Search results for: care networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6487

Search results for: care networks

3487 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 191
3486 Public Policy Making Process in Developing Countries: Case Study of Turkish Health System

Authors: Hakan Akin

Abstract:

The aim of this study was to examine the policy making process in Turkish Health System. This policy making process will be examined through public policy change theories. Since political actors played in the formulation of public policies also explains the type of policy change, this actors will be inspected in the supranational and national basis. Also the transformation of public policy in the Turkish health care system will be analysed under the concepts of New right ideology, neo-liberalism, neo-conservatism and governance. And after this analyse, the outputs and outcomes of this transformation will be discussed in the context of developing countries.

Keywords: policy transfer, policy diffusion, policy convergence, new right, governance

Procedia PDF Downloads 481
3485 Implicature of Jokes in Broadcast Messages

Authors: Yuli Widiana

Abstract:

The study of implicature which is one of the discussions of pragmatics is an interesting and challenging topic to discuss. Implicature is a meaning which is implied in an utterance which is not the same as its literal meaning. The rapid development of information technology results in social networks as media to broadcast messages. The broadcast messages may be in the form of jokes which contain implicature. The research applies the pragmatic equivalent method to analyze the topics of jokes based on the implicatures contained in them. Furthermore, the method is also applied to reveal the purpose of creating implicature in jokes. The findings include the kinds of implicature found in jokes which are classified into conventional implicature and conversational implicature. Then, in detailed analysis, implicature in jokes is divided into implicature related to gender, culture, and social phenomena. Furthermore, implicature in jokes may not only be used to give entertainment but also to soften criticisms or satire so that it does not sound rude and harsh.

Keywords: implicature, broadcast messages, conventional implicature, conversational implicature

Procedia PDF Downloads 363
3484 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets

Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso

Abstract:

Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.

Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow

Procedia PDF Downloads 86
3483 Time Compression in Engineer-to-Order Industry: A Case Study of a Norwegian Shipbuilding Industry

Authors: Tarek Fatouh, Chehab Elbelehy, Alaa Abdelsalam, Eman Elakkad, Alaa Abdelshafie

Abstract:

This paper aims to explore the possibility of time compression in Engineer to Order production networks. A case study research method is used in a Norwegian shipbuilding project by implementing a value stream mapping lean tool with total cycle time as a unit of analysis. The analysis resulted in demonstrating the time deviations for the planned tasks in one of the processes in the shipbuilding project. So, authors developed a future state map by removing time wastes from value stream process.

Keywords: engineer to order, total cycle time, value stream mapping, shipbuilding

Procedia PDF Downloads 167
3482 Parallel Computing: Offloading Matrix Multiplication to GPU

Authors: Bharath R., Tharun Sai N., Bhuvan G.

Abstract:

This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.

Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks

Procedia PDF Downloads 62
3481 Nurse-Patient Assignment: Case of Pediatrics Department

Authors: Jihene Jlassi, Ahmed Frikha, Wazna Kortli

Abstract:

The objectives of Nurse-Patient Assignment are the minimization of the overall hospital cost and the maximization of nurses ‘preferences. This paper aims to assess nurses' satisfaction related to the implementation of patient acuity tool-based assignments. So, we used an integer linear program that assigns patients to nurses while balancing nurse workloads. Then, the proposed model is applied to the Paediatrics Department at Kasserine Hospital Tunisia. Where patients need special acuities and high-level nursing skills and care. Hence, numerical results suggested that proposed nurse-patient assignment models can achieve a balanced assignment

Keywords: nurse-patient assignment, mathematical model, logistics, pediatrics department, balanced assignment

Procedia PDF Downloads 150
3480 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 144
3479 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: artificial neural network, back-propagation, tide data, training algorithm

Procedia PDF Downloads 486
3478 The Mental Health of Indigenous People During the COVID-19 Pandemic: A Scoping Review

Authors: Suzanne L. Stewart, Sarah J. Ponton, Mikaela D. Gabriel, Roy Strebel, Xinyi Lu

Abstract:

Indigenous Peoples have faced unique barriers to accessing and receiving culturally safe and appropriate mental health care while also facing daunting rates of mental health diagnoses and comorbidities. Indigenous researchers and clinicians have well established the connection of the current mental health issues in Indigenous communities as a direct result of colonization by way of intergenerational trauma throughout Canada’s colonial history. Such mental health barriers and challenges have become exacerbated during the COVID-19 pandemic. Throughout the pandemic, access to mental health, cultural, ceremonial, and community services were severely impacted and restricted; however, it is these same cultural activities and community resources that are key to supporting Indigenous mental health from a traditional and community-based perspective. This research employed a unique combination of a thorough, analytical scoping review of the existent mental health literature of Indigenous mental health in the COVID-19 pandemic, alongside narrative interviews employing an oral storytelling tradition methodology with key community informants that provide comprehensive cultural services to the Indigenous community of Toronto, as well as across Canada. These key informant interviews provided a wealth of insights into virtual transitions of Indigenous care and mental health support; intersections of historical underfunding and current financial navigation in technology infrastructure; accessibility and connection with Indigenous youth in remote locations; as well as maintaining community involvement and traditional practices in a current pandemic. Both the scoping review and narrative interviews were meticulously analyzed for overarching narrative themes to best explore the extent of the literature on Indigenous mental health and services during COVID-19; identify gaps in this literature; identify barriers and supports for the Indigenous community, and explore the intersection of community and cultural impacts to mental health. Themes of the scoping review included: Historical Context; Challenges in Culturally-Based Services; and Strengths in Culturally-Based Services. Meta themes across narrative interviews included: Virtual Transitions; Financial Support for Indigenous Services; Health Service Delivery & Wellbeing; and Culture & Community Connection. The results of this scoping review and narrative interviews provide wide application and contribution to the mental health literature, as well as recommendations for policy, service provision, autonomy in Indigenous health and wellbeing, and crucial insights into the present and enduring mental health needs of Indigenous Peoples throughout the COVID-19 pandemic.

Keywords: indigenous community services, indigenous mental health, indigenous scoping review, indigenous peoples and Covid-19

Procedia PDF Downloads 243
3477 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.

Procedia PDF Downloads 157
3476 Antenatal Monitoring of Pre-Eclampsia in a Low Resource Setting

Authors: Alina Rahim, Joanne Moffatt, Jessica Taylor, Joseph Hartland, Tamer Abdelrazik

Abstract:

Background: In 2011, 15% of maternal deaths in Uganda were due to hypertensive disorders (pre-eclampsia and eclampsia). The majority of these deaths are avoidable with optimum antenatal care. The aim of the study was to evaluate how antenatal monitoring of pre-eclampsia was carried out in a low resource setting and to identify barriers to best practice as recommended by the World Health Organisation (WHO) as part of a 4th year medical student External Student Selected component field trip. Method: Women admitted to hospital with pre-eclampsia in rural Uganda (Villa Maria and Kitovu Hospitals) over a year-long period were identified using the maternity register and antenatal record book. It was not possible to obtain notes for all cases identified on the maternity register. Therefore a total of thirty sets of notes were reviewed. The management was recorded and compared to Ugandan National Guidelines and WHO recommendations. Additional qualitative information on routine practice was established by interviewing staff members from the obstetric and midwifery teams. Results: From the records available, all patients in this sample were managed according to WHO recommendations during labour. The rate of Caesarean section as a mode of delivery was noted to be high in this group of patients; 56% at Villa Maria and 46% at Kitovu. Antenatally two WHO recommendations were not routinely met: aspirin prophylaxis and calcium supplementation. This was due to lack of resources, and lack of attendance at antenatal clinic leading to poor detection of high-risk patients. Medical management of pre-eclampsia varied between individual patients, overall 93.3% complied with Ugandan national guidelines. Two patients were treated with diuretics, which is against WHO guidance. Discussion: Antenatal monitoring of pre-eclampsia is important in reducing severe morbidity, long-term disability and mortality amongst mothers and their babies 2 . Poor attendance at antenatal clinic is a barrier to healthcare in low-income countries. Increasing awareness of the importance of these visits for women should be encouraged. The majority of cases reviewed in this sample of women were treated according to Ugandan National Guidelines. It is recommended to commence the use of aspirin prophylaxis for women at high-risk of developing pre-eclampsia and the creation of detailed guidelines for Uganda which would allow for standardisation of care county-wide.

Keywords: antenatal monitoring, low resource setting, pre-eclampsia, Uganda

Procedia PDF Downloads 230
3475 A Case Study of the Influence of the Covid-19 pandemic on Racial and Ethnic Gaps in Behavioral Health Care Access

Authors: Shantol McIntosh

Abstract:

Due to environmental and underlying health disparities, the COVID-19 pandemic has caused an added set of economic implications worldwide. Black and Hispanic individuals are more susceptible to contract COVID-19, and if they do, they are more likely to have a severe case that necessitates hospitalization or results in death (Altarum et al., 2020). The literature shows that disparities in health and health treatment are nothing new as they have been recorded for decades and indicate systemic and structural imbalances rooted in racism and discrimination. The purpose of this study is to determine the frequency with which these populations have access to healthcare and treatment. The study will also highlight the key drivers of health disparities. Findings and implications for research and policy will be discussed.

Keywords: COVID-19, racial and ethnic disparities, discrimination, policy

Procedia PDF Downloads 192
3474 Overcoming Mistrusted Masculinity: Analyzing Muslim Men and Their Aspirations for Fatherhood in Denmark

Authors: Anne Hovgaard Jorgensen

Abstract:

This study investigates how Muslim fathers in Denmark are struggling to overcome notions of mistrust from teachers and educators. Starting from school-home-cooperation (parent conferences, school-home communication, etc.), the study finds that many Muslim fathers do not feel acknowledged as a resource in the upbringing of their children. To explain these experiences further, the study suggest the notion of ‘mistrusted masculinity’ to grasp the controlling image these fathers meet in various schools and child-care-institutions in the Danish Welfare state. The paper is based on 9 months of fieldwork in a Danish school, a social housing area and in various ‘father groups’ in Denmark. Additional, 50 interviews were conducted with fathers, children, mothers, schoolteachers, and educators. By using Connell's concepts 'hegemonic' and 'marginalized' masculinity as steppingstones, the paper argues that these concepts might entail a too static and dualistic picture of gender. By applying the concepts of 'emergent masculinity' and 'emergent fatherhood' the paper brings along a long needed discussion of how Muslim men in Denmark are struggling to overcome and change the controlling images of them as patriarchal and/or ignorant fathers regarding the upbringing of their children. As such, the paper shows how Muslim fathers are taking action to change this controlling image, e.g. through various ‘father groups’. The paper is inspired by the phenomenological notions of ‘experience´ and in the light of this notion, the paper tells the fathers’ stories about their upbringing of their children and aspirations for fatherhood. These stories share light on how these fathers take care of their children in everyday life. The study also shows that the controlling image of these fathers have affected how some Muslim fathers are actually being fathers. The study shows that fear of family-interventions from teachers or social workers e.g. have left some Muslim fathers in a limbo, being afraid of scolding their children, and being confused of ‘what good parenting in Denmark is’. This seems to have led to a more lassie fair upbringing than these fathers actually wanted. This study is important since anthropologists generally have underexposed the notion of fatherhood, and how fathers engage in the upbringing of their children. Over more, the vast majority of qualitative studies of fatherhood have been on white middleclass fathers, living in nuclear families. In addition, this study is crucial at this very moment due to the major refugee crisis in Denmark and in the Western world in general. A crisis, which has resulted in a vast number of scare campaigns against Islam from different nationalistic political parties, which enforces the negative controlling image of Muslim fathers.

Keywords: fatherhood, Muslim fathers, mistrust, education

Procedia PDF Downloads 193
3473 Counterfeit Product Detection Using Block Chain

Authors: Sharanya C. H., Pragathi M., Vathsala R. S., Theja K. V., Yashaswini S.

Abstract:

Identifying counterfeit products have become increasingly important in the product manufacturing industries in recent decades. This current ongoing product issue of counterfeiting has an impact on company sales and profits. To address the aforementioned issue, a functional blockchain technology was implemented, which effectively prevents the product from being counterfeited. By utilizing the blockchain technology, consumers are no longer required to rely on third parties to determine the authenticity of the product being purchased. Blockchain is a distributed database that stores data records known as blocks and several databases known as chains across various networks. Counterfeit products are identified using a QR code reader, and the product's QR code is linked to the blockchain management system. It compares the unique code obtained from the customer to the stored unique code to determine whether or not the product is original.

Keywords: blockchain, ethereum, QR code

Procedia PDF Downloads 180
3472 Senior Management in Innovative Companies: An Approach from Creativity and Innovation Management

Authors: Juan Carlos Montalvo-Rodriguez, Juan Felipe Espinosa-Cristia, Pablo Islas Madariaga, Jorge Cifuentes Valenzuela

Abstract:

This article presents different relationships between top management and innovative companies, based on the developments of creativity and innovation management. First of all, it contextualizes the innovative company in relation to management, creativity, and innovation. Secondly, it delves into the vision of top management of innovative companies, from the perspectives of the management of creativity and innovation. Thirdly, their commonalities are highlighted, bearing in mind the importance that both approaches attribute to aspects such as leadership, networks, strategy, culture, technology, environment, and complexity in the top management of innovative companies. Based on the above, an integration of both fields of study is proposed, as an alternative to deepen the relationship between senior management and the innovative company.

Keywords: top management, creativity, innovation, innovative firm, leadership, strategy

Procedia PDF Downloads 266
3471 Reflections from Participants and Researchers on a Trauma-Sensitive Yoga Program

Authors: Jessica Gladden

Abstract:

This study explored the perceived benefits of trauma-sensitive yoga programs. Participants attended one of two six-week trauma-sensitive yoga programs utilizing the G.R.A.C.E model, a format developed based on Emerson’s trauma-sensitive yoga guidelines and modified by the instructors. Participants in this study completed surveys on their experiences. The results of the surveys indicated that participants perceived improvements in self-care, embodiment, and mood. These results show that trauma-sensitive yoga may have benefits beyond the treatment of specific diagnoses that could be applied to a variety of populations. Reflections from one of the researchers who teaches in this program, as well as qualitative statements from the participants, will be shared to support the continued use of this method.

Keywords: yoga, trauma-sensitive, yoga therapy, trauma

Procedia PDF Downloads 165
3470 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks

Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba

Abstract:

Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.

Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN

Procedia PDF Downloads 61
3469 Considering Cultural and Linguistic Variables When Working as a Speech-Language Pathologist with Multicultural Students

Authors: Gabriela Smeckova

Abstract:

The entire world is becoming more and more diverse. The reasons why people migrate are different and unique for each family /individual. Professionals delivering services (including speech-language pathologists) must be prepared to work with clients coming from different cultural and/or linguistic backgrounds. Well-educated speech-language pathologists will consider many factors when delivering services. Some of them will be discussed during the presentation (language spoken, beliefs about health care and disabilities, reasons for immigration, etc.). The communication styles of the client can be different than the styles of the speech-language pathologist. The goal is to become culturally responsive in service delivery.

Keywords: culture, cultural competence, culturallly responsive practices, speech-language pathologist, cultural and linguistical variables, communication styles

Procedia PDF Downloads 80
3468 Extended Boolean Petri Nets Generating N-Ary Trees

Authors: Riddhi Jangid, Gajendra Pratap Singh

Abstract:

Petri nets, a mathematical tool, is used for modeling in different areas of computer sciences, biological networks, chemical systems and many other disciplines. A Petri net model of a given system is created by the graphical representation that describes the properties and behavior of the system. While looking for the behavior of any system, 1-safe Petri nets are of particular interest to many in the application part. Boolean Petri nets correspond to those class in 1- safe Petri nets that generate all the binary n-vectors in their reachability analysis. We study the class by changing different parameters like the token counts in the places and how the structure of the tree changes in the reachability analysis. We discuss here an extended class of Boolean Petri nets that generates n-ary trees in their reachability-based analysis.

Keywords: marking vector, n-vector, petri nets, reachability

Procedia PDF Downloads 85
3467 Educational Debriefing in Prehospital Medicine: A Qualitative Study Exploring Educational Debrief Facilitation and the Effects of Debriefing

Authors: Maria Ahmad, Michael Page, Danë Goodsman

Abstract:

‘Educational’ debriefing – a construct distinct from clinical debriefing – is used following simulated scenarios and is central to learning and development in fields ranging from aviation to emergency medicine. However, little research into educational debriefing in prehospital medicine exists. This qualitative study explored the facilitation and effects of prehospital educational debriefing and identified obstacles to debriefing, using the London’s Air Ambulance Pre-Hospital Care Course (PHCC) as a model. Method: Ethnographic observations of moulages and debriefs were conducted over two consecutive days of the PHCC in October 2019. Detailed contemporaneous field notes were made and analysed thematically. Subsequently, seven one-to-one, semi-structured interviews were conducted with four PHCC debrief facilitators and three course participants to explore their experiences of prehospital educational debriefing. Interview data were manually transcribed and analysed thematically. Results: Four overarching themes were identified: the approach to the facilitation of debriefs, effects of debriefing, facilitator development, and obstacles to debriefing. The unpredictable debriefing environment was seen as both hindering and paradoxically benefitting educational debriefing. Despite using varied debriefing structures, facilitators emphasised similar key debriefing components, including exploring participants’ reasoning and sharing experiences to improve learning and prevent future errors. Debriefing was associated with three principal effects: releasing emotion; learning and improving, particularly participant compound learning as they progressed through scenarios; and the application of learning to clinical practice. Facilitator training and feedback were central to facilitator learning and development. Several obstacles to debriefing were identified, including mismatch of participant and facilitator agendas, performance pressure, and time. Interestingly, when used appropriately in the educational environment, these obstacles may paradoxically enhance learning. Conclusions: Educational debriefing in prehospital medicine is complex. It requires the establishment of a safe learning environment, an understanding of participant agendas, and facilitator experience to maximise participant learning. Aspects unique to prehospital educational debriefing were identified, notably the unpredictable debriefing environment, interdisciplinary working, and the paradoxical benefit of educational obstacles for learning. This research also highlights aspects of educational debriefing not extensively detailed in the literature, such as compound participant learning, display of ‘professional honesty’ by facilitators, and facilitator learning, which require further exploration. Future research should also explore educational debriefing in other prehospital services.

Keywords: debriefing, prehospital medicine, prehospital medical education, pre-hospital care course

Procedia PDF Downloads 219
3466 Design of Neural Predictor for Vibration Analysis of Drilling Machine

Authors: İkbal Eski

Abstract:

This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.

Keywords: artificial neural network, vibration analyses, drilling machine, robust

Procedia PDF Downloads 397
3465 An Interesting Case of Management of Life Threatening Calcium Disequilibrium in a Patient with Parathyroid Tumor

Authors: Rajish Shil, Mohammad Ali Houri, Mohammad Milad Ismail, Fatimah Al Kaabi

Abstract:

The clinical presentation of Primary hyperparathyroidism can vary from simple asymptomatic hypercalcemia to severe life-threatening hypercalcemic crisis with multi-organ dysfunction, which can be due to parathyroid adenoma or sometimes with malignant cancer. This cascade of clinical presentation can lead to a diagnostic and therapeutic challenge for treating the disease. We are presenting a case of severe hypercalcemic crisis due to parathyroid adenoma with an emphasis on early management, diagnosis, and interventions to prevent any lifelong complications and any permanent organ dysfunction. A 30 years old female with a history of primary Infertility, admitted to Al Ain Hospital critical care unit with Acute Severe Necrotizing Pancreatitis. She initially had a 1-month history of abdominal pain on and off, for which she was treated conservatively with no much improvement, and later on, she developed life-threatening severe pancreatitis, which required her to be admitted to the critical care unit. She was transferred from a private healthcare facility, where she was found to have a very high level of calcium up to 15mmol/L. She received systemic Zoledronic Acid, which lowered her calcium level transiently and later was increased again. She went on to develop multiple end-organ damages along with multiple electrolytes disturbances. She was found to have high levels of Parathyroid hormone, which was correlated with a parathyroid mass on the neck via radiological imaging. After a long course of medical treatment to lower the calcium to a near-normal level, parathyroidectomy was done, which showed parathyroid adenoma on histology. She developed hungry bone syndrome after the surgery and pancreatic pseudocyst after resolving of pancreatitis. She required aggressive treatment with Intravenous calcium for her hypocalcemia as she received zoledronic acid at the beginning of the disease. Later on, she was discharged on long term calcium and other electrolytes supplements. In patients presenting with hypercalcemia, it is prudent to investigate and start treatment early to prevent complications and end-organ damage from hypercalcemia and also to treat the primary cause of the hypercalcemia, with conscious follow up to prevent hypocalcemic complications after treatment. It is important to follow up patients with parathyroid adenomas for a long period in order to detect any recurrence of the tumor or to make sure if the primary tumor is either benign or malignant.

Keywords: hypercalcemia, pancreatitis, hypocalcemia, hyperparathyroidism

Procedia PDF Downloads 125
3464 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 131
3463 Ophthalmic Ultrasound in the Diagnosis of Retinoblastoma

Authors: Abdulrahman Algaeed

Abstract:

The Ophthalmic Ultrasound is the easiest method of early diagnosing Retinoblastoma after clinical examination. It can be done with ease without sedation. King Khaled Eye Specialist Hospital is a tertiary care center where Retinoblastoma patients are often seen and treated there. The first modality to rule out the disease is Ophthalmic Ultrasound. Classic Retinoblastoma is easily diagnosed by using the conventional 10MHz Ophthalmic Ultrasound probe in the regular clinic setup. Retinal lesion with multiple, very highly reflective surfaces within lesion typical of Calcium deposits. The use of Standardized A-scan is very useful where internal reflectivity is classified as very highly reflective. Color Doppler is extremely useful as well to show the blood flow within lesion/s. In conclusion: Ophthalmic Ultrasound should be the first tool to be used to diagnose Retinoblastoma after clinical examination. The accuracy of the Exam is very high.

Keywords: doppler, retinoblastoma, reflectivity, ultrasound

Procedia PDF Downloads 115
3462 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization

Procedia PDF Downloads 385
3461 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks

Authors: Younghyun Jeon, Seungjoo Maeng

Abstract:

In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.

Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power

Procedia PDF Downloads 399
3460 Anesthetic Considerations for Spinal Cord Stimulators

Authors: Abuzar Baloach

Abstract:

Spinal cord stimulators (SCS) are increasingly used for managing chronic pain, but their presence requires careful anesthetic planning. This review explores critical anesthetic considerations for patients with SCS, encompassing preoperative, intraoperative, and acute pain management, as well as specific considerations for obstetric and out-of-operating-room procedures. Preoperative Evaluation: Thorough assessment is essential, including a detailed medical history of the SCS device, such as type, manufacturer, and settings. Additionally, a complete pain history and a physical exam are necessary to understand the patient’s baseline neurological function and assess mobility, which can impact anesthesia management. Intraoperative Considerations: Electrocautery poses a risk for patients with SCS due to potential interference. Monopolar electrocautery is discouraged, but if needed, the grounding pad should be positioned away from the device, and the device itself should be turned off. The SCS device can introduce ECG artifacts and potentially interfere with pacemakers and defibrillators (ICD), which may result in inappropriate pacing or shocks. Precautions, including baseline ECG and interrogation, are recommended if both devices are present. Furthermore, lithotripsy, though generally avoided, can be performed under certain conditions with caution. Obstetric Anesthesia: While SCS devices are generally turned off during pregnancy, they have shown no interference with fetal cardiotocography, and epidural placement can be safely achieved with a sterile technique below the SCS leads. Acute Pain Considerations: SCS placement is taken into account in pain management plans, especially with neuraxial anesthesia, as potential risks include infection, limited spread due to fibrous sheaths, and damage to the SCS leads. Out-of-Operating Room Procedures: MRI, previously contraindicated, is now conditionally safe with SCS devices, depending on manufacturer specifications. CT scans are generally safe, though radiation should be minimized to prevent device malfunction. For radiation therapy, specific safety measures are recommended, such as keeping the beam at least 1 cm away from the device and limiting the dose to prevent damage. In conclusion, anesthetic management for SCS patients requires meticulous planning across all stages of care. By understanding the unique interactions and potential risks associated with SCS and other devices, healthcare providers can enhance patient safety and improve outcomes. Further research and the establishment of standardized guidelines are essential to optimize perioperative care for this growing patient population.

Keywords: anesthesia, chronic pain, spinal cord stimulator, SCS

Procedia PDF Downloads 17
3459 Community Empowerment: The Contribution of Network Urbanism on Urban Poverty Reduction

Authors: Lucia Antonela Mitidieri

Abstract:

This research analyzes the application of a model of settlements management based on networks of territorial integration that advocates planning as a cyclical and participatory process that engages early on with civic society, the private sector and the state. Through qualitative methods such as participant observation, interviews with snowball technique and an active research on territories, concrete results of community empowerment are obtained from the promotion of productive enterprises and community spaces of encounter and exchange. Studying the cultural and organizational dimensions of empowerment allows building indicators such as increase of capacities or community cohesion that can lead to support local governments in achieving sustainable urban development for a reduction of urban poverty.

Keywords: community spaces, empowerment, network urbanism, participatory process

Procedia PDF Downloads 333
3458 Exploring Health Care Self-Advocacy of Queer Patients

Authors: Tiffany Wicks

Abstract:

Queer patients can face issues with self-advocating due to the factors of implicit provider bias, lack of tools and resources to self-advocate, and lack of comfortability in self-advocating based on prior experiences. In this study, five participants who identify as queer discussed their interactions with their healthcare providers. This exploratory study revealed that there is a need for healthcare provider education to reduce implicit bias and judgments about queer patients. There is also an important need for peer advocates in order to further inform healthcare promotion and decision-making before and during provider visits in an effort for a better outcome. Through this exploration, queer patients voiced their experiences and concerns to inform a need for change in healthcare collaboration between providers and patients in the queer community.

Keywords: queer, LGBT, patient, self-advocacy, healthcare

Procedia PDF Downloads 90