Search results for: treatment effect model
3467 Memory Based Reinforcement Learning with Transformers for Long Horizon Timescales and Continuous Action Spaces
Authors: Shweta Singh, Sudaman Katti
Abstract:
The most well-known sequence models make use of complex recurrent neural networks in an encoder-decoder configuration. The model used in this research makes use of a transformer, which is based purely on a self-attention mechanism, without relying on recurrence at all. More specifically, encoders and decoders which make use of self-attention and operate based on a memory, are used. In this research work, results for various 3D visual and non-visual reinforcement learning tasks designed in Unity software were obtained. Convolutional neural networks, more specifically, nature CNN architecture, are used for input processing in visual tasks, and comparison with standard long short-term memory (LSTM) architecture is performed for both visual tasks based on CNNs and non-visual tasks based on coordinate inputs. This research work combines the transformer architecture with the proximal policy optimization technique used popularly in reinforcement learning for stability and better policy updates while training, especially for continuous action spaces, which are used in this research work. Certain tasks in this paper are long horizon tasks that carry on for a longer duration and require extensive use of memory-based functionalities like storage of experiences and choosing appropriate actions based on recall. The transformer, which makes use of memory and self-attention mechanism in an encoder-decoder configuration proved to have better performance when compared to LSTM in terms of exploration and rewards achieved. Such memory based architectures can be used extensively in the field of cognitive robotics and reinforcement learning.Keywords: convolutional neural networks, reinforcement learning, self-attention, transformers, unity
Procedia PDF Downloads 1413466 The Experience of Middle Grade Teachers in a Culture of Collaboration
Authors: Tamara Tallman
Abstract:
Collaboration is a powerful tool for professional development and central for creating opportunities for teachers to reflect on their practice. However, school districts continue to have difficulty both implementing and sustaining collaboration. The purpose of this research was to investigate the experience of the teacher in a creative, instructional collaboration. The teachers in this study found that teacher-initiated collaboration offered them trust and they were more open with their partners. An interpretative phenomenological analysis was used for this study as it told the story of the teacher’s experience. Interpretative Phenomenological Analysis was chosen for this study to capture the complex and contextual nature of the teacher experience from a creative, instructional collaborative experience. This study sought to answer the question of how teachers in a private, faith-based school experience collaboration. In particular, the researcher engaged the study’s participants in interviews where they shared their unique perspectives on their experiences in relation to this phenomenon. Through the use of interpretative phenomenological analysis, the researcher interpreted the experiences of each participant in an attempt to gain deeper insight into how teachers made sense of their understanding of collaboration. In addition to the researcher’s interpreting the meaning of this construct for each research participant, this study gave a voice to the individual experiences and positionality of each participant at the research site. Moreover, the key findings presented in this study shed light on how teachers within this particular context participated in and made sense of their experience of creating an instructional collaborative. The research presented the findings that speak to the meaning that each research participant experienced in their relation to participating in building a collaborative culture and its effect on professional and personal growth. The researcher provided recommendations for future practice and research possibilities. The research findings demonstrated the unique experiences of each participant as well as a connection to the literature within the field of teacher professional development. The results also supported the claim that teacher collaboration can facilitate school reform. Participating teachers felt less isolation and developed more teacher knowledge.Keywords: collaboration, personal grwoth, professional development, teachers
Procedia PDF Downloads 1213465 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions
Procedia PDF Downloads 3093464 The Successful in Construction Project via Effectiveness of Project Team
Authors: Zarabizan Zakaria, Hayati Zainal
Abstract:
The construction industry is one of the most important sectors that contribute to the nation’s economy and catalyze towards the growth of other industries. However, some construction projects have not been completed on its stipulated time and duration, scope and budget due to several factors. This problem arises due to the weaknesses of human factors, especially from ineffective leadership quality practiced by project managers and contractors in managing project teams. Therefore, a construction project should impose the element of Project Team. The project team is formed in the implementation of the project which includes the project brief, project scope, customer requirements and provided designs. Many organizations in the construction sector use teams to meet today's global competition and customer expectations, however, team effectiveness evaluation is required. In insuring the construction team is successful and effectiveness, the construction department must encourage, measure, set up, and evaluate or review the effectiveness of project team that was formed. In order to produce a better outcome for a high-end project, an effective and efficient project team is required which also help in increasing overall productivity. The purpose of this study is to determine the role of team effectiveness in the construction project team based on the overall construction project performance. It examines several different factors which related to team effectiveness. It also examines the relationship between team effectiveness factor and project performance aspect. Team Effect Review and Project Performance Review are developed to be used for data collection. Data collected were analyzed using several statistical tests. Results obtained from data analysis are validated using semi-structured interviews. Besides that, a comprehensive survey were developed to assess the way construction project teams in order to maintain its effectiveness throughout the project phase. In order to determine a project successful it has been found that Project Team Leadership is the most important factor. In addition, the definition of team effectiveness in the construction project team is developed based on the perspective of project clients and project team members. The results of this study are expected to provide an idea on the factors that are needed to be focused on improving the team's effectiveness towards project performance aspects. At the same time, the definition of team effectiveness from team members and owner views has been developed in order to provide a better understanding of the word team's effectiveness in construction projects.Keywords: project team, leadership, construction project, project successful
Procedia PDF Downloads 1813463 An Assessment into Impact of Regional Conflicts upon Socio-Political Sustainability in Pakistan
Authors: Syed Toqueer Akhter, Muhammad Muzaffar Abbas
Abstract:
Conflicts in Pakistan are a result of a configuration of factors, which are directly related to the system of the state, the unstable regional setting, and the geo-strategic location of Pakistan at large. This paper examines the impact of regional conflict onto the socio-political sustainability of Pakistan. The magnitude of the spillover from a conflicted region is similar in size of the equivalent increase in domestic conflict. Pakistan has gone at war three times with India; the border with India is named as the tensest borderlines of the world. Disagreements with India and lack of dispute settlement mechanisms have negatively effected the peace in the region, influx of illegal weapons and refugees from Afghanistan as an outcome of 9/11 incidence, have exasperated the criticality of levels of internal conflict in Pakistan. Our empirical findings are based on the data collected on regional conflict levels, regional trade, global trade, comparative defence capabilities of the region in contrast to Pakistan and the government regime (Autocratic, Democratic) over 1972-2007. It has been proposed in this paper that the intent of domestic conflict is associated with the conflict in the region, regional trade, global trade and the government regime of Pakistan. The estimated model (OLS) implies that domestic conflict is effected positively and significantly with long term impact of conflict in the region. Also, if defence capabilities of the region are better than that of Pakistan it effects domestic conflict positively and significantly. Conflict in neighbouring countries are found as a source of domestic conflict in Pakistan, whereas the regional trade as well as type of government regimes in Pakistan lowered the intensity of domestic conflict significantly, while globalized trade imply risk of domestic conflict to be reduced but not significantly.Keywords: conflict, regional trade, socio-politcal instability
Procedia PDF Downloads 3273462 Towards a Multilevel System of Talent Management in Small And Medium-Sized Enterprises: French Context Exploration
Authors: Abid Kousay
Abstract:
Appeared and developed essentially in large companies and multinationals, Talent Management (TM) in Small and Medium-Sized Enterprises (SMEs) has remained an under-explored subject till today. Although the literature on TM in the Anglo-Saxon context is developing, it remains monopolized in non-European contexts, especially in France. Therefore, this article aims to address these shortcomings through contributing to TM issues, by adopting a multilevel approach holding the goal of reaching a global holistic vision of interactions between various levels, while applying TM. A qualitative research study carried out within 12 SMEs in France, built on the methodological perspective of grounded theory, will be used in order to go beyond description, to generate or discover a theory or even a unified theoretical explanation. Our theoretical contributions are the results of the grounded theory, the fruit of context considerations and the dynamic of the multilevel approach. We aim firstly to determine the perception of talent and TM in SMEs. Secondly, we formalize TM in SME through the empowerment of all 3 levels in the organization (individual, collective, and organizational). And we generate a multilevel dynamic system model, highlighting the institutionalization dimension in SMEs and the managerial conviction characterized by the domination of the leader's role. Thirdly, this first study shed the light on the importance of rigorous implementation of TM in SMEs in France by directing CEO and HR and TM managers to focus on elements that upstream TM implementation and influence the system internally. Indeed, our systematic multilevel approach policy reminds them of the importance of the strategic alignment while translating TM policy into strategies and practices in SMEs.Keywords: French context, institutionalization, talent, multilevel approach, talent management system
Procedia PDF Downloads 2053461 Expression of Micro-RNA268 in Zinc Deficient Rice
Authors: Sobia Shafqat, Saeed Ahmad Qaisrani
Abstract:
MicroRNAs play an essential role in the regulation and development of all processes in most eukaryotes because of their prospective part as mediators controlling cell growth and differentiation towards the exact position of RNAs response in plants under biotic and abiotic factors or stressors. In a few cases, Zn is oblivious poisonous for plants due to its heavy metal status. Some other metals are extremely toxic, like Cd, Hg, and Pb, but these elements require in rice for the programming of genes under abiotic stress resembling Zn stress when micro RNAs268 was importantly introduced in rice. The micro RNAs overexpressed in transgenic plants with an accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in the seedlings stage. Let out results for rice pliability under Zn stress micro RNAs act as negative controllers. But the role of micro RNA268 act as a modulator in different ecological condition. It has been explained clearly with a long understanding of the role of micro RNA268 under stress conditions; pliability and practically showed outcome to increase plant sufferance under Zn stress because micro RNAs is an intervention technique for gene regulation in gene expression. The proposed study was experimented with by using genetic factors of Zn stress and toxicity effect on rice plants done at District Vehari, Pakistan. The trial was performed randomly with three replications in a complete block design (RCBD). These blocks were controlled with different concentrations of genetic factors. By overexpression of micro RNA268 rice, seedling growth was not stopped under Zn deficiency due to the accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in their seedlings. Results showed that micro RNA268 act as a negative controller under Zn stress. In the end, under stress conditions, micro RNA268 showed the necessary function in the tolerance of rice plants. The directorial work sketch gave out high agronomic applications and yield outcomes in rice with a specific amount of Zn application.Keywords: micro RNA268, zinc, rice, agronomic approach
Procedia PDF Downloads 633460 Effects of Artificial Nectar Feeders on Bird Distribution and Erica Visitation Rate in the Cape Fynbos
Authors: Monique Du Plessis, Anina Coetzee, Colleen L. Seymour, Claire N. Spottiswoode
Abstract:
Artificial nectar feeders are used to attract nectarivorous birds to gardens and are increasing in popularity. The costs and benefits of these feeders remain controversial, however. Nectar feeders may have positive effects by attracting nectarivorous birds towards suburbia, facilitating their urban adaptation, and supplementing bird diets when floral resources are scarce. However, this may come at the cost of luring them away from the plants they pollinate in neighboring indigenous vegetation. This study investigated the effect of nectar feeders on an African pollinator-plant mutualism. Given that birds are important pollinators to many fynbos plant species, this study was conducted in gardens and natural vegetation along the urban edge of the Cape Peninsula. Feeding experiments were carried out to compare relative bird abundance and local distribution patterns for nectarivorous birds (i.e., sunbirds and sugarbirds) between feeder and control treatments. Resultant changes in their visitation rates to Erica flowers in the natural vegetation were tested by inspection of their anther ring status. Nectar feeders attracted higher densities of nectarivores to gardens relative to natural vegetation and decreased their densities in the neighboring fynbos, even when floral abundance in the neighboring vegetation was high. The consequent changes to their distribution patterns and foraging behavior decreased their visitation to at least Erica plukenetii flowers (but not to Erica abietina). This study provides evidence that nectar feeders may have positive effects for birds themselves by reducing their urban sensitivity but also highlights the unintended negative effects feeders may have on the surrounding fynbos ecosystem. Given that nectar feeders appear to compete with the flowers of Erica plukenetii, and perhaps those of other Erica species, artificial feeding may inadvertently threaten bird-plant pollination networks.Keywords: avian nectarivores, bird feeders, bird pollination, indirect effects in human-wildlife interactions, sugar water feeders, supplementary feeding
Procedia PDF Downloads 1623459 Research on Level Adjusting Mechanism System of Large Space Environment Simulator
Authors: Han Xiao, Zhang Lei, Huang Hai, Lv Shizeng
Abstract:
Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world.Keywords: space environment simulator, thermal vacuum test, level adjusting, spacecraft, parallel mechanism
Procedia PDF Downloads 2523458 Harnessing Deep-Level Metagenomics to Explore the Three Dynamic One Health Areas: Healthcare, Domiciliary and Veterinary
Authors: Christina Killian, Katie Wall, Séamus Fanning, Guerrino Macori
Abstract:
Deep-level metagenomics offers a useful technical approach to explore the three dynamic One Health axes: healthcare, domiciliary and veterinary. There is currently limited understanding of the composition of complex biofilms, natural abundance of AMR genes and gene transfer occurrence in these ecological niches. By using a newly established small-scale complex biofilm model, COMBAT has the potential to provide new information on microbial diversity, antimicrobial resistance (AMR)-encoding gene abundance, and their transfer in complex biofilms of importance to these three One Health axes. Shotgun metagenomics has been used to sample the genomes of all microbes comprising the complex communities found in each biofilm source. A comparative analysis between untreated and biocide-treated biofilms is described. The basic steps include the purification of genomic DNA, followed by library preparation, sequencing, and finally, data analysis. The use of long-read sequencing facilitates the completion of metagenome-assembled genomes (MAG). Samples were sequenced using a PromethION platform, and following quality checks, binning methods, and bespoke bioinformatics pipelines, we describe the recovery of individual MAGs to identify mobile gene elements (MGE) and the corresponding AMR genotypes that map to these structures. High-throughput sequencing strategies have been deployed to characterize these communities. Accurately defining the profiles of these niches is an essential step towards elucidating the impact of the microbiota on each niche biofilm environment and their evolution.Keywords: COMBAT, biofilm, metagenomics, high-throughput sequencing
Procedia PDF Downloads 623457 Engaged Employee: Re-Examine the Effects of Psychological Conditions on Employee Outcomes
Authors: Muncharee Phaobthip
Abstract:
In this research, the researcher re-examine the mediating effect of employee engagement between its antecedents and consequences for investigates the relation of leadership practices, employment branding and employee engagement based on social exchange theory. As such the researcher has four objectives as follows: First, to study the effects of leadership practices on employment branding, employee engagement and work intention; second, to examine the effects of employer brand perception on employee engagement and work intention; third, to examine the effects of employee engagement on work intention; and last, forth, the researcher inquires into the respondence of work intention. The researcher constituted a sample population of 535 employees of a Thai hotel chain located in four regions of the Kingdom of Thailand (Thailand). The researcher utilized a mixed-methods approach divided into quantitative and qualitative research investigatory phases, respectively. In the quantitative phase of research investigation, the researcher collected germane data from the 535 members of the sample population through the use of a questionnaire as a research instrument. In the qualitative phase of research investigation, relevant data were obtained through carrying out in-depth interviews with three subgroups of members of the sample population. These three subgroups consisted of twelve hotelier experts, six employees at the administrator level, and operational level employees. Focus group discussions were held with discussants from these three subgroups. Findings are as follows: Leadership practices showed positive effects on employment branding, employee engagement, and work intention. Employment branding displayed positive effects on employee engagement and work intention. Employee engagement had positive effects on work intention. However, in the analysis of the equation, the researcher confirmed that the important role of employee engagement is mediator factor between its antecedent and consequence factors. This provides benefits, in that it augments the body of knowledge devoted to the fostering of employee engagement in respect to psychological conditions. In conclusion, the researcher found that the value co-creation between leaders, employers and employees had positive effects on employee outcomes for lead to business outcomes according to reciprocal rule.Keywords: antecedents, employee engagement, psychological conditions, work intention
Procedia PDF Downloads 1163456 Developing Medical Leaders: A Realistic Evaluation Study for Improving Patient Safety and Maximising Medical Engagement
Authors: Lisa Fox, Jill Aylott
Abstract:
There is a global need to identify ways to engage doctors in non-clinical matters such as medical leadership, service improvement and health system transformation. Using the core principles of Realistic Evaluation (RE), this study examined what works, for doctors of different grades, specialities and experience in an acute NHS Hospital Trust in the UK. Realistic Evaluation is an alternative to more traditional cause and effect evaluation models and seeks to understand the interdependencies of Context, Mechanism and Outcome proposing that Context (C) + Mechanism (M) = Outcome (O). In this study, the context, mechanism and outcome were examined from within individual medical leaders to determine what enables levels of medical engagement in a specific improvement project to reduce hospital inpatient mortality. Five qualitative case studies were undertaken with consultants who had regularly completed mortality reviews over a six month period. The case studies involved semi-structured interviews to test the theory behind the drivers for medical engagement. The interviews were analysed using a theory-driven thematic analysis to identify CMO configurations to explain what works, for whom and in what circumstances. The findings showed that consultants with a longer length of service became more engaged if there were opportunities to be involved in the beginning of an improvement project, with more opportunities to affect the design. Those that are new to a consultant role were more engaged if they felt able to apply any learning directly into their own settings or if they could use it as an opportunity to understand more about the organisation they are working in. This study concludes that RE is a useful methodology for better understanding the complexities of motivation and consultant engagement in a trust wide service improvement project. The study showed that there should be differentiated and bespoke training programmes to maximise each individual doctor’s propensity for medical engagement. The RE identified that there are different ways to ensure that doctors have the right skills to feel confident in service improvement projects.Keywords: realistic evaluation, medical leadership, medical engagement, patient safety, service improvement
Procedia PDF Downloads 2233455 Using Open Source Data and GIS Techniques to Overcome Data Deficiency and Accuracy Issues in the Construction and Validation of Transportation Network: Case of Kinshasa City
Authors: Christian Kapuku, Seung-Young Kho
Abstract:
An accurate representation of the transportation system serving the region is one of the important aspects of transportation modeling. Such representation often requires developing an abstract model of the system elements, which also requires important amount of data, surveys and time. However, in some cases such as in developing countries, data deficiencies, time and budget constraints do not always allow such accurate representation, leaving opportunities to assumptions that may negatively affect the quality of the analysis. With the emergence of Internet open source data especially in the mapping technologies as well as the advances in Geography Information System, opportunities to tackle these issues have raised. Therefore, the objective of this paper is to demonstrate such application through a practical case of the development of the transportation network for the city of Kinshasa. The GIS geo-referencing was used to construct the digitized map of Transportation Analysis Zones using available scanned images. Centroids were then dynamically placed at the center of activities using an activities density map. Next, the road network with its characteristics was built using OpenStreet data and other official road inventory data by intersecting their layers and cleaning up unnecessary links such as residential streets. The accuracy of the final network was then checked, comparing it with satellite images from Google and Bing. For the validation, the final network was exported into Emme3 to check for potential network coding issues. Results show a high accuracy between the built network and satellite images, which can mostly be attributed to the use of open source data.Keywords: geographic information system (GIS), network construction, transportation database, open source data
Procedia PDF Downloads 1713454 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char
Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain
Abstract:
Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material
Procedia PDF Downloads 3963453 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements
Authors: Andrey Kupriyanov
Abstract:
In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)
Procedia PDF Downloads 1863452 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 1373451 A Network Optimization Study of Logistics for Enhancing Emergency Preparedness in Asia-Pacific
Authors: Giuseppe Timperio, Robert De Souza
Abstract:
The combination of factors such as temperamental climate change, rampant urbanization of risk exposed areas, political and social instabilities, is posing an alarming base for the further growth of number and magnitude of humanitarian crises worldwide. Given the unique features of humanitarian supply chain such as unpredictability of demand in space, time, and geography, spike in the number of requests for relief items in the first days after the calamity, uncertain state of logistics infrastructures, large volumes of unsolicited low-priority items, a proactive approach towards design of disaster response operations is needed to achieve high agility in mobilization of emergency supplies in the immediate aftermath of the event. This paper is an attempt in that direction, and it provides decision makers with crucial strategic insights for a more effective network design for disaster response. Decision sciences and ICT are integrated to analyse the robustness and resilience of a prepositioned network of emergency strategic stockpiles for a real-life case about Indonesia, one of the most vulnerable countries in Asia-Pacific, with the model being built upon a rich set of quantitative data. At this aim, a network optimization approach was implemented, with several what-if scenarios being accurately developed and tested. Findings of this study are able to support decision makers facing challenges related with disaster relief chains resilience, particularly about optimal configuration of supply chain facilities and optimal flows across the nodes, while considering the network structure from an end-to-end in-country distribution perspective.Keywords: disaster preparedness, humanitarian logistics, network optimization, resilience
Procedia PDF Downloads 1783450 Developing a Framework for Open Source Software Adoption in a Higher Education Institution in Uganda. A case of Kyambogo University
Authors: Kafeero Frank
Abstract:
This study aimed at developing a frame work for open source software adoption in an institution of higher learning in Uganda, with the case of KIU as a study area. There were mainly four research questions based on; individual staff interaction with open source software forum, perceived FOSS characteristics, organizational characteristics and external characteristics as factors that affect open source software adoption. The researcher used causal-correlation research design to study effects of these variables on open source software adoption. A quantitative approach was used in this study with self-administered questionnaire on a purposively and randomly sampled sample of university ICT staff. Resultant data was analyzed using means, correlation coefficients and multivariate multiple regression analysis as statistical tools. The study reveals that individual staff interaction with open source software forum and perceived FOSS characteristics were the primary factors that significantly affect FOSS adoption while organizational and external factors were secondary with no significant effect but significant correlation to open source software adoption. It was concluded that for effective open source software adoption to occur there must be more effort on primary factors with subsequent reinforcement of secondary factors to fulfill the primary factors and adoption of open source software. Lastly recommendations were made in line with conclusions for coming up with Kyambogo University frame work for open source software adoption in institutions of higher learning. Areas of further research recommended include; Stakeholders’ analysis of open source software adoption in Uganda; Challenges and way forward. Evaluation of Kyambogo University frame work for open source software adoption in institutions of higher learning. Framework development for cloud computing adoption in Ugandan universities. Framework for FOSS development in Uganda IT industryKeywords: open source software., organisational characteristics, external characteristics, cloud computing adoption
Procedia PDF Downloads 763449 Exploring the Prebiotic Potential of Glucosamine
Authors: Shilpi Malik, Ramneek Kaur, Archita Gupta, Deepshikha Yadav, Ashwani Mathur, Manisha Singh
Abstract:
Glucosamine (GS) is the most abundant naturally occurring amino monosaccharide and is normally produced in human body via cellular glucose metabolism. It is regarded as the building block of cartilage matrix and is also an essential component of cartilage matrix repair mechanism. Besides that, it can also be explored for its prebiotic potential as many bacterial species are known to utilize the amino sugar by acquiring them to form peptidoglycans and lipopolysaccharides in the bacterial cell wall. Glucosamine can therefore be considered for its fermentation by bacterial species present in the gut. Current study is focused on exploring the potential of glucosamine as prebiotic. The studies were done to optimize considerable concentration of GS to reach GI tract and being fermented by the complex gut microbiota and food grade GS was added to various Simulated Fluids of Gastro-Intestinal Tract (GIT) such as Simulated Saliva, Gastric Fluid (Fast and Fed State), Colonic fluid, etc. to detect its degradation. Since it was showing increase in microbial growth (CFU) with time, GS was Further, encapsulated to increase its residential time in the gut, which exhibited improved resistance to the simulated Gut conditions. Moreover, prepared microspehres were optimized and characterized for their encapsulation efficiency and toxicity. To further substantiate the prebiotic activity of Glucosamine, studies were also performed to determine the effect of Glucosamine on the known probiotic bacterial species, i.e. Lactobacillus delbrueckii (MTCC 911) and Bifidobacteriumbifidum (MTCC 5398). Culture conditions for glucosamine will be added in MRS media in anaerobic tube at 0.20%, 0.40%, 0.60%, 0.80%, and 1.0%, respectively. MRS media without GS was included in this experiment as the control. All samples were autoclaved at 118° C for 15 min. Active culture was added at 5% (v/v) to each anaerobic tube after cooling to room temperature and incubated at 37° C then determined biomass and pH and viable count at incubation 18h. The experiment was completed in triplicate and the results were presented as Mean ± SE (Standard error).The experimental results are conclusive and suggest Glucosamine to hold prebiotic properties.Keywords: gastro intestinal tract, microspheres, peptidoglycans, simulated fluid
Procedia PDF Downloads 3353448 A Context Aware Mobile Learning System with a Cognitive Recommendation Engine
Authors: Jalal Maqbool, Gyu Myoung Lee
Abstract:
Using smart devices for context aware mobile learning is becoming increasingly popular. This has led to mobile learning technology becoming an indispensable part of today’s learning environment and platforms. However, some fundamental issues remain - namely, mobile learning still lacks the ability to truly understand human reaction and user behaviour. This is due to the fact that current mobile learning systems are passive and not aware of learners’ changing contextual situations. They rely on static information about mobile learners. In addition, current mobile learning platforms lack the capability to incorporate dynamic contextual situations into learners’ preferences. Thus, this thesis aims to address these issues highlighted by designing a context aware framework which is able to sense learner’s contextual situations, handle data dynamically, and which can use contextual information to suggest bespoke learning content according to a learner’s preferences. This is to be underpinned by a robust recommendation system, which has the capability to perform these functions, thus providing learners with a truly context-aware mobile learning experience, delivering learning contents using smart devices and adapting to learning preferences as and when it is required. In addition, part of designing an algorithm for the recommendation engine has to be based on learner and application needs, personal characteristics and circumstances, as well as being able to comprehend human cognitive processes which would enable the technology to interact effectively and deliver mobile learning content which is relevant, according to the learner’s contextual situations. The concept of this proposed project is to provide a new method of smart learning, based on a capable recommendation engine for providing an intuitive mobile learning model based on learner actions.Keywords: aware, context, learning, mobile
Procedia PDF Downloads 2483447 Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations
Authors: Karthikeyan Kalirajan, Ashok Joshi
Abstract:
An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper.Keywords: Marv guidance, reentry trajectory, trajectory optimization, guidance gain selection
Procedia PDF Downloads 4303446 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 1353445 Polymeric Microspheres for Bone Tissue Engineering
Authors: Yamina Boukari, Nashiru Billa, Andrew Morris, Stephen Doughty, Kevin Shakesheff
Abstract:
Poly (lactic-co-glycolic) acid (PLGA) is a synthetic polymer that can be used in bone tissue engineering with the aim of creating a scaffold in order to support the growth of cells. The formation of microspheres from this polymer is an attractive strategy that would allow for the development of an injectable system, hence avoiding invasive surgical procedures. The aim of this study was to develop a microsphere delivery system for use as an injectable scaffold in bone tissue engineering and evaluate various formulation parameters on its properties. Porous and lysozyme-containing PLGA microspheres were prepared using the double emulsion solvent evaporation method from various molecular weights (MW). Scaffolds were formed by sintering to contain 1 -3mg of lysozyme per gram of scaffold. The mechanical and physical properties of the scaffolds were assessed along with the release of lysozyme, which was used as a model protein. The MW of PLGA was found to have an influence on microsphere size during fabrication, with increased MW leading to an increased microsphere diameter. An inversely proportional relationship was displayed between PLGA MW and mechanical strength of formed scaffolds across loadings for low, intermediate and high MW respectively. Lysozyme release from both microspheres and formed scaffolds showed an initial burst release phase, with both microspheres and scaffolds fabricated using high MW PLGA showing the lowest protein release. Following the initial burst phase, the profiles for each MW followed a similar slow release over 30 days. Overall, the results of this study demonstrate that lysozyme can be successfully incorporated into porous PLGA scaffolds and released over 30 days in vitro, and that varying the MW of the PLGA can be used as a method of altering the physical properties of the resulting scaffolds.Keywords: bone, microspheres, PLGA, tissue engineering
Procedia PDF Downloads 4273444 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 913443 More Precise: Patient-Reported Outcomes after Stroke
Authors: Amber Elyse Corrigan, Alexander Smith, Anna Pennington, Ben Carter, Jonathan Hewitt
Abstract:
Background and Purpose: Morbidity secondary to stroke is highly heterogeneous, but it is important to both patients and clinicians in post-stroke management and adjustment to life after stroke. The consideration of post-stroke morbidity clinically and from the patient perspective has been poorly measured. The patient-reported outcome measures (PROs) in morbidity assessment help improve this knowledge gap. The primary aim of this study was to consider the association between PRO outcomes and stroke predictors. Methods: A multicenter prospective cohort study assessed 549 stroke patients at 19 hospital sites across England and Wales during 2019. Following a stroke event, demographic, clinical, and PRO measures were collected. Prevalence of morbidity within PRO measures was calculated with associated 95% confidence intervals. Predictors of domain outcome were calculated using a multilevel generalized linear model. Associated P -values and 95% confidence intervals are reported. Results: Data were collected from 549 participants, 317 men (57.7%) and 232 women (42.3%) with ages ranging from 25 to 97 (mean 72.7). PRO morbidity was high post-stroke; 93.2% of the cohort report post-stroke PRO morbidity. Previous stroke, diabetes, and gender are associated with worse patient-reported outcomes across both the physical and cognitive domains. Conclusions: This large-scale multicenter cohort study illustrates the high proportion of morbidity in PRO measures. Further, we demonstrate key predictors of adverse outcomes (Diabetes, previous stroke, and gender) congruence with clinical predictors. The PRO has been demonstrated to be an informative and useful stroke when considering patient-reported outcomes and has wider implications for considerations of PROs in clinical management. Future longitudinal follow-up with PROs is needed to consider association of long-term morbidity.Keywords: morbidity, patient-reported outcome, PRO, stroke
Procedia PDF Downloads 1343442 Application of the Urban Forest Credit Standard as a Tool for Compensating CO2 Emissions in the Metalworking Industry: A Case Study in Brazil
Authors: Marie Madeleine Sarzi Inacio, Ligiane Carolina Leite Dauzacker, Rodrigo Henriques Lopes Da Silva
Abstract:
The climate changes resulting from human activity have increased interest in more sustainable production practices to reduce and offset pollutant emissions. Brazil, with its vast areas capable of carbon absorption, holds a significant advantage in this context. However, to optimize the country's sustainable potential, it is important to establish a robust carbon market with clear rules for the eligibility and validation of projects aimed at reducing and offsetting Greenhouse Gas (GHG) emissions. In this study, our objective is to conduct a feasibility analysis through a case study to evaluate the implementation of an urban forest credits standard in Brazil, using the Urban Forest Credits (UFC) model implemented in the United States as a reference. Thus, the city of Ribeirão Preto, located in Brazil, was selected to assess the availability of green areas. With the CO2 emissions value from the metalworking industry, it was possible to analyze information in the case study, considering the activity. The QGIS software was used to map potential urban forest areas, which can connect to various types of geospatial databases. Although the chosen municipality has little vegetative coverage, the mapping identified at least eight areas that fit the standard definitions within the delimited urban perimeter. The outlook was positive, and the implementation of projects like Urban Forest Credits (UFC) adapted to the Brazilian reality has great potential to benefit the country in the carbon market and contribute to achieving its Greenhouse Gas (GHG) emission reduction goals.Keywords: carbon neutrality, metalworking industry, carbon credits, urban forestry credits
Procedia PDF Downloads 823441 Use of Triclosan-Coated Sutures Led to Cost Saving in Public and Private Setting in India across Five Surgical Categories: An Economical Model Assessment
Authors: Anish Desai, Reshmi Pillai, Nilesh Mahajan, Hitesh Chopra, Vishal Mahajan, Ajay Grover, Ashish Kohli
Abstract:
Surgical Site Infection (SSI) is hospital acquired infection of growing concern. This study presents the efficacy and cost-effectiveness of triclosan-coated suture, in reducing the burden of SSI in India. Methodology: A systematic literature search was conducted for economic burden (1998-2018) of SSI and efficacy of triclosan-coated sutures (TCS) vs. non-coated sutures (NCS) (2000-2018). PubMed Medline and EMBASE indexed articles were searched using Mesh terms or Emtree. Decision tree analysis was used to calculate, the cost difference between TCS and NCS at private and public hospitals, respectively for 7 surgical procedures. Results: The SSI range from low to high for Caesarean section (C-section), Laparoscopic hysterectomy (L-hysterectomy), Open Hernia (O-Hernia), Laparoscopic Cholecystectomy (L-Cholecystectomy), Coronary artery bypass graft (CABG), Total knee replacement (TKR), and Mastectomy were (3.77 to 24.2%), (2.28 to 11.7%), (1.75 to 60%), (1.71 to 25.58%), (1.6 to 18.86%), (1.74 to 12.5%), and (5.56 to 25%), respectively. The incremental cost (%) of TCS ranged 0.1%-0.01% in private and from 0.9%-0.09% at public hospitals across all surgical procedures. Cost savings at median efficacy & SSI risk was 6.52%, 5.07 %, 11.39%, 9.63%, 3.62%, 2.71%, 9.41% for C-section, L-hysterectomy, O-Hernia, L-Cholecystectomy, CABG, TKR, and Mastectomy in private and 8.79%, 4.99%, 12.67%, 10.58%, 3.32%, 2.35%, 11.83% in public hospital, respectively. Efficacy of TCS and SSI incidence in a particular surgical procedure were important determinants of cost savings using one-way sensitivity analysis. Conclusion: TCS suture led to cost savings across all 7 surgeries in both private and public hospitals in India.Keywords: cost Savings, non-coated sutures, surgical site infection, triclosan-coated sutures
Procedia PDF Downloads 4023440 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline
Authors: Kenan Morani, Esra Kaya Ayana
Abstract:
This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation
Procedia PDF Downloads 1373439 African Women in Power: An Analysis of the Representation of Nigerian Business Women in Television
Authors: Ifeanyichukwu Valerie Oguafor
Abstract:
Women generally have been categorized and placed under the chain of business industry, sometimes highly regarded and other times merely. The social construction of womanhood does not in all sense support a woman going into business, let alone succeed in it because it is believed that it a man’s world. In a typical patriarchal setting, a woman is expected to know nothing more domestic roles. For some women, this is not the case as they have been able to break these barriers to excel in business amidst these social setting and stereotypes. This study examines media representation of Nigerians business women, using content analysis of TV interviews as media text, framing analysis as an approach in qualitative methodology, The study further aims to analyse media frames of two Nigerian business women: FolorunshoAlakija, a business woman in the petroleum industry with current net worth 1.1 billion U.S dollars, emerging as the richest black women in the world 2014. MosunmolaAbudu, a media magnate in Nigeria who launched the first Africa’s global black entertainment and lifestyle network in 2013. This study used six predefined frames: the business woman, the myth of business women, the non-traditional woman, women in leading roles, the family woman, the religious woman, and the philanthropist woman to analyse the representation of Nigerian business women in the media. The analysis of the aforementioned frames on TV interviews with these women reveals that the media perpetually reproduces existing gender stereotype and do not challenge patriarchy. Women face challenges in trying to succeed in business while trying to keep their homes stable. This study concludes that the media represent and reproduce gender stereotypes in spite of the expectation of empowering women. The media reduces these women’s success insignificant rather than a role model for women in society.Keywords: representation of business women in the media, business women in Nigeria, framing in the media, patriarchy, women's subordination
Procedia PDF Downloads 1653438 DSC2 Promotes the Proliferation, Metastasis and Drug Resistance of Lung Cancer by Activating the PI3K/AKT Pathway
Authors: Qi LI, Xu Lin, Nengming Lin
Abstract:
Objective: The aim of this study was to investigate the role of desmocollin 2 (DSC2) protein in the proliferation, migration and drug resistance of lung cancer cells. Method: CCK-8 assays and colony formation assays were used to evaluate the effect of dsc2 regulation on cancer cell viability and colony formation. Transwell assays and wound healing assays were also performed. Cell flow double staining was used to detect the apoptosis rate of cells with DSC2, which was added cisplatin. Western blot assay was used to detect cell cycle, PI3k/Akt and apoptosis-related proteins. Results: Our data showed that dsc2 is upregulated in clinical lung cancer tissues compared with pericarcinomatous tissues, and it is differentially expressed in lung cancer cell lines. The down-regulation of dsc2 in A549 and H358 lung cancer cells significantly suppressed the cell proliferation, metastasis, and motility. In contrast, the opposite effects were observed in overexpression of dsc2 both in H23 and PC9 cell lines. In addition to lung adenocarcinoma cell lines, we also examined its expression in lung squamous cell lines, such as H226. Western blotting showed that dsc2 could reduce the level of phosphorylated Akt (Ser 473) and p-mTOR. Thus, it is speculated that dsc2 up-regulation promotes proliferation and invasiveness through activation of the PI3K/AKT pathway. Also, knockdown of dsc2 in A549 and H226 could significantly decreased in the levels of cyclinB and wee1 protein. Additionally, flow cytometry showed that dsc2 knockdown combined with cisplatin could significantly enhance cell apoptosis rate. Conclusion: These data suggest that dsc2 promotes the proliferation and migration of lung cancer cells in vitro. Also, the results suggested that dsc2 could affect the cell cycle and apoptosis of lung cells. Furthermore, knockdown of dsc2 could sensitize cisplatin in both lung adenocarcinoma and lung squamous cell lines. Thus we suggested that dsc2 can be used as a therapeutic target for lung cancer.Keywords: desmocollin 2, cisplatin, lung cancer, PI3K/AKT, lung squamous cell
Procedia PDF Downloads 81