosocial behaviour, youth, mental well-being
Procedia PDF Downloads 691221 Thermomechanical Simulation of Equipment Subjected to an Oxygen Pressure and Heated Locally by the Ignition of Small Particles
Authors: Khaled Ayfi
Abstract:
In industrial oxygen systems at high temperature and high pressure, contamination by solid particles is one of the principal causes of ignition hazards. Indeed, gas can sweep away particles, generated by corrosion inside the pipes or during maintenance operations (welding residues, careless disassembly, etc.) and produce accumulations at places where the gas velocity decrease. Moreover, in such an environment rich in oxygen (oxidant), particles are highly reactive and can ignite system walls more actively and at higher temperatures. Oxidation based thermal effects are responsible for mechanical properties lost, leading to the destruction of the pressure equipment wall. To deal with this problem, a numerical analysis is done regarding a sample representative of a wall subjected to pressure and temperature. The validation and analysis are done comparing the numerical simulations results to experimental measurements. More precisely, in this work, we propose a numerical model that describes the thermomechanical behavior of thin metal disks under pressure and subjected to laser heating. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements.Keywords: ignition, oxygen, numerical simulation, thermomechanical behavior
Procedia PDF Downloads 1051220 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities
Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan
Abstract:
The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility
Procedia PDF Downloads 771219 Lead Removal by Using the Synthesized Zeolites from Sugarcane Bagasse Ash
Authors: Sirirat Jangkorn, Pornsawai Praipipat
Abstract:
Sugarcane bagasse ash of sugar factories is solid wastes that the richest source of silica. The alkali fusion method, quartz particles in material can be dissolved and they can be used as the silicon source for synthesizing silica-based materials such as zeolites. Zeolites have many advantages such as catalyst to improve the chemical reactions and they can also remove heavy metals in the water including lead. Therefore, this study attempts to synthesize zeolites from the sugarcane bagasse ash, investigate their structure characterizations and chemical components to confirm the happening of zeolites, and examine their lead removal efficiency through the batch test studies. In this study, the sugarcane bagasse ash was chosen as the silicon source to synthesize zeolites, X-ray diffraction (XRD) and X-ray fluorescence spectrometry (XRF) were used to verify the zeolite pattern structures and element compositions, respectively. The batch test studies in dose (0.05, 0.1, 0.15 g.), contact time (1, 2, 3), and pH (3, 5, 7) were used to investigate the lead removal efficiency by the synthesized zeolite. XRD analysis result showed the crystalline phase of zeolite pattern, and XRF result showed the main element compositions of the synthesized zeolite that were SiO₂ (50%) and Al₂O₃ (30%). The batch test results showed the best optimum conditions of the synthesized zeolite for lead removal were 0.1 g, 2 hrs., and 5 of dose, contact time, and pH, respectively. As a result, this study can conclude that the zeolites can synthesize from the sugarcane bagasse ash and they can remove lead in the water.Keywords: sugarcane bagasse ash, solid wastes, zeolite, lead
Procedia PDF Downloads 1401218 Modeling of Nanocomposite Films Made of Cloisite 30b- Metal Nanoparticle in Packaging of Soy Burger
Authors: Faranak Beigmohammadi, Seyed Hadi Peighambardoust, Seyed Jamaledin Peighambardoust
Abstract:
This study undertakes to investigate the ability of different kinds of nanocomposite films made of cloisite-30B with different percentages of silver and copper oxide nanoparticles incorporated into a low-density polyethylene (LDPE) polymeric matrix by a melt mixing method in order to inhibit the growth of microorganism in soy burger. The number of surviving cell of the total count was decreased by 3.61 log and mold and yeast diminished by 2.01 log after 8 weeks storage at 18 ± 0.5°C below zero, whilst pure LDPE did not has any antimicrobial effect. A composition of 1.3 % cloisite 30B-Ag and 2.7 % cloisite 30B-CuO for total count and 0 % cloisite 30B-Ag and 4 % cloisite 30B-CuO for yeast & mold gave optimum points in combined design test in Design Expert 7.1.5. Suitable microbial models were suggested for retarding above microorganisms growth in soy burger. To validation of optimum point, the difference between the optimum point of nanocomposite film and its repeat was not significant (p<0.05) by one-way ANOVA analysis using SPSS 17.0 software, while the difference was significant for pure film. Migration of metallic nanoparticles into a food stimulant was within the accepted safe level.Keywords: modeling, nanocomposite film, packaging, soy burger
Procedia PDF Downloads 3031217 Chlorine Pretreatment Effect on Mechanical Properties of Optical Fiber Glass
Authors: Abhinav Srivastava, Hima Harode, Chandan Kumar Saha
Abstract:
The principal ingredient of an optical fiber is quartz glass. The quality of the optical fiber decreases if impure foreign substances are attached to its preform surface. If residual strain inside a preform is significant, it cracks with a small impact during drawing or transporting. Furthermore, damages and unevenness on the surface of an optical fiber base material break the fiber during drawing. The present work signifies that chlorine pre-treatment enhances mechanical properties of the optical fiber glass. FTIR (Fourier-Transform Infrared Spectroscopy) results show that chlorine gas chemically modifies the structure of silica clad; chlorine is known to soften glass. Metallic impurities on the preform surface likely formed volatile metal chlorides due to chlorine pretreatment at elevated temperature. The chlorine also acts as a drying agent, and therefore the preform surface is anticipated to be water deficient and supposedly avoids particle adhesion on the glass surface. The Weibull analysis of long length tensile strength demarcates a substantial shift in its knee. The higher dynamic fatigue n-value also indicated surface crack healing.Keywords: mechanical strength, optical fiber glass, FTIR, Weibull analysis
Procedia PDF Downloads 1761216 The Potential Effect of Climate Changes on Food and Water Associated Infections
Authors: Mohammed A. Alhoot, Rathika A/P Nagarajan
Abstract:
Climate change and variability are affecting human health and diseases direct or indirectly through many mechanisms. Change in rain pattern, an increase of temperature and humidity are showing an increased trend in Malaysia. This will affect the biological, physical and chemical component of water through different pathways and will enhance the risk of waterborne diseases. Besides, the warm temperature and humid climate provide very suitable conditions for the growth of pathogenic bacteria. This study is intended to highlight the relationship between the climate changes and the incidence food and water associated infections. Incidences of food and water associated infection and climate data were collected from Malaysian Ministry of health and Malaysian Metrological Department respectively. Maximum and minimum temperature showed high correlation with incidence of typhoid, hepatitis A, dysentery, food poisoning (P value <0.05 significant with 2 tailed / 0.5<[r]). Heavy rainfall does not associated with any outbreaks. Climate change brings out new challenges in controlling food and water associated infections. Adaptation strategies should involve all key stakeholders with a strong regional cooperation to prevent and deal with cross-boundary health crises. Moreover, the role of health care personnel at local, state and national levels is important to ensure the success of these programmes. As has been shown herein, climate variability is an important element influencing the food and water associated epidemiology in Malaysia. The results of this study are crucial to implementing climate changes as a factor to reduce any future outbreaks.Keywords: climate change, typhoid, hepatitis A, dysentery, food poisoning
Procedia PDF Downloads 3091215 The Design of Fire in Tube Boiler
Authors: Yoftahe Nigussie
Abstract:
This report presents a final year project pertaining to the design of Fire tube boiler for the purpose of producing saturated steam. The objective of the project is to produce saturated steam for different purpose with a capacity of 2000kg/h at 12bar design pressure by performing a design of a higher performance fire tube boiler that considered the requirements of cost minimization and parameters improvement. This is mostly done in selection of appropriate material for component parts, construction materials and production methods in different steps of analysis. In the analysis process, most of the design parameters are obtained by iterating with related formulas like selection of diameter of tubes with overall heat transfer coefficient optimization, and the other selections are also as like considered. The number of passes is two because of the size and area of the tubes and shell. As the analysis express by using heavy oil fuel no6 with a higher heating value of 44000kJ/kg and lower heating value of 41300kJ/kg and the amount of fuel consumed 140.37kg/hr. and produce 1610kw of heat with efficiency of 85.25%. The flow of the fluid is a cross flow because of its own advantage and the arrangement of the tube in-side the shell is welded with the tube sheet, and the tube sheet is attached with the shell and the end by using a gasket and weld. The design of the shell, using European Standard code section, is as like pressure vessel by considering the weight, including content and the supplementary accessories such as lifting lugs, openings, ends, man hole and supports with detail and assembly drawing.Keywords: steam generation, external treatment, internal treatment, steam velocity
Procedia PDF Downloads 981214 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule
Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu
Abstract:
The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load
Procedia PDF Downloads 4021213 Studies on Bioaccumulation of 51Cr by Ulva sp. and Ruppia maritima
Authors: Clarissa L. de Araujo, Kátia N. Suzuki, Wilson T. V. Machado, Luis F. Bellido, Alfredo V.B. Bellido
Abstract:
This study aims at contributing to the characterization of the process of biological incorporation of chromium by two benthonic species, the macroalgae Ulva sp. and the aquatic macrophyte Ruppia maritima, to subsidize future activities of monitoring the contamination of aquatic biota. This study is based on laboratory experiments to characterize the incorporation kinetics of the radiotracer 51Cr in two oxidation states (III and VI), under different salinities (7, 15, and 21 ‰). Samples of two benthonic species were collected on the margins of Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil), acclimated in the laboratory and subsequently subjected to experiments. In tests with 51Cr (III and IV), it was observed that accumulation of the metal in Ulva sp. has inverse relationship with salinity, while for R. maritima, the maximum accumulation occurs in salinity 21‰. In experiments with Cr(III), increases in the uptake of ion by both species were verified. The activity of Cr(III) was up to 19 times greater than the Cr(VI). As regards the potential for accumulation of metals, a better sensitivity of Ulva sp. for any chromium tri or hexavalent forms was verified, while for the Cr(VI) it will require low salinities and longer exposure (>24h). For R. maritima, the results showed the uptake of Cr(VI) increase along with time (>20h), because this species is more resistant for the hexavalent form and useful for any salinity as well.Keywords: chromium, Cr-51, macroalgae, macrophyte, uptake
Procedia PDF Downloads 4221212 Noninvasive Continuous Glucose Monitoring Device Using a Photon-Assisted Tunneling Photodetector Based on a Quantum Metal-Oxide-Semiconductor
Authors: Wannakorn Sangthongngam, Melissa Huerta, Jaewoo Kim, Doyeon Kim
Abstract:
Continuous glucose monitoring systems are essential for diabetics to avoid health complications but come at a costly price, especially when insurance does not fully cover the diabetic testing kits needed. This paper proposes a noninvasive continuous glucose monitoring system to provide an accessible, low-cost, and painless alternative method of accurate glucose measurements to help improve quality of life. Using a light source with a wavelength of 850nm illuminates the fingertip for the photodetector to detect the transmitted light. Utilizing SeeDevice’s photon-assisted tunneling photodetector (PAT-PD)-based QMOS™ sensor, fluctuations of voltage based on photon absorption in blood cells are comparable to traditional glucose measurements. The performance of the proposed method was validated using 4 test participants’ transmitted voltage readings compared with measurements obtained from the Accu-Chek glucometer. The proposed method was able to successfully measure concentrations from linear regression calculations.Keywords: continuous glucose monitoring, non-invasive continuous glucose monitoring, NIR, photon-assisted tunneling photodetector, QMOS™, wearable device
Procedia PDF Downloads 1001211 Electronic Raman Scattering Calibration for Quantitative Surface-Enhanced Raman Spectroscopy and Improved Biostatistical Analysis
Authors: Wonil Nam, Xiang Ren, Inyoung Kim, Masoud Agah, Wei Zhou
Abstract:
Despite its ultrasensitive detection capability, surface-enhanced Raman spectroscopy (SERS) faces challenges as a quantitative biochemical analysis tool due to the significant dependence of local field intensity in hotspots on nanoscale geometric variations of plasmonic nanostructures. Therefore, despite enormous progress in plasmonic nanoengineering of high-performance SERS devices, it is still challenging to quantitatively correlate the measured SERS signals with the actual molecule concentrations at hotspots. A significant effort has been devoted to developing SERS calibration methods by introducing internal standards. It has been achieved by placing Raman tags at plasmonic hotspots. Raman tags undergo similar SERS enhancement at the same hotspots, and ratiometric SERS signals for analytes of interest can be generated with reduced dependence on geometrical variations. However, using Raman tags still faces challenges for real-world applications, including spatial competition between the analyte and tags in hotspots, spectral interference, laser-induced degradation/desorption due to plasmon-enhanced photochemical/photothermal effects. We show that electronic Raman scattering (ERS) signals from metallic nanostructures at hotspots can serve as the internal calibration standard to enable quantitative SERS analysis and improve biostatistical analysis. We perform SERS with Au-SiO₂ multilayered metal-insulator-metal nano laminated plasmonic nanostructures. Since the ERS signal is proportional to the volume density of electron-hole occupation in hotspots, the ERS signals exponentially increase when the wavenumber is approaching the zero value. By a long-pass filter, generally used in backscattered SERS configurations, to chop the ERS background continuum, we can observe an ERS pseudo-peak, IERS. Both ERS and SERS processes experience the |E|⁴ local enhancements during the excitation and inelastic scattering transitions. We calibrated IMRS of 10 μM Rhodamine 6G in solution by IERS. The results show that ERS calibration generates a new analytical value, ISERS/IERS, insensitive to variations from different hotspots and thus can quantitatively reflect the molecular concentration information. Given the calibration capability of ERS signals, we performed label-free SERS analysis of living biological systems using four different breast normal and cancer cell lines cultured on nano-laminated SERS devices. 2D Raman mapping over 100 μm × 100 μm, containing several cells, was conducted. The SERS spectra were subsequently analyzed by multivariate analysis using partial least square discriminant analysis. Remarkably, after ERS calibration, MCF-10A and MCF-7 cells are further separated while the two triple-negative breast cancer cells (MDA-MB-231 and HCC-1806) are more overlapped, in good agreement with the well-known cancer categorization regarding the degree of malignancy. To assess the strength of ERS calibration, we further carried out a drug efficacy study using MDA-MB-231 and different concentrations of anti-cancer drug paclitaxel (PTX). After ERS calibration, we can more clearly segregate the control/low-dosage groups (0 and 1.5 nM), the middle-dosage group (5 nM), and the group treated with half-maximal inhibitory concentration (IC50, 15 nM). Therefore, we envision that ERS calibrated SERS can find crucial opportunities in label-free molecular profiling of complicated biological systems.Keywords: cancer cell drug efficacy, plasmonics, surface-enhanced Raman spectroscopy (SERS), SERS calibration
Procedia PDF Downloads 1381210 Livonian Werewolves, 1500-1700s: A Sociological Assessment of Their Historical Significance and Origins through the Case of Old Thiess
Authors: Liu Jiaxin
Abstract:
This paper seeks to do an in-depth investigation on the phenomenon of Early Modern era (1500-1700s) Livonian werewolves. Noting their uniqueness in comparison to contemporaneous werewolves hailing from other geographic areas, the paper suggests that the Livonian werewolf is a metaphor for Livonian society at that time, one which was characterized by social turmoil and strict class hierarchy. This metaphor was utilized by different classes to establish their own interests in society, and thus the paper concludes that the werewolf is a mutable artifact whose value is contingent on its social context. This is demonstrated by the particular case of Old Thiess—a poor, elderly Livonian peasant who gave an unorthodox and anomalous testimony when accused of being a werewolf. In his court statement, it is shown how Thiess was, in fact, alluding to social tensions by lambasting the rich German elite and establishing the righteousness of the peasantry, of which he was a member. A close reading method was utilized on the trial transcript of Old Thiess with heavy reference to Carlo Ginzburg and Bruce Lincoln’s collaborative work Old Thiess, a Livonian werewolf: a classic case in comparative perspective. Through a contextual reading of Livonia’s social atmosphere, the paper draws connections between the content of the trial to wider societal disturbances happening at the time. The thesis—that the werewolf is a flexible metaphor for the social milieu—is further buttressed by numerous contemporaneous sources that had similar messages as Thiess’ transcript, which are discussed as well.Keywords: early-modern baltic, Livonia, Old Thiess, social history, werewolves
Procedia PDF Downloads 1071209 Treatment of Sanitary Landfill Leachate by Advanced Oxidation Techniques
Authors: R. Kerbachi , Y. Medkour, F. Sahnoune
Abstract:
The integrated waste management is an important aspect in the implementation of sustainable development. Leachate generated by sanitary landfills is a high-strength wastewater that is likely to contain large amounts of organic and inorganic matter, with humic substances, as well as ammonia nitrogen, heavy metals, chlorinated organic and inorganic salts. Untreated leachates create a great potential for harm to the environment, they can permeate ground water or mix with surface water and contribute to the pollution of soil, ground water, and surface water. In Algeria, the treatment of landfill leachate is the weakest link in the solid waste management. This study focuses on the evaluation of the pollution load carried by leachate produced in a former sanitary landfill located to the west of Algiers and the implementation of advanced oxidation treatment (advanced oxidation process, AOP), Fenton, electro-Fenton etc. The characterization of these leachates shows that they have a high organic load, mineral and nitrogen. Measured COD reaches very high values of the order of 5000 to 20,000 mg O2 / L. On this non-biodegradable leachate, treatment tests have been carried out by the methods of coagulation-flocculation, Fenton oxidation, electrocoagulation and electro-Fenton. The removal efficiencies of pollution obtained for each of these modes of treatment are respectively 69, 80, 84 and 97%. The study shows that advanced oxidation processes are very suitable for the treatment of poorly biodegradable leachate.Keywords: advanced oxidation processes, electrocoagulation, electro-Fenton, leachates treatment, sanitary landfill
Procedia PDF Downloads 2991208 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection
Authors: P. Bhavya, P. R. Jayasree
Abstract:
This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink
Procedia PDF Downloads 3411207 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads
Authors: Nuo Duan, Yi Pik Cheng
Abstract:
This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.Keywords: cyclic loading, DEM, numerical modelling, sands
Procedia PDF Downloads 3211206 Accumulation of Pollutants, Self-Purification and Impact on Peripheral Urban Areas: A Case Study in Shantytowns in Argentina
Authors: N. Porzionato, M. Mantiñan, E. Bussi, S. Grinberg, R. Gutierrez, G. Curutchet
Abstract:
This work sets out to debate the tensions involved in the processes of contamination and self-purification in the urban space, particularly in the streams that run through the Buenos Aires metropolitan area. For much of their course, those streams are piped; their waters do not come into contact with the outdoors until they have reached deeply impoverished urban areas with high levels of environmental contamination. These are peripheral zones that, until thirty years ago, were marshlands and fields. They are now densely populated areas largely lacking in urban infrastructure. The Cárcova neighborhood, where this project is underway, is in the José León Suárez section of General San Martín country, Buenos Aires province. A stretch of José León Suarez canal crosses the neighborhood. Starting upstream, this canal carries pollutants due to the sewage and industrial waste released into it. Further downstream, in the neighborhood, domestic drainage is poured into the stream. In this paper, we formulate a hypothesis diametrical to the one that holds that these neighborhoods are the primary source of contamination, suggesting instead that in the stretch of the canal that runs through the neighborhood the stream’s waters are actually cleaned and the sediments accumulate pollutants. Indeed, the stretches of water that runs through these neighborhoods act as water processing plants for the metropolis. This project has studied the different organic-load polluting contributions to the water in a certain stretch of the canal, the reduction of that load over the course of the canal, and the incorporation of pollutants into the sediments. We have found that the surface water has considerable ability to self-purify, mostly due to processes of sedimentation and adsorption. The polluting load is accumulated in the sediments where that load stabilizes slowly by means of anaerobic processes. In this study, we also investigated the risks of sediment management and the use of the processes studied here in controlled conditions as tools of environmental restoration.Keywords: bioremediation, pollutants, sediments, urban streams
Procedia PDF Downloads 4411205 Chemical Warfare Agent Simulant by Photocatalytic Filtering Reactor: Effect of Operating Parameters
Authors: Youcef Serhane, Abdelkrim Bouzaza, Dominique Wolbert, Aymen Amin Assadi
Abstract:
Throughout history, the use of chemical weapons is not exclusive to combats between army corps; some of these weapons are also found in very targeted intelligence operations (political assassinations), organized crime, and terrorist organizations. To improve the speed of action, important technological devices have been developed in recent years, in particular in the field of protection and decontamination techniques to better protect and neutralize a chemical threat. In order to assess certain protective, decontaminating technologies or to improve medical countermeasures, tests must be conducted. In view of the great toxicity of toxic chemical agents from (real) wars, simulants can be used, chosen according to the desired application. Here, we present an investigation about using a photocatalytic filtering reactor (PFR) for highly contaminated environments containing diethyl sulfide (DES). This target pollutant is used as a simulant of CWA, namely of Yperite (Mustard Gas). The influence of the inlet concentration (until high concentrations of DES (1200 ppmv, i.e., 5 g/m³ of air) has been studied. Also, the conversion rate was monitored under different relative humidity and different flow rates (respiratory flow - standards: ISO / DIS 8996 and NF EN 14387 + A1). In order to understand the efficacity of pollutant neutralization by PFR, a kinetic model based on the Langmuir–Hinshelwood (L–H) approach and taking into account the mass transfer step was developed. This allows us to determine the adsorption and kinetic degradation constants with no influence of mass transfer. The obtained results confirm that this small configuration of reactor presents an extremely promising way for the use of photocatalysis for treatment to deal with highly contaminated environments containing real chemical warfare agents. Also, they can give birth to an individual protection device (an autonomous cartridge for a gas mask).Keywords: photocatalysis, photocatalytic filtering reactor, diethylsulfide, chemical warfare agents
Procedia PDF Downloads 1051204 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications
Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin
Abstract:
This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack
Procedia PDF Downloads 831203 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry
Authors: J. Vyas, R. Kazys, J. Sestoke
Abstract:
Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves
Procedia PDF Downloads 2391202 Waste Derived from Refinery and Petrochemical Plants Activities: Processing of Oil Sludge through Thermal Desorption
Authors: Anna Bohers, Emília Hroncová, Juraj Ladomerský
Abstract:
Oil sludge with its main characteristic of high acidity is a waste product generated from the operation of refinery and petrochemical plants. Former refinery and petrochemical plant - Petrochema Dubová is present in Slovakia as well. Its activities was to process the crude oil through sulfonation and adsorption technology for production of lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. Seventy years ago – period, when this historical acid sludge burden has been created – comparing to the environmental awareness the production was in preference. That is the reason why, as in many countries, also in Slovakia a historical environmental burden is present until now – 229 211 m3 of oil sludge in the middle of the National Park of Nízke Tatry mountain chain. Neither one of tried treatment methods – bio or non-biologic one - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and liquid state et sim. As a potential solution, also incineration was tested, but it was not proven as a suitable method, as the concentration of SO2 in combustion gases was too high, and it was not possible to decrease it under the acceptable value of 2000 mg.mn-3. That is the reason why the operation of incineration plant has been terminated, and the acid sludge landfills are present until nowadays. The objective of this paper is to present a new possibility of processing and valorization of acid sludgy-waste. The processing of oil sludge was performed through the effective separation - thermal desorption technology, through which it is possible to split the sludgy material into the matrix (soil, sediments) and organic contaminants. In order to boost the efficiency in the processing of acid sludge through thermal desorption, the work will present the possibility of application of an original technology – Method of Blowing Decomposition for recovering of organic matter into technological lubricating oil.Keywords: hazardous waste, oil sludge, remediation, thermal desorption
Procedia PDF Downloads 2001201 Theoretical Method for Full Ab-Initio Calculation of Rhenium Carbide Compound
Abstract:
First principles calculations are carried out to investigate the structural, electronic, and elastic properties of the utraincompressible materials, namely, noble metal carbide of Rhenium carbide (ReC) in four phases, the rocksalt (NaCl-B1), zinc blende (ZB-B2), the tungsten carbide(Bh) (WC), and the nickel arsenide (NiAs-B8).The ground state properties such as the equilibrium lattice constant, elastic constants, the bulk modulus its pressure derivate, and the hardness of ReC in these phases are systematically predicted by calculations from first–principles. The corresponding calculated bulk modulus is comparable with that of diamond, especially for the B8 –type rhenium carbide (ReC), the incompressibility along the c axis is demonstrated to exceed the linear incompressibility of diamond. Our calculations confirm in the nickel arsenide (B8) structure the ReC is found to be stable with a large bulk modulus B=440 GPa and the tungsten carbide (WC) structure becomes the most more favourable with to respect B3 and B1 structures, which ReC- WC is meta-stable. Furthermore, the highest bulk modulus values in the zinc blende (B3), rock salt (B1), tungsten carbide (WC), and the nickel arsenide (B8) structures (294GPa, 401GPa, 415GPa and 447 GPa, respectively) indicates that ReC is a hard material, and is superhard compound H(B8)= 36 GPa compared with the H(diamond)=96 GPa and H(c BN)=63.10 GPa.Keywords: DFT, FP-LMTO, mechanical properties, elasticity, high pressure, thermodynamic properties, hard material
Procedia PDF Downloads 4421200 In Vitro Antioxidant Properties of Balanites Aeqyptiaca Del Enzymatic Protein Hydrolysates
Authors: Friday A. Ogori, Ojotu M. Eke, Oneh J. Abu, Abraham T. Girgih
Abstract:
B.aeqygtiaca del (Balanites aegyptiaca del) seed protein concentrate (APC) was hydrolyzed using different enzymes such as pepsin+pancreatin (PP), Alcalase (Alca), and Flavourzyme (Flav). The Alca has higher yield (100%) when compared to PP (83.23%) and Flav (62.90%). The hydrophobic amino acid and Sulphur containing amino acid (40.19%, 7.04%) in PP hydrolysate were higher compared to Alcalase (38.92%, 6.69%), Flavourenzyme (37.43%,6.35%), and APC (39.97%, 6.95%) samples. The PP has stronger DPPH, Hydroxyl radical quenching, Ferric reducing activity, and linoleic acid peroxidation activity, followed by the protein concentrate (APC) and Alcalase (Alca), while Flavourenzyme (Flav) derived hydrolysate was least in scavenging and inhibiting radical peroxidation properties. Flavourenzyme derived hydrolysate had stronger Ferric reducing antioxidant potential and metal chelating property. The result showed that the Alcalase hydrolysate has promising peptide yield, and PP hydrolysate had excellent amino acid residues and good in-vitro antioxidant potentials and could be a preferred ingredients in the nutraceutical and functional food emerging industries.Keywords: balanites aegyptiaca del, protein concentrate, protein hydrolysates, enzymatic hydrolysis, antioxidants
Procedia PDF Downloads 74