Search results for: evidence based practice
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33209

Search results for: evidence based practice

2969 Assessing the Applicability of Kevin Lynch’s Framework of ‘the Image of the City’ in the Case of a Walled City of Jaipur

Authors: Jay Patel

Abstract:

This Research is about investigating the ‘image’ of the city, and asks whether this ‘image’ holds any significance that can be changed. Kevin Lynch in the book ‘The image of the city’ develops a framework that breaks down the city’s image into five physical elements. These elements (Paths, Edge, Nodes, Districts, and Landmarks), according to Lynch assess the legibility of the urbanscapes, that emerged from his perception-based study in 3 different cities (New Jersey, Los Angeles, and Boston) in the USA. The aim of this research is to investigate whether Lynch’s framework can be applied within an Indian context or not. If so, what are the possibilities and whether the imageability of Indian cities can be depicted through the Lynch’s physical elements or it demands an extension to the framework by either adding or subtracting a physical attribute. For this research project, the walled city of Jaipur was selected, as it is considered one of the futuristic designed cities of all time in India. The other significant reason for choosing Jaipur was that it is a historically planned city with solid historical, touristic and local importance; allowing an opportunity to understand the application of Lynch's elements to the city's image. In other words, it provides an opportunity to examine how the disadvantages of a city's implicit programme (its relics of bygone eras) can be converted into assets by improving the imageability of the city. To obtain data, a structured semi-open ended interview method was chosen. The reason for selecting this method explicitly was to gain qualitative data from the users rather than collecting quantitative data from closed-ended questions. This allowed in-depth understanding and applicability of Kevin Lynch’s framework while assessing what needs to be added. The interviews were conducted in Jaipur that yielded varied inferences that were different from the expected learning outcomes, highlighting the need for extension on Lynch’s physical elements to achieve city’s image. Whilst analyzing the data, there were few attributes found that defined the image of Jaipur. These were categorized into two: a Physical aspect (streets and arcade entities, natural features, temples and temporary/ informal activities) and Associational aspects (History, Culture and Tradition, Medium of help in wayfinding, and intangible aspects).

Keywords: imageability, Kevin Lynch, people’s perception, assessment, associational aspects, physical aspects

Procedia PDF Downloads 201
2968 Is Electricity Consumption Stationary in Turkey?

Authors: Eyup Dogan

Abstract:

The number of research articles analyzing the integration properties of energy variables has rapidly increased in the energy literature for about a decade. The stochastic behaviors of energy variables are worth knowing due to several reasons. For instance, national policies to conserve or promote energy consumption, which should be taken as shocks to energy consumption, will have transitory effects in energy consumption if energy consumption is found to be stationary in one country. Furthermore, it is also important to know the order of integration to employ an appropriate econometric model. Despite being an important subject for applied energy (economics) and having a huge volume of studies, several known limitations still exist with the existing literature. For example, many of the studies use aggregate energy consumption and national level data. In addition, a huge part of the literature is either multi-country studies or solely focusing on the U.S. This is the first study in the literature that considers a form of energy consumption by sectors at sub-national level. This research study aims at investigating unit root properties of electricity consumption for 12 regions of Turkey by four sectors in addition to total electricity consumption for the purpose of filling the mentioned limits in the literature. In this regard, we analyze stationarity properties of 60 cases . Because the use of multiple unit root tests make the results robust and consistent, we apply Dickey-Fuller unit root test based on Generalized Least Squares regression (DFGLS), Phillips-Perron unit root test (PP) and Zivot-Andrews unit root test with one endogenous structural break (ZA). The main finding of this study is that electricity consumption is trend stationary in 7 cases according to DFGLS and PP, whereas it is stationary process in 12 cases when we take into account the structural change by applying ZA. Thus, shocks to electricity consumption have transitory effects in those cases; namely, agriculture in region 1, region 4 and region 7, industrial in region 5, region 8, region 9, region 10 and region 11, business in region 4, region 7 and region 9, total electricity consumption in region 11. Regarding policy implications, policies to decrease or stimulate the use of electricity have a long-run impact on electricity consumption in 80% of cases in Turkey given that 48 cases are non-stationary process. On the other hand, the past behavior of electricity consumption can be used to predict the future behavior of that in 12 cases only.

Keywords: unit root, electricity consumption, sectoral data, subnational data

Procedia PDF Downloads 416
2967 Seismic Assessment of Non-Structural Component Using Floor Design Spectrum

Authors: Amin Asgarian, Ghyslaine McClure

Abstract:

Experiences in the past earthquakes have clearly demonstrated the necessity of seismic design and assessment of Non-Structural Components (NSCs) particularly in post-disaster structures such as hospitals, power plants, etc. as they have to be permanently functional and operational. Meeting this objective is contingent upon having proper seismic performance of both structural and non-structural components. Proper seismic design, analysis, and assessment of NSCs can be attained through generation of Floor Design Spectrum (FDS) in a similar fashion as target spectrum for structural components. This paper presents the developed methodology to generate FDS directly from corresponding Uniform Hazard Spectrum (UHS) (i.e. design spectra for structural components). The methodology is based on the experimental and numerical analysis of a database of 27 real Reinforced Concrete (RC) buildings which are located in Montreal, Canada. The buildings were tested by Ambient Vibration Measurements (AVM) and their dynamic properties have been extracted and used as part of the approach. Database comprises 12 low-rises, 10 medium-rises, and 5 high-rises and they are mostly designated as post-disaster\emergency shelters by the city of Montreal. The buildings are subjected to 20 compatible seismic records to UHS of Montreal and Floor Response Spectra (FRS) are developed for every floors in two horizontal direction considering four different damping ratios of NSCs (i.e. 2, 5, 10, and 20 % viscous damping). Generated FRS (approximately 132’000 curves) are statistically studied and the methodology is proposed to generate the FDS directly from corresponding UHS. The approach is capable of generating the FDS for any selection of floor level and damping ratio of NSCs. It captures the effect of: dynamic interaction between primary (structural) and secondary (NSCs) systems, higher and torsional modes of primary structure. These are important improvements of this approach compared to conventional methods and code recommendations. Application of the proposed approach are represented here through two real case-study buildings: one low-rise building and one medium-rise. The proposed approach can be used as practical and robust tool for seismic assessment and design of NSCs especially in existing post-disaster structures.

Keywords: earthquake engineering, operational and functional components, operational modal analysis, seismic assessment and design

Procedia PDF Downloads 215
2966 Beta-Cyclodextrin Inclusion Complexes for Antifungal Food Packaging Applications

Authors: Cristina Munoz-Shuguli, Francisco Rodriguez, Julio Bruna, M. Jose Galotto, Abel Guarda

Abstract:

The microbial contamination in fruits due to the presence of fungal is the most important cause of their deterioration and loss. The development of active food packaging materials with antifungal properties has been proposed as an innovative strategy in order to prevent this problem. In this way, natural compounds as the essential oils or their derivatives, also called volatile compounds (VC), can be incorporated in the food packaging materials to control the fungal growth during fruit packaging. However, if the VC is incorporated directly in the packaging material, it is released very fast due to VC high volatility. For this reason, the formation of inclusion complexes through the encapsulation of VC into beta-cyclodextrin (β-CD) and their incorporation in package materials is an alternative to maintain an antifungal atmosphere around the packaged fruits for longer times. In this context, the aim of this work was to develop inclusion complexes based in β-CD and VC (β-CD:VC) for further application in the antifungal food packaging materials development. β-CD:VC inclusion complexes were obtained with two different molar ratios 2:1 and 1:1, through co-precipitation method. The entrapment efficiency of β-CD:VC as well the release of antifungal compound from inclusion complexes exposed to different relative humidity (25, 50, and 97 %) to headspace were determined by gaseous chromatography (GC). Also, thermal and antimicrobial properties of β-CD:VC were determined through thermogravimetric analysis (TGA) and antifungal assays against Botrytis cinerea, respectively. GC results showed that β-CD:VC 2:1 had a higher entrapment efficiency than β-CD:VC 1:1, with values of 75.5 ± 3.71 % and 59.6 ± 1.51 %, respectively. It was probably because during the synthesis of β-CD:VC 1:1, there was less molecular space to the movement of VC molecules. Furthermore, the release of VC from β-CD:VC was directly related with the relative humidity. High amount of VC was released when the inclusion complexes were exposed to high humidity, possibly due to the interactions between the water molecules and the β-CD hydrophilic wall. On the other hand, a better thermal stability of VC in inclusion complexes allowed to verify its effective encapsulation into β-CD. Finally, antimicrobial assays showed that the inclusion complexes had a high antifungal activity at very low concentrations. Therefore, the results obtained in this work allow suggesting the β-CD:VC inclusion complexes as potential candidates to the development of fruit antifungal packaging materials, which activity is relative humidity dependent.

Keywords: Botrytis cinerea, fruit packaging, headspace release, volatile compounds

Procedia PDF Downloads 126
2965 Gender, Climate Change, and Resilience in Kenyan Pastoralist Communities

Authors: Anne Waithira Dormal

Abstract:

Climate change is threatening pastoral livelihoods in Kajiado County, Kenya, through water shortages, livestock deaths, and increasing poverty. This study examines how these impacts differ for men and women within these communities. Limited access to resources, limited land and livestock rights, and limited decision-making power increase women's vulnerability, which is further burdened by traditional gender roles in water procurement. The research recognizes the complexity of climate change and emphasizes that factors such as wealth, family dynamics, and socioeconomic status also influence resilience. Effective adaptation strategies must address all genders. While livestock farming provides a safety net, socioeconomic empowerment through access to credit, healthcare, and education strengthens entire communities. An intersectional perspective that takes ethnicity, social status, and other factors into account is also crucial. This research, therefore, aims to examine how gender-specific adaptation strategies interact with gender and socioeconomic factors to determine the resilience of these Kenyan pastoralist communities. Such strategies, which address the specific needs and vulnerabilities of men and women, are expected to lead to increased resilience to climate change. The aim of the study is to identify effective, gender-specific adaptation strategies that can be integrated into climate change planning and implementation. Additionally, research awaits a deeper understanding of how socioeconomic factors interact with gender to influence vulnerability and resilience within these communities. The study uses a gender-sensitive qualitative approach with focus group discussions in four different pastoral and agropastoral communities. Both qualitative and demographic data are used to capture sources of income, education level, and household size of focus group respondents to increase the power of the analysis. While the research acknowledges the limitations of specific focus sites and potential biases in self-reporting, it offers valuable insights into gender and climate change in pastoral contexts. This study contributes to understanding gender-based vulnerabilities and building resilience in these communities.

Keywords: climate adaptation strategies, climate change, climate resilience, gendered vulnerability, pastoralism

Procedia PDF Downloads 54
2964 Thermal Perception by Older People in Open Spaces in Madrid: Relationships between Weather Parameters and Personal Characteristics

Authors: María Teresa Baquero, Ester Higueras

Abstract:

One of the challenges facing 21st century cities, is their adaptation to the phenomenon of an ageing population. International policies have been developed, such as the "Global Network for Age-friendly Cities and Communities". These cities must recognize the diversity of the elderly population, and facilitate an active, healthy, satisfied aging and promote inclusion. In order to promote active and healthy aging, older people should be encouraged to engage in physical activity, sunbathe, socialize and enjoy the public open spaces in the city. Some studies recognize thermal comfort as one of the factors that most influence the use of public open spaces. However, although some studies have shown vulnerability to thermal extremes and environmental conditions in older people, there is little research on thermal comfort for older adults, because it is usually analyzed based on the characteristics of the ¨average young person¨ without considering the physiological, physical and psychological differences that characterize the elderly. This study analyzes the relationship between the microclimate parameters as air temperature, relative humidity, wind speed and sky view factor (SVF) with the personal thermal perception of older adults in three public spaces in Madrid, through a mixed methodology that combines weather measurements with interviews, made during the year 2018. Statistical test like Chi-square, Spearman, and analysis of variance were used to analyze the relationship between preference votes and thermal sensation votes with environmental and personal parameters. The results show that there is a significant correlation between thermal sensation and thermal preference with the measured air temperature, age, level of clothing, the color of clothing, season, time of the day and kind of space while no influence of gender or other environmental variables was detected. These data would contribute to the design of comfortable public spaces that improve the welfare of the elderly contributing to "active and healthy aging" as one of the 21st century challenges cities face.

Keywords: healthy ageing, older adults, outdoor public space, thermal perception

Procedia PDF Downloads 139
2963 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach

Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna

Abstract:

This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.

Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS

Procedia PDF Downloads 235
2962 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System

Authors: Eronini Iheanyi Umez-Eronini

Abstract:

Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.

Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation

Procedia PDF Downloads 89
2961 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media

Authors: Amir Shafiee Kisomi, Mehrdad Mofidi

Abstract:

Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.

Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media

Procedia PDF Downloads 156
2960 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 71
2959 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 460
2958 Numerical Investigation of the Operating Parameters of the Vertical Axis Wind Turbine

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Tytus Tulwin

Abstract:

This paper describes the geometrical model, algorithm and CFD simulation of an airflow around a Vertical Axis Wind Turbine rotor. A solver, ANSYS Fluent, was applied for the numerical simulation. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed to avoid a costly preparation of a model or a prototype for a bench test. This research focuses on the rotor designed according to patent no PL 219985 with its blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on a regulation of blade angle α between the top and bottom parts of blades mounted on an axis. If angle α increases, the working surface which absorbs wind kinetic energy also increases. CFD calculations enable us to compare aerodynamic characteristics of forces acting on rotor working surfaces and specify rotor operation parameters like torque or turbine assembly power output. This paper is part of the research to improve an efficiency of a rotor assembly and it contains investigation of the impact of a blade angle of wind turbine working blades on the power output as a function of rotor torque, specific rotational speed and wind speed. The simulation was made for wind speeds ranging from 3.4 m/s to 6.2 m/s and blade angles of 30°, 60°, 90°. The simulation enables us to create a mathematical model to describe how aerodynamic forces acting each of the blade of the studied rotor are generated. Also, the simulation results are compared with the wind tunnel ones. This investigation enables us to estimate the growth in turbine power output if a blade angle changes. The regulation of blade angle α enables a smooth change in turbine rotor power, which is a kind of safety measures if the wind is strong. Decreasing blade angle α reduces the risk of damaging or destroying a turbine that is still in operation and there is no complete rotor braking as it is in other Horizontal Axis Wind Turbines. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, mathematical model, numerical analysis, power, renewable energy, wind turbine

Procedia PDF Downloads 342
2957 Effects of Subsidy Reform on Consumption and Income Inequalities in Iran

Authors: Pouneh Soleimaninejadian, Chengyu Yang

Abstract:

In this paper, we use data on Household Income and Expenditure survey of Statistics Centre of Iran, conducted from 2005-2014, to calculate several inequality measures and to estimate the effects of Iran’s targeted subsidy reform act on consumption and income inequality. We first calculate Gini coefficients for income and consumption in order to study the relation between the two and also the effects of subsidy reform. Results show that consumption inequality has not been always mirroring changes in income inequality. However, both Gini coefficients indicate that subsidy reform caused improvement in inequality. Then we calculate Generalized Entropy Index based on consumption and income for years before and after the Subsidy Reform Act of 2010 in order to have a closer look into the changes in internal structure of inequality after subsidy reforms. We find that the improvement in income inequality is mostly caused by the decrease in inequality of lower income individuals. At the same time consumption inequality has been decreased as a result of more equal consumption in both lower and higher income groups. Moreover, the increase in Engle coefficient after the subsidy reform shows that a bigger portion of income is allocated to consumption on food which is a sign of lower living standard in general. This increase in Engle coefficient is due to rise in inflation rate and relative increase in price of food which partially is another consequence of subsidy reform. We have conducted some experiments on effect of subsidy payments and possible effects of change on distribution pattern and amount of cash subsidy payments on income inequality. Result of the effect of cash payments on income inequality shows that it leads to a definite decrease in income inequality and had a bigger share in improvement of rural areas compared to those of urban households. We also examine the possible effect of constant payments on the increasing income inequality for years after 2011. We conclude that reduction in value of payments as a result of inflation plays an important role regardless of the fact that there may be other reasons. We finally experiment with alternative allocations of transfers while keeping the total amount of cash transfers constant or make it smaller through eliminating three higher deciles from the cash payment program, the result shows that income equality would be improved significantly.

Keywords: consumption inequality, generalized entropy index, income inequality, Irans subsidy reform

Procedia PDF Downloads 241
2956 Comparison of the Efficacy of Ketamine-Propofol versus Thiopental Sodium-Fentanyl in Procedural Sedation in the Emergency Department: A Randomized Double-Blind Clinical Trial

Authors: Maryam Bahreini, Mostafa Talebi Garekani, Fatemeh Rasooli, Atefeh Abdollahi

Abstract:

Introduction: Procedural sedation and analgesia have been desirable to handle painful procedures. The trend to find the agent with more efficacy and less complications is still controversial; thus, many sedative regimens have been studied. This study tried to assess the effectiveness and adverse effects of thiopental sodium-fentanyl with the known medication, ketamine-propofol for procedural sedation in the emergency department. Methods: Consenting patients were enrolled in this randomized double-blind trial to receive either 1:1 ketamine-propofol (KP) or thiopental-fentanyl (TF) 1:1 mg: Mg proportion on a weight-based dosing basis to reach the sedation level of American Society of Anesthesiologist class III/IV. The respiratory and hemodynamic complications, nausea and vomiting, recovery agitation, patient recall and satisfaction, provider satisfaction and recovery time were compared. The study was registered in Iranian randomized Control Trial Registry (Code: IRCT2015111325025N1). Results: 96 adult patients were included and randomized, 47 in the KP group and 49 in the TF group. 2.1% in the KP group and 8.1 % in the TF group experienced transient hypoxia leading to performing 4.2 % versus 8.1 % airway maneuvers for 2 groups, respectively; however, no statistically significant difference was observed between 2 combinations, and there was no report of endotracheal placement or further admission. Patient and physician satisfaction were significantly higher in the KP group. There was no difference in respiratory, gastrointestinal, cardiovascular and psychiatric adverse events, recovery time and patient recall of the procedure between groups. The efficacy and complications were not related to the type of procedure or patients’ smoking or addiction trends. Conclusion: Ketamine-propofol and thiopental-fentanyl combinations were effectively comparable although KP resulted in higher patient and provider satisfaction. It is estimated that thiopental fentanyl combination can be as potent and efficacious as ketofol with relatively similar incidence of adverse events in procedural sedation.

Keywords: adverse effects, conscious sedation, fentanyl, propofol, ketamine, safety, thiopental

Procedia PDF Downloads 222
2955 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 147
2954 Structure-Reactivity Relationship of Some Rhᴵᴵᴵ and Osᴵᴵᴵ Complexes with N-Inert Ligands in Ionic Liquids

Authors: Jovana Bogojeski, Dusan Cocic, Nenad Jankovic, Angelina Petrovic

Abstract:

Kinetically-inert transition metal complexes, such as Rh(III) and Os(III) complexes, attract increasing attention as leading scaffolds for the development of potential pharmacological agents due to their inertness and stability. Therefore, we have designed and fully characterized a few novel rhodium(III) and osmium(III) complexes with a tridentate nitrogen−donor chelate system. For some complexes, the crystal X-ray structure analysis was performed. Reactivity of the newly synthesized complexes towards small biomolecules, such as L-methionine (L-Met), guanosine-5’-monophosphate (5’-GMP), and glutathione (GSH) has been examined. Also, the reactivity of these complexes towards the DNA/RNA (Ribonucleic acid) duplexes was investigated. Obtained results show that the newly synthesized complexes exhibit good affinity towards the studied ligands. Results also show that the complexes react faster with the RNA duplex than with the DNA and that in the DNA duplex reaction is faster with 15mer GG than with the 22mer GG. The UV-Vis (Ultraviolet-visible spectroscopy) is absorption spectroscopy, and the EB (Ethidium bromide) displacement studies were used to examine the interaction of these complexes with CT-DNA and BSA (Bovine serum albumin). All studied complex showed good interaction ability with both the DNA and BSA. Furthermore, the DFT (Density-functional theory) calculation and docking studies were performed. The impact of the metal complex on the cytotoxicity was tested by MTT assay (a colorimetric assay for assessing cell metabolic activity) on HCT-116 lines (human colon cancer cell line). In addition, all these tests were repeated in the presence of several water-soluble biologically active ionic liquids. Attained results indicate that the ionic liquids increase the activity of the investigated complexes. All obtained results in this study imply that the introduction of different spectator ligand can be used to improve the reactivity of rhodium(III) and osmium(III) complexes. Finally, these results indicate that the examined complexes show reactivity characteristics needed for potential anti-tumor agents, with possible targets being both the DNA and proteins. Every new contribution in this field is highly warranted due to the current lack of clinically used Metallo-based alternatives to cisplatin.

Keywords: biomolecules, ionic liquids, osmium(III), rhodium(III)

Procedia PDF Downloads 155
2953 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 430
2952 Identification of Fluorinated Methylsiloxanes in Environmental Matrices Near a Manufacturing Plant in Eastern China

Authors: Liqin Zhi, Lin Xu, Wenxia Wei, Yaqi Cai

Abstract:

Recently, replacing some of the methyl groups in polydimethylsiloxanes with other functional groups has been extensively explored to obtain modified polymethylsiloxanes with special properties that enable new industrial applications. Fluorinated polysiloxanes, one type of these modified polysiloxanes, are based on a siloxane backbone with fluorinated groups attached to the side chains of polysiloxanes. As a commercially significant material, poly[methyl(trifluoropropyl)siloxane] (PMTFPS) has sufficient fluorine content to be useful as a fuel-and oil-resistant elastomer, which combines both the chemical and solvent resistance of fluorocarbons and the wide temperature range applicability of organosilicones. PMTFPS products can be used in many applications in which resistance to fuel, oils and hydrocarbon solvents is required, including use as lubricants in bearings, sealants, and elastomers for aerospace and automotive fuel systems. Fluorinated methylsiloxanes, a type of modified methylsiloxane, include tris(trifluoropropyl)trimethylcyclotrisiloxane (D3F) and tetrakis(trifluoropropyl)tetramethylcyclotetrasiloxane (D4F), both of which contain trifluoropropyl groups in the side chains of cyclic methylsiloxanes. D3F, as an important monomer in the manufacture of PMTFPS, is often present as an impurity in PMTFPS. In addition, the synthesis of PMTFPS from D3F could form other fluorinated methylsiloxanes with low molecular weights (such as D4F). The yearly demand and production volumes of D3F increased rapidly all over world. Fluorinated methylsiloxanes might be released into the environment via different pathways during the production and application of PMTFPS. However, there is a lack of data concerning the emission, environmental occurrence and potential environmental impacts of fluorinated methylsiloxanes. Here, we report fluorinated methylsiloxanes (D3F and D4F) in surface water and sediment samples collected near a fluorinated methylsiloxane manufacturing plant in Weihai, China. The concentrations of D3F and D4F in surface water ranged from 3.29 to 291 ng/L and from 7.02 to 168 ng/L, respectively. The concentrations of D3F and D4F in sediment ranged from 11.8 to 5478 ng/g and from 17.2 to 6277 ng/g, respectively. In simulation experiment, the half-lives of D3F and D4F at different pH values (5.2, 6.4, 7.2, 8.3 and 9.2) varied from 80.6 to 154 h and from 267 to 533 h respectively. CF₃(CH₂)₂MeSi(OH)₂ was identified as one of the main hydrolysis products of fluorinated methylsiloxanes. It was also detected in the river samples at concentrations of 72.1-182.9 ng/L. In addition, the slow rearrangement of D3F (spiked concentration = 500 ng/L) to D4F (concentration = 11.0-22.7 ng/L) was also found during 336h hydrolysis experiment.

Keywords: fluorinated methylsiloxanes, environmental matrices, hydrolysis, sediment

Procedia PDF Downloads 118
2951 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 49
2950 Comparison of Rainfall Trends in the Western Ghats and Coastal Region of Karnataka, India

Authors: Vinay C. Doranalu, Amba Shetty

Abstract:

In recent days due to climate change, there is a large variation in spatial distribution of daily rainfall within a small region. Rainfall is one of the main end climatic variables which affect spatio-temporal patterns of water availability. The real task postured by the change in climate is identification, estimation and understanding the uncertainty of rainfall. This study intended to analyze the spatial variations and temporal trends of daily precipitation using high resolution (0.25º x 0.25º) gridded data of Indian Meteorological Department (IMD). For the study, 38 grid points were selected in the study area and analyzed for daily precipitation time series (113 years) over the period 1901-2013. Grid points were divided into two zones based on the elevation and situated location of grid points: Low Land (exposed to sea and low elevated area/ coastal region) and High Land (Interior from sea and high elevated area/western Ghats). Time series were applied to examine the spatial analysis and temporal trends in each grid points by non-parametric Mann-Kendall test and Theil-Sen estimator to perceive the nature of trend and magnitude of slope in trend of rainfall. Pettit-Mann-Whitney test is applied to detect the most probable change point in trends of the time period. Results have revealed remarkable monotonic trend in each grid for daily precipitation of the time series. In general, by the regional cluster analysis found that increasing precipitation trend in shoreline region and decreasing trend in Western Ghats from recent years. Spatial distribution of rainfall can be partly explained by heterogeneity in temporal trends of rainfall by change point analysis. The Mann-Kendall test shows significant variation as weaker rainfall towards the rainfall distribution over eastern parts of the Western Ghats region of Karnataka.

Keywords: change point analysis, coastal region India, gridded rainfall data, non-parametric

Procedia PDF Downloads 298
2949 Understanding Knowledge, Skills and Competency Needs in Digital Health for Current and Future Health Workforce

Authors: Sisira Edirippulige

Abstract:

Background: Digital health education and training (DHET) is imperative for preparing current and future clinicians to work competently in digitally enabled environments. Despite rapid integration of digital health in modern health services, systematic education and training opportunities for health workers is still lacking. Objectives: This study aimed to investigate healthcare professionals’ perspectives and expectations regarding the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Methods: A qualitative study design with semi-structured individual interviews was employed. A purposive sample method was adopted to collect relevant information from the health workers. Inductive thematic analysis was used to analyse data. Interviews were audio-recorded and transcribed verbatim. Consolidated Criteria for Reporting Qualitative Research (COREQ) was followed when we reported this study. Results: Two themes emerged while analysing the data: (1) what to teach in DHET and (2) how to teach DHET. Overall, healthcare professionals agreed that DHET is important for preparing current and future clinicians for working competently in digitally enabled environments. Knowledge relating to what is digital health, types of digital health, use of technology and human factors in digital health were considered as important to be taught in DHET. Skills relating to digital health consultations, clinical information system management and remote monitoring were considered important to be taught. Blended learning which combined e-learning and classroom-based teaching, simulation sessions and clinical rotations were suggested by healthcare professionals as optimal approaches to deliver the above-mentioned content. Conclusions: This study is the first of its kind to investigate health professionals’ perspectives and expectations relating to the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Healthcare workers are keen to acquire relevant knowledge, skills and competencies related to digital health. Different modes of education delivery is of interest to fit in with busy schedule of health workers.

Keywords: digital health, telehealth, telemedicine, education, curriculum

Procedia PDF Downloads 155
2948 Alternative Approaches to Community Involvement in Resettlement Schemes to Prevent Potential Conflicts: Case Study in Chibuto District, Mozambique

Authors: Constâncio Augusto Machanguana

Abstract:

The world over, resettling communities, for whatever purpose (mining, dams, forestry and wildlife management, roads, or facilitating services delivery), often leads to tensions between those resettled, the investors, and the local and national governments involved in the process. Causes include unclear government legislation and regulations, confusing Corporate Social Responsibility policies and guidelines, and other social-economic policies leading to unrealistic expectations among those being resettled, causing frustrations within the community, shifting them to any imminent conflict against the investors (company). The exploitation of heavy mineral sands along Mozambique’s long coastline and hinterland has not been providing a benefit for the affected communities. A case in point is the exploration, since 2018, of heavy sands in Chibuto District in the Southern Province of Gaza. A likely contributing factor is the standard type of socio-economic surveys and community involvement processes that could smooth the relationship among the parties. This research aims to investigate alternative processes to plan, initiate and guide resettlement processes in such a way that tensions and conflicts are avoided. Based on the process already finished, compared to similar cases along with the country, mixed methods to collect primary data were adopted: three focus groups of 125 people, representing 324 resettled householders; five semi-structured interviews with relevant stakeholders such as the local government, NGO’s and local leaders to understand their role in all stages of the process. The preliminary results show that the community has limited or no understanding of the potential impacts of these large-scale explorations, and the apparent harmony between the parties (community and company) may hide the dissatisfaction of those resettled. So, rather than focusing on negative mining impacts, the research contributes to science by identifying the best resettlement approach that can be replicated in other contexts along with the country in the actual context of the new discovery of mineral resources.

Keywords: conflict mitigation, resettlement, mining, Mozambique

Procedia PDF Downloads 118
2947 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data

Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang

Abstract:

The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.

Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds

Procedia PDF Downloads 120
2946 Studies on the Effect of Bio-Methanated Distillery Spentwash on Soil Properties and Crop Yields

Authors: S. K. Gali

Abstract:

Spentwash, An effluent of distillery is an environmental pollutant because of its high load of pollutants (pH: 2-4; BOD>40,000 mg/l, COD>100,000mg/l and TDS >70,000mg/l). But However, after subjecting it to primary treatment (bio-methanation), Its pollutant load gets drastically reduced (pH: 7.5-8.5, BOD<10,000 mg/l) and could be disposed off safely as a source of organic matter and plant nutrients for crop production. With the consent of State Pollution Control Board, the distilleries in Karnataka are taking up ‘one time controlled land application’ of bio-methanated spentwash in farmers’ fields. A monitoring study was undertaken in Belgaum district of Karnataka State with an objective of studying the effect of land application of bio-methanated spent wash of a distillery on soil properties and crop growth. The treated spentwash was applied uniformly to the fallow dry lands in different farmers’ fields during summer, 2012 at recommended rate (based on nitrogen requirement of crops). The application was made at least a fortnight before sowing/planting operations. The analysis of soils collected before land application of spentwash and after harvest of crops revealed that there was no adverse effect of applied spentwash on soil characteristics. A slight build up in soluble salts was observed but, however all the soils recorded EC of less than 2.0 dSm-1. An increase in soil organic carbon (SOC) and available nitrogen (N) by about 10 to 30 % was observed in the spentwash applied soils. The presence of good amount of biodegradable organics in the treated spentwash (BOD of 6550 mg/l) contributed for increase in SOC and N. A substantial build up in available potassium (K) status (50 to 200%) was observed due to spentwash application. This was attributed to the high K content in spentwash (6950 mg/l). The growth of crops in the spentwash applied fields was higher and farmers could get nearly 10 to 20 per cent higher yields, especially in sugarcane and corn. The analysis of ground water samples showed that the quality of water was not affected due to land application of treated spentwash. Apart from realizing higher crop yields, the farmers were able to save money on N and K fertilisers as the applied spentwash met the crop requirement. Hence, it could be concluded that the bio-methanated distillery spentwash can be gainfully utilized in crop production without polluting the environment.

Keywords: bio-methanation, pollutant, potassium status, soil organic carbon

Procedia PDF Downloads 395
2945 Implication of Soil and Seismic Ground Motion Variability on Dynamic Pile Group Impedance for Bridges

Authors: Muhammad Tariq Chaudhary

Abstract:

Bridges constitute a vital link in a transportation system and their functionality after an earthquake is critical in reducing disruption to social and economic activities of the society. Bridges supported on pile foundations are commonly used in many earthquake-prone regions. In order to properly design or investigate the performance of such structures, it is imperative that the effect of soil-foundation-structure interaction be properly taken into account. This study focused on the influence of soil and seismic ground motion variability on the dynamic impedance of pile-group foundations typically used for medium-span (about 30 m) urban viaduct bridges. Soil profiles corresponding to various AASHTO soil classes were selected from actual data of such bridges and / or from the literature. The selected soil profiles were subjected to 1-D wave propagation analysis to determine effective values of soil shear modulus and damping ratio for a suite of properly selected actual seismic ground motions varying in PGA from 0.01g to 0.64g, and having variable velocity and frequency content. The effective values of the soil parameters were then employed to determine the dynamic impedance of pile groups in horizontal, vertical and rocking modes in various soil profiles. Pile diameter was kept constant for bridges in various soil profiles while pile length and number of piles were changed based on AASHTO design requirements for various soil profiles and earthquake ground motions. Conclusions were drawn regarding variability in effective soil shear modulus, soil damping, shear wave velocity and pile group impedance for various soil profiles and ground motions and its implications for design and evaluation of pile-supported bridges. It was found that even though the effective soil parameters underwent drastic variation with increasing PGA, the pile group impedance was not affected much in properly designed pile foundations due to the corresponding increase in pile length or increase in a number of piles or both when subjected to increasing PGA or founded in weaker soil profiles.

Keywords: bridge, pile foundation, dynamic foundation impedance, soil profile, shear wave velocity, seismic ground motion, seismic wave propagation

Procedia PDF Downloads 329
2944 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 217
2943 The Sustainable Development for Coastal Tourist Building

Authors: D. Avila

Abstract:

The tourism industry is a phenomenon that has become a growing presence in international socio-economic dynamics, which in most cases exceeds the control parameters in the various environmental regulations and sustainability of existing resources. Because of this, the effects on the natural environment at the regional and national levels represent a challenge, for which a number of strategies are necessary to minimize the environmental impact generated by the occupation of the territory. The hotel tourist building and sustainable development in the coastal zone, have an important impact on the environment and on the physical and psychological health of the inhabitants. Environmental quality associated with the comfort of humans to the sustainable development of natural resources; applied to the hotel architecture this concept involves the incorporation of new demands on all of the constructive process of a building, changing customs of developers and users. The methodology developed provides an initial analysis to determine and rank the different tourist buildings, with the above it will be feasible to establish methods of study and environmental impact assessment. Finally, it is necessary to establish an overview regarding the best way to implement tourism development on the coast, containing guidelines to improve and protect the natural environment. This paper analyzes the parameters and strategies to reduce environmental impacts derived from deployments tourism on the coast, through a series of recommendations towards sustainability, in the context of the Bahia de Banderas, Puerto Vallarta, Jalisco. The environmental impact caused by the implementation of tourism development, perceived in a coastal environment, forcing a series of processes, ranging from the identification of impacts, prediction and evaluation of them. For this purpose are described below, different techniques and valuation procedures: Identification of impacts. Methods for the identification of damage caused to the environment pursue general purpose to obtain a group of negative indicators that are subsequently used in the study of environmental impact. There are several systematic methods to identify the impacts caused by human activities. In the present work, develops a procedure based and adapted from the Ministry of works public urban reference in studies of environmental impacts, the representative methods are: list of contrast, arrays, and networks, method of transparencies and superposition of maps.

Keywords: environmental impact, physical health, sustainability, tourist building

Procedia PDF Downloads 333
2942 Housing Price Dynamics: Comparative Study of 1980-1999 and the New Millenium

Authors: Janne Engblom, Elias Oikarinen

Abstract:

The understanding of housing price dynamics is of importance to a great number of agents: to portfolio investors, banks, real estate brokers and construction companies as well as to policy makers and households. A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models is dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Common Correlated Effects estimator (CCE) of dynamic panel data which also accounts for cross-sectional dependence which is caused by common structures of the economy. In presence of cross-sectional dependence standard OLS gives biased estimates. In this study, U.S housing price dynamics were examined empirically using the dynamic CCE estimator with first-difference of housing price as the dependent and first-differences of per capita income, interest rate, housing stock and lagged price together with deviation of housing prices from their long-run equilibrium level as independents. These deviations were also estimated from the data. The aim of the analysis was to provide estimates with comparisons of estimates between 1980-1999 and 2000-2012. Based on data of 50 U.S cities over 1980-2012 differences of short-run housing price dynamics estimates were mostly significant when two time periods were compared. Significance tests of differences were provided by the model containing interaction terms of independents and time dummy variable. Residual analysis showed very low cross-sectional correlation of the model residuals compared with the standard OLS approach. This means a good fit of CCE estimator model. Estimates of the dynamic panel data model were in line with the theory of housing price dynamics. Results also suggest that dynamics of a housing market is evolving over time.

Keywords: dynamic model, panel data, cross-sectional dependence, interaction model

Procedia PDF Downloads 256
2941 Evaluation of Surface Water and Groundwater Quality in Parts of Umunneochi Southeast, Nigeria

Authors: Joshua Chima Chizoba, Wisdom Izuchukwu Uzoma, Elizabeth Ifeyiwa Okoyeh

Abstract:

Water cannot be optimally used and sustained unless the quality is periodically assessed. The study area Umunneochi and environs are located in south eastern part of Nigeria. It stretches geographically from latitudes 50501N to 60000N and longitudes 70201E to 70301. The major geologic formations in the area include the Asu River group, Nkporo Shale, and Ajali Sandstone. The aim of this study is to evaluate the hydrochemical characteristics of surface and ground water sources in parts of Umunneochi and environs in order to establish portability of the water sources for drinking, domestic and irrigation purposes. A total of 15 samples were collected randomly from streams, springs and wells. The samples were analyzed for physicochemical parameters and heavy metals using handheld digital kits, photometer, titration method and Atomic Absorption Spectrophotometer (AAS) following acceptable standards. The obtained analytical data were interpreted, and results were compared with World Health Organization (WHO) standard. The concentration of pH, SO42-and Cl- range from 5.81 mg/l – 6.07 mg/l, 41.93 mg/l – 142.95 mg/l and 20.00 mg/l – 111 mg/l respectively, while Pb and Zn revealed a relative low mean concentration of 0.14 mg/l and 0.40 mg/l, which are all within (WHO) permissible limits except pH. About 27% of the samples are moderately hard. This is attributed to the mining activities in the areas. The abundance of cations and anions in the area are in the order of K+>Na+>Mg2+>Ca2+ and SO4->Cl->HCO3->NO3-, respectively. Chloride, bicarbonate, and nitrate are all within the permissible limits. 13.33% of the total samples contain Sulphate above the standard permissible limits. The values of calculated Water Quality Index (WQI) are less than 50 indicating excellent water. The predominant water-type in the study area is Na-Cl water type and mixed Ca-Mg-Cl water type based on the sample plots on the Piper diagram. The Sodium Absorption Ratio (SAR) calculations showed excellent water for consumption and also good water for irrigation purpose with low sodium and alkalinity ratio respectively. Government water projects are recommended in the area for sustainable domestic and agricultural water supply to ease the stress of water supply problems.

Keywords: groundwater, hydrochemical, physichochemical, water-type, sodium adsorption ratio

Procedia PDF Downloads 135
2940 Automatic Vertical Wicking Tester Based on Optoelectronic Techniques

Authors: Chi-Wai Kan, Kam-Hong Chau, Ho-Shing Law

Abstract:

Wicking property is important for textile finishing and wears comfort. Good wicking properties can ensure uniformity and efficiency of the textiles treatment. In view of wear comfort, quick wicking fabrics facilitate the evaporation of sweat. Therefore, the wetness sensation of the skin is minimised to prevent discomfort. The testing method for vertical wicking was standardised by the American Association of Textile Chemists and Colorists (AATCC) in 2011. The traditional vertical wicking test involves human error to observe fast changing and/or unclear wicking height. This study introduces optoelectronic devices to achieve an automatic Vertical Wicking Tester (VWT) and reduce human error. The VWT can record the wicking time and wicking height of samples. By reducing the difficulties of manual judgment, the reliability of the vertical wicking experiment is highly increased. Furthermore, labour is greatly decreased by using the VWT. The automatic measurement of the VWT has optoelectronic devices to trace the liquid wicking with a simple operation procedure. The optoelectronic devices detect the colour difference between dry and wet samples. This allows high sensitivity to a difference in irradiance down to 10 μW/cm². Therefore, the VWT is capable of testing dark fabric. The VWT gives a wicking distance (wicking height) of 1 mm resolution and a wicking time of one-second resolution. Acknowledgment: This is a research project of HKRITA funded by Innovation and Technology Fund (ITF) with title “Development of an Automatic Measuring System for Vertical Wicking” (ITP/055/20TP). Author would like to thank the financial support by ITF. Any opinions, findings, conclusions or recommendations expressed in this material/event (or by members of the project team) do not reflect the views of the Government of the Hong Kong Special Administrative Region, the Innovation and Technology Commission or the Panel of Assessors for the Innovation and Technology Support Programme of the Innovation and Technology Fund and the Hong Kong Research Institute of Textiles and Apparel. Also, we would like to thank the support and sponsorship from Lai Tak Enterprises Limited, Kingis Development Limited and Wing Yue Textile Company Limited.

Keywords: AATCC method, comfort, textile measurement, wetness sensation

Procedia PDF Downloads 104