Search results for: solid particle erosion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4070

Search results for: solid particle erosion

1100 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design

Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon

Abstract:

The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.

Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites

Procedia PDF Downloads 100
1099 Optimization, Characterization and Stability of Trachyspermum copticum Essential Oil Loaded in Niosome Nanocarriers

Authors: Mohadese Hashemi, Elham Akhoundi Kharanaghi, Fatemeh Haghiralsadat, Mojgan Yazdani, Omid Javani, Mahboobe Sharafodini, Davood Rajabi

Abstract:

Niosomes are non-ionic surfactant vesicles in aqueous media resulting in closed bilayer structures that can be used as carriers of hydrophilic and hydrophobic compounds. The use of niosomes for encapsulation of essential oils (EOs) is an attractive new approach to overcome their physicochemical stability concerns include sensibility to oxygen, light, temperature, and volatility, and their reduced bioavailability which is due to low solubility in water. EOs are unstable and fragile volatile compounds which have strong interest in pharmaceutical due to their medicinal properties such as antiviral, anti-inflammatory, antifungal, and antioxidant activities without side effects. Trachyspermum copticum (ajwain) is an annual aromatic plant with important medicinal properties that grows widely around Mediterranean region and south-west Asian countries. The major components of the ajwain oil were reported as thymol, γ-terpinene, p-cymene, and carvacrol which provide antimicrobial and antioxidant activity. The aim of this work was to formulate ajwain essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Ajwain oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: trachyspermum copticum, ajwain, niosome, essential oil, encapsulation

Procedia PDF Downloads 473
1098 Adsorption of Basic Dyes Using Activated Carbon Prepared from Date Palm Fibre

Authors: Riham Hazzaa , Mohamed Hussien Abd El Megid

Abstract:

Dyes are toxic and cause severe problems to aquatic environment. The use of agricultural solid wastes is considered as low-cost and eco-friendly adsorbents for removing dyes from waste water. Date palm fibre, an abundant agricultural by-product in Egypt was used to prepare activated carbon by physical activation method. This study investigates the use of date palm fiber (DPF) and activated carbon (DPFAC) for the removal of a basic dye, methylene blue (MB) from simulated waste water. The effects of temperature, pH of solution, initial dye (concentration, adsorbent dosage and contact time were studied. The experimental equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin, Radushkevich and Harkins–Jura isotherms. Adsorption kinetics data were modeled using the pseudo-first and pseudo-second order and Elvoich equations. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The results revealed that as the initial dye concentration , amount of adsorbent and temperature increased, the percentage of dye removal increased. The optimum pH required for maximum removal was found to be 6. The adsorption of methylene blue dye was better described by the pseudo-second-order equation. Results indicated that DPFAC and DPF could be an alternative for more costly adsorbents used for dye removal.

Keywords: adsorption, basic dye, palm fiber, activated carbon

Procedia PDF Downloads 324
1097 A Structural Constitutive Model for Viscoelastic Rheological Behavior of Human Saphenous Vein Using Experimental Assays

Authors: Rassoli Aisa, Abrishami Movahhed Arezu, Faturaee Nasser, Seddighi Amir Saeed, Shafigh Mohammad

Abstract:

Cardiovascular diseases are one of the most common causes of mortality in developed countries. Coronary artery abnormalities and carotid artery stenosis, also known as silent death, are among these diseases. One of the treatment methods for these diseases is to create a deviatory pathway to conduct blood into the heart through a bypass surgery. The saphenous vein is usually used in this surgery to create the deviatory pathway. Unfortunately, a re-surgery will be necessary after some years due to ignoring the disagreement of mechanical properties of graft tissue and/or applied prostheses with those of host tissue. The objective of the present study is to clarify the viscoelastic behavior of human saphenous tissue. The stress relaxation tests in circumferential and longitudinal direction were done in this vein by exerting 20% and 50% strains. Considering the stress relaxation curves obtained from stress relaxation tests and the coefficients of the standard solid model, it was demonstrated that the saphenous vein has a non-linear viscoelastic behavior. Thereafter, the fitting with Fung’s quasilinear viscoelastic (QLV) model was performed based on stress relaxation time curves. Finally, the coefficients of Fung’s QLV model, which models the behavior of saphenous tissue very well, were presented.

Keywords: Viscoelastic behavior, stress relaxation test, uniaxial tensile test, Fung’s quasilinear viscoelastic (QLV) model, strain rate

Procedia PDF Downloads 316
1096 Improvement of Diesel Oil Properties by Batch Adsorption and Simple Distillation Processes

Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft

Abstract:

In this research, diesel oil properties, such as aniline point, density, diesel index, cetane index and cetane number before and after treatment were studied. The investigation was considered for diesel oil samples after batch adsorption process using powdered activated carbon. Batch distillation process was applied to all treated diesel oil samples for separation of the solid-liquid mixture. The diesel oil properties were studied to observe the impact of adsorptive desulfurization process on fuel quality. Results showed that the best cetane number for desulfurized diesel oil was found at the best-operating conditions 60℃, 10g activated carbon and 180 minute contact time. The best-desulfurized diesel oil cetane number was obtained around 51 while the cetane number of untreated diesel oil was 34. Results also showed that the calculated cetane number increases as the operating temperature and amounts of adsorbent increases. This behavior was same for other diesel oil properties such as aniline point, diesel index, cetane index and density. The best value for all the fuel properties was found at same operating conditions mentioned above. Thus, it can be concluded that adsorptive desulfurization using powdered activated carbon as adsorbent had significantly improved the fuel quality of diesel oil by reducing aromatic contents of diesel oil.

Keywords: activated carbon, adsorption, desulfurization, diesel oil, fuel quality

Procedia PDF Downloads 135
1095 Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement

Authors: Yun Sun, Meng Xun, Jingtao Zhou, Ming Li, Qiang Kan, Zhi Jin, Xinyu Liu, Dexin Wu

Abstract:

Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time.

Keywords: vertical cavity surface emitting lasers, high speed modulation, optical interconnects, semiconductor lasers

Procedia PDF Downloads 113
1094 Exploring RQ-EQ Relatons among Psychology Majors

Authors: Maria T. Mamba, Febe Marl G. Paat

Abstract:

The illustrious estimation that psychology majors, psychologists and allied psychology practitioners as expert behavior analysts, if not, “life enthusiasts” spurred two essentially linked endeavors. First, the reconsideration of the time-honored ingenuity and expectations from psychologists such as the ability to perceive ways to undertake a range of difficulties, the ability to apply psychology in order to self-regulate and to display personal integrity, and among others. Second, is to ascertain solid support to uphold aforesaid expectations. This study achieved its goals by having explored how two burgeoning constructs- RQ and EQ play parts in the lives of psychology people. Having involved the total population of psychology majors in Cagayan State University along with the use of Emotional Quotient Test and Resilience Assessment Questionnaire, the study provides a précis of how perceived “champions” of psychological well-being respond emotionally to different situations and deal effectively with and even thrive on the demands of frequently changing environmental circumstances. Significant findings about how the major variables correlated with the population’s demographic profile (e.g. age, sex, and year level) were also accounted. To realize a more academic concept with the present study, significant connections between RQ (self-assurance, personal vision, flexible and adaptable, organized, problem solver, interpersonal competence, socially connected, and active) and EQ (e.g. emotional maturity, emotional sensitivity, and emotional competency) dimensions were uncovered.

Keywords: emotional quotient, resilience quotient, psychology majors, exploring

Procedia PDF Downloads 440
1093 Qualitative and Quantitative Characterization of Generated Waste in Nouri Petrochemical Complex, Assaluyeh, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

In recent years, different petrochemical complexes have been established to produce aromatic compounds. Among them, Nouri Petrochemical Complex (NPC) is the largest producer of aromatic raw materials in the world, and is located in south of Iran. Environmental concerns have been raised in this region due to generation of different types of solid waste generated in the process of aromatics production, and subsequently, industrial waste characterization has been thoroughly considered. The aim of this study is qualitative and quantitative characterization of industrial waste generated in the aromatics production process and determination of the best method for industrial waste management. For this purpose, all generated industrial waste during the production process was determined using a checklist. Four main industrial wastes were identified as follows: spent industrial soil, spent catalyst, spent molecular sieves and spent N-formyl morpholine (NFM) solvent. The amount of heavy metals and organic compounds in these wastes were further measured in order to identify the nature and toxicity of such a dangerous compound. Then industrial wastes were classified based on lab analysis results as well as using different international lists of hazardous waste identification such as EPA, UNEP and Basel Convention. Finally, the best method of waste disposal is selected based on environmental, economic and technical aspects. 

Keywords: aromatic compounds, industrial soil, molecular sieve, normal formyl morpholine solvent

Procedia PDF Downloads 223
1092 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin

Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin

Abstract:

Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.

Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study

Procedia PDF Downloads 122
1091 Lineament Analysis as a Method of Mineral Deposit Exploration

Authors: Dmitry Kukushkin

Abstract:

Lineaments form complex grids on Earth's surface. Currently, one particular object of study for many researchers is the analysis and geological interpretation of maps of lineament density in an attempt to locate various geological structures. But lineament grids are made up of global, regional and local components, and this superimposition of lineament grids of various scales (global, regional, and local) renders this method less effective. Besides, the erosion processes and the erosional resistance of rocks lying on the surface play a significant role in the formation of lineament grids. Therefore, specific lineament density map is characterized by poor contrast (most anomalies do not exceed the average values by more than 30%) and unstable relation with local geological structures. Our method allows to confidently determine the location and boundaries of local geological structures that are likely to contain mineral deposits. Maps of the fields of lineament distortion (residual specific density) created by our method are characterized by high contrast with anomalies exceeding the average by upward of 200%, and stable correlation to local geological structures containing mineral deposits. Our method considers a lineament grid as a general lineaments field – surface manifestation of stress and strain fields of Earth associated with geological structures of global, regional and local scales. Each of these structures has its own field of brittle dislocations that appears on the surface of its lineament field. Our method allows singling out local components by suppressing global and regional components of the general lineaments field. The remaining local lineament field is an indicator of local geological structures.The following are some of the examples of the method application: 1. Srednevilyuiskoye gas condensate field (Yakutia) - a direct proof of the effectiveness of methodology; 2. Structure of Astronomy (Taimyr) - confirmed by the seismic survey; 3. Active gold mine of Kadara (Chita Region) – confirmed by geochemistry; 4. Active gold mine of Davenda (Yakutia) - determined the boundaries of the granite massif that controls mineralization; 5. Object, promising to search for hydrocarbons in the north of Algeria - correlated with the results of geological, geochemical and geophysical surveys. For both Kadara and Davenda, the method demonstrated that the intensive anomalies of the local lineament fields are consistent with the geochemical anomalies and indicate the presence of the gold content at commercial levels. Our method of suppression of global and regional components results in isolating a local lineament field. In early stages of a geological exploration for oil and gas, this allows determining boundaries of various geological structures with very high reliability. Therefore, our method allows optimization of placement of seismic profile and exploratory drilling equipment, and this leads to a reduction of costs of prospecting and exploration of deposits, as well as acceleration of its commissioning.

Keywords: lineaments, mineral exploration, oil and gas, remote sensing

Procedia PDF Downloads 291
1090 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties

Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou

Abstract:

The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.

Keywords: cellulose, spectroscopy, surface treatment, water absorption

Procedia PDF Downloads 193
1089 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede

Abstract:

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Keywords: Coke, iron oxide wastes, recycling, reduction

Procedia PDF Downloads 335
1088 Sense of the Place and Human Multisensory Perceptions: The Case of Kerman Old Bazaar Scents

Authors: Sabra Saeidi

Abstract:

When we talk about tangible heritage, the first thing that comes to mind is historic places: what they look like, who made them, and what materials they are made of. But each monument is not limited to its physical constituents and is a complex and related set of human perceptions, memories, narratives, and the structure that shapes its character. In this article, based on the ideology of two great architects, Juhani Pallasmaa and Christian Norberg-Schulz, we discussed the sense of the place and how the human presence in a place with all its senses (visual, auditory, tactile, olfactory, taste) gives life and value to it. This value is all about feeling and definitions and is recorded in the form of our memoirs. An attempt has been made to conclude that our perception of the environment, by our sensory tools, is an intangible and thematic heritage itself, whose existence depends on our existence and has no less value than monuments' physical form and structure. The sense of smell is one of the most powerful, personal and inexplicable, unrecorded, and unexpressed senses and has a solid connection with our memories. by reviewing the case of Kerman Bazaar and its change of use in recent years, we define that one of the ways to protect the olfactory heritage of this valuable complex is to draw a Smellscape: a way to record the moment of present and past memories. Smellscapes are tools for transferring the sense of smell to a visual form to record scents and understand them in a more comprehensive, common, and artistic form.

Keywords: sence of the place, spirit of the place, smellscape, multisensory perception

Procedia PDF Downloads 101
1087 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase

Procedia PDF Downloads 376
1086 Diagenesis of the Permian Ecca Sandstones and Mudstones, in the Eastern Cape Province, South Africa: Implications for the Shale Gas Potential of the Karoo Basin

Authors: Temitope L. Baiyegunhi, Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Diagenesis is the most important factor that affects or impact the reservoir property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known of the diagenesis of the potentially feasible shales and sandstones of the Ecca Group. The study aims to provide a general account of the diagenesis of sandstones and mudstone of the Ecca Group. Twenty-five diagenetic textures and structures are identified and grouped into three regimes or stages that include eogenesis, mesogenesis and telogenesis. Clay minerals are the most common cementing materials in the Ecca sandstones and mudstones. Smectite, kaolinite and illite are the major clay minerals that act as pore lining rims and pore-filling cement. Most of the clay minerals and detrital grains were seriously attacked and replaced by calcite. Calcite precipitates locally in pore spaces and partly or completely replaced feldspar and quartz grains, mostly at their margins. Precipitation of cements and formation of pyrite and authigenic minerals as well as little lithification occurred during the eogenesis. This regime was followed by mesogenesis which brought about an increase in tightness of grain packing, loss of pore spaces and thinning of beds due to weight of overlying sediments and selective dissolution of framework grains. Compaction, mineral overgrowths, mineral replacement, clay-mineral authigenesis, deformation and pressure solution structures occurred during mesogenesis. During rocks were uplifted, weathered and unroofed by erosion, this resulted in additional grain fracturing, decementation and oxidation of iron-rich volcanic fragments and ferromagnesian minerals. The rocks of Ecca Group were subjected to moderate-intense mechanical and chemical compaction during its progressive burial. Intergranular pores, matrix micro pores, secondary intragranular, dissolution and fractured pores are the observed pores. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pores makes them unfavourable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their quality, which may contribute to the reduction of risks involved in their exploration.

Keywords: diagenesis, reservoir quality, Ecca Group, Karoo Supergroup

Procedia PDF Downloads 136
1085 Active Thermography Technique for High-Entropy Alloy Characterization Deposited with Cold Spray Technique

Authors: Nazanin Sheibanian, Raffaella Sesana, Sedat Ozbilen

Abstract:

In recent years, high-entropy alloys (HEAs) have attracted considerable attention due to their unique properties and potential applications. In this study, novel HEA coatings were prepared on Mg substrates using mechanically alloyed HEA powder feedstocks based on Al_(0.1-0.5)CoCrCuFeNi and MnCoCrCuFeNi multi-material systems. The coatings were deposited by the Cold Spray (CS) process using three different temperatures of the process gas (N2) (650°C, 750°C, and 850°C) to examine the effect of gas temperature on coating properties. In this study, Infrared Thermography (non-destructive) was examined as a possible quality control technique for HEA coatings applied to magnesium substrates. Active Thermography was employed to characterize coating properties using the thermal response of the coating. Various HEA chemical compositions and deposition temperatures have been investigated. As a part of this study, a comprehensive macro and microstructural analysis of Cold Spray (CS) HEA coatings has been conducted using macrophotography, optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM+EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microhardness tests, roughness measurements, and porosity assessments. These analyses provided insight into phase identification, microstructure characterization, deposition, particle deformation behavior, bonding mechanisms, and identifying a possible relationship between physical properties and thermal responses. Based on the figures and tables, it is evident that the Maximum Relative Radiance (∆RMax) of each sample differs depending on both the chemical composition of HEA and the temperature at which Cold Spray is applied.

Keywords: active thermography, coating, cold spray, high- entropy alloy, material characterization

Procedia PDF Downloads 64
1084 Production of Fish Hydrolyzates by Single and Multiple Protease Treatments under Medium High Pressure of 300 MPa

Authors: Namsoo Kim, So-Hee Son, Jin-Soo Maeng, Yong-Jin Cho, Chong-Tai Kim

Abstract:

It has been reported that some enzymes such as trypsin and Alcalase 2.4L are tolerant to a medium high pressure of 300 MPa and preparation of protein hydrolyzates under 300 MPa was advantageous with regard to hydrolysis rate and thus production yield compared with the counterpart under ambient pressure.1,2) In this study, nine fish comprising halibut, soft shell clam and carp were hydrolyzed using Flavourzyme 500MG only, and the combination of Flavourzyme 500 mg, Alcalase 2.4 L, Marugoto E, and Protamex under 300 MPa. Then, the effects of single and multiple protease treatments were determined with respect to contents of soluble solid (SS) and soluble nitrogen, sensory attributes, electrophoretic profiles, and HPLC peak patterns of the fish hydrolyzates (FHs) from various species. The contents of SS of the FHs were quite species-specific and the hydrolyzates of halibut showed the highest SS contents. At this point, multiple protease treatment increased SS content conspicuously in all fish tested. The contents of total soluble nitrogen and TCA-soluble nitrogen were well correlated with those of SS irrespective of fish species and methods of enzyme treatment. Also, it was noticed that multiple protease treatment improved sensory attributes of the FHs considerably. Electropherograms of the FHs showed fast migrating peptide bands that had the molecular masses mostly lower than 1 kDa and this was confirmed by peptide patterns from HPLC analysis for some FHs that had good sensory quality.

Keywords: production, fish hydrolyzates, protease treatments, high pressure

Procedia PDF Downloads 270
1083 Characterization of Biogenic Silver Nanoparticles by Salvadora persica Leaves Extract and its Application Against Some MDR Pathogens E. Coli and S. Aureus

Authors: Mudawi M. Nour

Abstract:

Background: Now a days, the multidisciplinary scientific research conception in the field of nanotechnology has witnessed development with regard to the numerous applications and synthesis of nanomaterials. Objective: The current investigation has been conducted with the main focus on the green synthesis of silver nanoparticles from the leaves of Salvadora persica and its antibacterial activity against MDR pathogens E. coli and S. aureus. Methodology: Silver nanoparticles (AgNPs) were prepared after addition of aqueous extract of Salvadora persica leaves. The UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), zeta potential and Scanning Electron Microscopy (SEM) were employed to detect the particle size and morphology, besides Fourier transform infra-red spectrometer (FTIR) analysis was performed to determine the capping and stabilizing agents in the extract. Antibacterial assay for the biogenic AgNPs was conducted against E. coli and S. aureus. Results: Color change of the mixture from yellow to dark brown is the first indication to AgNPs formation. Furthermore, 420 nm was the peak value for UV-Vis spectroscopy absorption of the mixture. Besides, TEM and SEM micrographs showed wide variability in the diameter of smaller NPs aggregated together with spherical shapes, and zeta sizer showed about 153.3 nm as an average size of nanoparticles. Microbial suppression was noticed for the tested microorganisms. Furthermore, with the help of FTIR analysis, the biomolecules that act as capping and stabilizing agents of AgNPs are proteins and phenols present in the plant extract. Conclusion: Salvadora persica leaves extract act as a reducing and stabilizing agent for the synthesis of AgNPs, keeping its ability to suppress the MDR pathogen.

Keywords: green synthesis, FTIR, MDR pathogen, salvadora persica

Procedia PDF Downloads 61
1082 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect

Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary

Abstract:

Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.

Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error

Procedia PDF Downloads 319
1081 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys

Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune

Abstract:

In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.

Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis

Procedia PDF Downloads 320
1080 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye

Authors: Rahul Jarariya

Abstract:

The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.

Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21

Procedia PDF Downloads 167
1079 Oman’s Position in U.S. Tourists’ Mind: The Use of Importance-Performance Analysis on Destination Attributes

Authors: Mohammed Gamil Montasser, Angelo Battaglia

Abstract:

Tourism is making its presence felt across the Sultanate of Oman. The story is one of the most recognized phenomena as a sustainable solid growth and is considered a remarkable outcome for any destination. The competitive situation and challenges within the tourism industry worldwide entail a better understanding of the destination position and its image to achieve Oman’s aspiration to retain its international reputation as one of the most desirable destinations in the Middle East. To access general perceptions of Oman’s attributes, their importance and their influences among U.S. tourists, an online survey was conducted with 522 American travelers who have traveled internationally, including non-visitors, virtual-visitors and visitors to Oman. This research involved a total of 36 attributes in the survey. Participants were asked to rate their agreement on how each attribute represented Oman and how important each attribute was for selecting destinations on 5- point Likert Scale. They also indicated if each attribute has a positive, neutral or negative influence on their destination selection. Descriptive statistics and importance performance analysis (IPA) were conducted. IPA illustrated U.S. tourists’ perceptions of Oman’s destination attributes and their importance in destination selection on a matrix with four quadrants, divided by actual mean value in each grid for importance (M=3.51) and performance (M=3.57). Oman tourism organizations and destination managers may use these research findings for future marketing and management efforts toward the U.S. travel market.

Keywords: analysis of importance, performance, destination attributes, Oman's position, U.S. tourists

Procedia PDF Downloads 294
1078 Influence of Pine Wood Ash as Pozzolanic Material on Compressive Strength of a Concrete

Authors: M. I. Nicolas, J. C. Cruz, Ysmael Verde, A.Yeladaqui-Tello

Abstract:

The manufacture of Portland cement has revolutionized the construction industry since the nineteenth century; however, the high cost and large amount of energy required on its manufacturing encouraged, from the seventies, the search of alternative materials to replace it partially or completely. Among the materials studied to replace the cement are the ashes. In the city of Chetumal, south of the Yucatan Peninsula in Mexico, there are no natural sources of pozzolanic ash. In the present study, the cementitious properties of artificial ash resulting from the combustion of waste pine wood were analyzed. The ash obtained was sieved through the screen and No.200 a fraction was analyzed using the technique of X-ray diffraction; with the aim of identifying the crystalline phases and particle sizes of pozzolanic material by the Debye-Scherrer equation. From the characterization of materials, mixtures for a concrete of f'c = 250 kg / cm2 were designed with the method ACI 211.1; for the pattern mixture and for partial replacements of Portland cement by 5%, 10% and 12% pine wood ash mixture. Simple resistance to axial compression of specimens prepared with each concrete mixture, at 3, 14 and 28 days of curing was evaluated. Pozzolanic activity was observed in the ash obtained, checking the presence of crystalline silica (SiO2 of 40.24 nm) and alumina (Al2O3 of 35.08 nm). At 28 days of curing, the specimens prepared with a 5% ash, reached a compression resistance 63% higher than design; for specimens with 10% ash, was 45%; and for specimens with 12% ash, only 36%. Compared to Pattern mixture, which after 28 days showed a f'c = 423.13 kg/cm2, the specimens reached only 97%, 86% and 82% of the compression resistance, for mixtures containing 5%, 10% ash and 12% respectively. The pozzolanic activity of pine wood ash influences the compression resistance, which indicates that it can replace up to 12% of Portland cement by ash without compromising its design strength, however, there is a decrease in strength compared to the pattern concrete.

Keywords: concrete, pine wood ash, pozzolanic activity, X-ray

Procedia PDF Downloads 446
1077 Benefits of Social Justice Pedagogy and Ecofeminist Discourse for Engineering Education

Authors: Hollie M. Lewis

Abstract:

A large body of corroborating research provides evidence that traditional undergraduate engineering education fails to provide students with a role and identity that requires social concern and moral reasoning. Engineering students demonstrate a low level of engagement with social and political contexts, which further declines over the course of engineering education. This detachment is thought to stem from beliefs that the role of the engineer is purely to design machines, systems, and structures. In effect, engineers objectify the world. The purpose of this paper is to provide an ecofeminist critique of engineering education and pose the benefits of social justice pedagogies incorporating ecofeminist discourse. The challenges currently facing the world stem from anthropocentric industrialization, an agenda that is historically absent of Environmental, Feminist, People of Color, and Indigenous voices. A future in which the global collective achieves its Sustainable Development Goals requires its engineers to have a solid understanding of the broader social and political contexts in which they manage projects. Engineering education must convey the influence of the professional role of engineer and encourage the practice of critical reflection and social perspective-taking, priming students with the skills to engage with varying perspectives and discourses. There will be discussed the facets of social justice pedagogies that aid students in surpassing threshold concepts in social justice.

Keywords: feminism in engineering, sustainable development, engineering education, social justice pedagogies

Procedia PDF Downloads 47
1076 Thermal Performance of an Air Heating Storing System

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.

Keywords: solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation

Procedia PDF Downloads 316
1075 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system

Procedia PDF Downloads 139
1074 Continuous Processing Approaches for Tunable Asymmetric Photochemical Synthesis

Authors: Amanda C. Evans

Abstract:

Enabling technologies such as continuous processing (CP) approaches can provide the tools needed to control and manipulate reactivities and transform chemical reactions into micro-controlled in-flow processes. Traditional synthetic approaches can be radically transformed by the application of CP, facilitating the pairing of chemical methodologies with technologies from other disciplines. CP supports sustainable processes that controllably generate reaction specificity utilizing supramolecular interactions. Continuous photochemical processing is an emerging field of investigation. The use of light to drive chemical reactivity is not novel, but the controlled use of specific and tunable wavelengths of light to selectively generate molecular structure under continuous processing conditions is an innovative approach towards chemical synthesis. This investigation focuses on the use of circularly polarized (cp) light as a sustainable catalyst for the CP generation of asymmetric molecules. Chiral photolysis has already been achieved under batch, solid-phase conditions: using synchrotron-sourced cp light, asymmetric photolytic selectivities of up to 4.2% enantiomeric excess (e.e.) have been reported. In order to determine the optimal wavelengths to use for irradiation with cp light for any given molecular building block, CD and anisotropy spectra for each building block of interest have been generated in two different solvents (water, hexafluoroisopropanol) across a range of wavelengths (130-400 nm). These spectra are being used to support a series of CP experiments using cp light to generate enantioselectivity.

Keywords: anisotropy, asymmetry, flow chemistry, active pharmaceutical ingredients

Procedia PDF Downloads 147
1073 A Numerical Investigation of Total Temperature Probes Measurement Performance

Authors: Erdem Meriç

Abstract:

Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.

Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes

Procedia PDF Downloads 122
1072 Mathematical Modelling of Blood Flow with Magnetic Nanoparticles as Carrier for Targeted Drug Delivery in a Stenosed Artery

Authors: Sreeparna Majee, G. C. Shit

Abstract:

A study on targeted drug delivery is carried out in an unsteady flow of blood infused with magnetic NPs (nanoparticles) with an aim to understand the flow pattern and nanoparticle aggregation in a diseased arterial segment having stenosis. The magnetic NPs are supervised by the magnetic field which is significant for therapeutic treatment of arterial diseases, tumor and cancer cells and removing blood clots. Coupled thermal energy have also been analyzed by considering dissipation of energy because of the application of the magnetic field and the viscosity of blood. Simulation technique used to solve the mathematical model is vorticity-stream function formulations in the diseased artery. An elevation in SLP (Specific loss power) is noted in the aortic bloodstream when the agglomeration of nanoparticles is higher. This phenomenon has potential application in the treatment of hyperthermia. The study focuses on the lowering of WSS (Wall Shear Stress) with increasing particle concentration at the downstream of the stenosis which depicts the vigorous flow circulation zone. These low shear stress regions prolong the residing time of the nanoparticles carrying drugs which soaks up the LDL (Low Density Lipoprotein) deposition. Moreover, an increase in NP concentration enhances the Nusselt number which marks the increase of heat transfer from the arterial wall to the surrounding tissues to destroy tumor and cancer cells without affecting the healthy cells. The results have a significant influence in the study of medicine, to treat arterial diseases such as atherosclerosis without the need for surgery which can minimize the expenditures on cardiovascular treatments.

Keywords: magnetic nanoparticles, blood flow, atherosclerosis, hyperthermia

Procedia PDF Downloads 127
1071 The Effect of Zeolite and Fertilizers on Yield and Qualitative Characteristics of Cabbage in the Southeast of Kazakhstan

Authors: Tursunay Vassilina, Aigerim Shibikeyeva, Adilet Sakhbek

Abstract:

Research has been carried out to study the influence of modified zeolite fertilizers on the quantitative and qualitative indicators of cabbage variety Nezhenka. The use of zeolite and mineral fertilizers had a positive effect on both the yield and quality indicators of the studied crop. The maximum increase in yield from fertilizers was 16.5 t/ha. Application of both zeolite and fertilizer increased the dry matter, sugar and vitamin C content of cabbage heads. It was established that the cabbage contains an amount of nitrates that is safe for human health. Among vegetable crops, cabbage has both food and feed value. One of the limiting factors in the sale of vegetable crops is the degradation of soil fertility due to depletion of nutrient reserves and erosion processes, and non-compliance with fertilizer application technologies. Natural zeolites are used as additives to mineral fertilizers for application in the field, which makes it possible to reduce their doses to minimal quantities. Zeolites improve the agrophysical and agrochemical properties of the soil and the quality of plant products. The research was carried out in a field experiment, carried out in 3 repetitions, on dark chestnut soil in 2023. The soil (pH = 7.2-7.3) of the experimental plot is dark chestnut, the humus content in the arable layer is 2.15%, gross nitrogen 0.098%, phosphorus, potassium 0.225 and 2.4%, respectively. The object of the study was the late cabbage variety Nezhenka. Scheme for applying fertilizers to cabbage: 1. Control (without fertilizers); 2. Zeolite 2t/ha; 3. N45P45K45; 4. N90P90K90; 5. Zeolite, 2 t/ha + N45P45K45; 6. Zeolite, 2 t/ha + N90P90K90. Yield accounting was carried out on a plot-by-plot basis manually. In plant samples, the following was determined: dry matter content by thermostatic method (at 105ºC); sugar content by Bertrand titration method, nitrate content by 1% diphenylamine solution, vitamin C by titrimetric method with acid solution. According to the results, it was established that the yield of cabbage was high – 42.2 t/ha in the treatment Zeolite, 2 t/ha + N90P90K90. When determining the biochemical composition of white cabbage, it was found that the dry matter content was 9.5% and increased with fertilized treatments. The total sugar content increased slightly with the use of zeolite (5.1%) and modified zeolite fertilizer (5.5%), the vitamin C content ranged from 17.5 to 18.16%, while in the control, it was 17.21%. The amount of nitrates in products also increased with increasing doses of nitrogen fertilizers and decreased with the use of zeolite and modified zeolite fertilizer but did not exceed the maximum permissible concentration. Based on the research conducted, it can be concluded that the application of zeolite and fertilizers leads to a significant increase in yield compared to the unfertilized treatment; contribute to the production of cabbage with good and high quality indicators.

Keywords: cabbage, dry matter, nitrates, total sugar, yield, vitamin C

Procedia PDF Downloads 61