Search results for: polymer modified asphalt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3792

Search results for: polymer modified asphalt

822 Electrochemical Modification of Boron Doped Carbon Nanowall Electrodes for Biosensing Purposes

Authors: M. Kowalski, M. Brodowski, K. Dziabowska, E. Czaczyk, W. Bialobrzeska, N. Malinowska, S. Zoledowska, R. Bogdanowicz, D. Nidzworski

Abstract:

Boron-doped-carbon nanowall (BCNW) electrodes are recently in much interest among scientists. BCNWs are good candidates for biosensor purposes as they possess interesting electrochemical characteristics like a wide potential range and the low difference between redox peaks. Moreover, from technical parameters, they are mechanically resistant and very tough. The production process of the microwave plasma-enhanced chemical vapor deposition (MPECVD) allows boron to build into the structure of the diamond being formed. The effect is the formation of flat, long structures with sharp ends. The potential of these electrodes was checked in the biosensing field. The procedure of simple carbon electrodes modification by antibodies was adopted to BCNW for specific antigen recognition. Surface protein D deriving from H. influenzae pathogenic bacteria was chosen as a target analyte. The electrode was first modified with the aminobenzoic acid diazonium salt by electrografting (electrochemical reduction), next anti-protein D antibodies were linked via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry, and free sites were blocked by BSA. Cyclic voltammetry measurements confirmed the proper electrode modification. Electrochemical impedance spectroscopy records indicated protein detection. The sensor was proven to detect protein D in femtograms. This work was supported by the National Centre for Research and Development (NCBR) TECHMATSTRATEG 1/347324/12/NCBR/ 2017.

Keywords: anti-protein D antibodies, boron-doped carbon nanowall, impedance spectroscopy, Haemophilus influenzae.

Procedia PDF Downloads 155
821 Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes

Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari

Abstract:

In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL.

Keywords: surface modification, layer-by-layer technique, weak polyelectrolytes, adsorption-desorption behavior

Procedia PDF Downloads 45
820 Social Influences on HIV Services Engagement among Sexual Minorities Experiencing Intersectional Stigma and Discrimination during COVID-19 Pandemic in Uganda

Authors: Simon Mwima, Evans Jennifer Mann, Agnes Nzomene, Edson Chipalo, Eusebius Small, Moses Okumu, Bosco Mukuba

Abstract:

Introduction: In Uganda, sexual minorities experience exacerbated intersectional stigma and discrimination that exposes them to elevated HIV infections and impedes access to HIV testing and PrEP with low treatment adherence. We contribute to the lack of information about sexual minorities living with HIV in Uganda by using modified social-ecological theory to explore social influences impacting HIV services engagement. Findings from focused group discussion (FGD) involving 31 sexual minorities, ages 18-25, recruited through urban HIV clinics in Kampala reveal the protective and promotive social influence within the individual and interpersonal relationships (sexual partners and peers). Further, inhibitive social influences were found within family, community, societal, and healthcare settings. During the COVID-19 pandemic, these adolescents strategically used promotive social influences to increase their engagement with HIV care services. Interviews were recorded in English, transcribed verbatim, and analyzed using Dedoose. Conclusions: The findings revealed that young people (identified as sexual minorities) strategically used promotive social influences and supported each other to improve engagement with HIV care in the context of restrictive laws in Uganda during the COVID-19-Pandemic. Future HIV prevention, treatment, and care responses could draw on how peers support each other to navigate the heavily criminalized and stigmatized settings to access healthcare services.

Keywords: HIV/AIDS services, intersectional stigma, discrimination, adolescents, sexual minorities, COVID-19 pandemic Uganda

Procedia PDF Downloads 104
819 Modified Clusterwise Regression for Pavement Management

Authors: Mukesh Khadka, Alexander Paz, Hanns de la Fuente-Mella

Abstract:

Typically, pavement performance models are developed in two steps: (i) pavement segments with similar characteristics are grouped together to form a cluster, and (ii) the corresponding performance models are developed using statistical techniques. A challenge is to select the characteristics that define clusters and the segments associated with them. If inappropriate characteristics are used, clusters may include homogeneous segments with different performance behavior or heterogeneous segments with similar performance behavior. Prediction accuracy of performance models can be improved by grouping the pavement segments into more uniform clusters by including both characteristics and a performance measure. This grouping is not always possible due to limited information. It is impractical to include all the potential significant factors because some of them are potentially unobserved or difficult to measure. Historical performance of pavement segments could be used as a proxy to incorporate the effect of the missing potential significant factors in clustering process. The current state-of-the-art proposes Clusterwise Linear Regression (CLR) to determine the pavement clusters and the associated performance models simultaneously. CLR incorporates the effect of significant factors as well as a performance measure. In this study, a mathematical program was formulated for CLR models including multiple explanatory variables. Pavement data collected recently over the entire state of Nevada were used. International Roughness Index (IRI) was used as a pavement performance measure because it serves as a unified standard that is widely accepted for evaluating pavement performance, especially in terms of riding quality. Results illustrate the advantage of the using CLR. Previous studies have used CLR along with experimental data. This study uses actual field data collected across a variety of environmental, traffic, design, and construction and maintenance conditions.

Keywords: clusterwise regression, pavement management system, performance model, optimization

Procedia PDF Downloads 235
818 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions

Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo

Abstract:

It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.

Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant

Procedia PDF Downloads 485
817 Using Dynamic Glazing to Eliminate Mechanical Cooling in Multi-family Highrise Buildings

Authors: Ranojoy Dutta, Adam Barker

Abstract:

Multifamily residential buildings are increasingly being built with large glazed areas to provide tenants with greater daylight and outdoor views. However, traditional double-glazed window assemblies can lead to significant thermal discomfort from high radiant temperatures as well as increased cooling energy use to address solar gains. Dynamic glazing provides an effective solution by actively controlling solar transmission to maintain indoor thermal comfort, without compromising the visual connection to outdoors. This study uses thermal simulations across three Canadian cities (Toronto, Vancouver and Montreal) to verify if dynamic glazing along with operable windows and ceiling fans can maintain the indoor operative temperature of a prototype southwest facing high-rise apartment unit within the ASHRAE 55 adaptive comfort range for a majority of the year, without any mechanical cooling. Since this study proposes the use of natural ventilation for cooling and the typical building life cycle is 30-40 years, the typical weather files have been modified based on accepted global warming projections for increased air temperatures by 2050. Results for the prototype apartment confirm that thermal discomfort with dynamic glazing occurs only for less than 0.7% of the year. However, in the baseline scenario with low-E glass there are up to 7% annual hours of discomfort despite natural ventilation with operable windows and improved air movement with ceiling fans.

Keywords: electrochromic glazing, multi-family housing, passive cooling, thermal comfort, natural ventilation

Procedia PDF Downloads 89
816 Enzymatic Repair Prior To DNA Barcoding, Aspirations, and Restraints

Authors: Maxime Merheb, Rachel Matar

Abstract:

Retrieving ancient DNA sequences which in return permit the entire genome sequencing from fossils have extraordinarily improved in recent years, thanks to sequencing technology and other methodological advances. In any case, the quest to search for ancient DNA is still obstructed by the damage inflicted on DNA which accumulates after the death of a living organism. We can characterize this damage into three main categories: (i) Physical abnormalities such as strand breaks which lead to the presence of short DNA fragments. (ii) Modified bases (mainly cytosine deamination) which cause errors in the sequence due to an incorporation of a false nucleotide during DNA amplification. (iii) DNA modifications referred to as blocking lesions, will halt the PCR extension which in return will also affect the amplification and sequencing process. We can clearly see that the issues arising from breakage and coding errors were significantly decreased in recent years. Fast sequencing of short DNA fragments was empowered by platforms for high-throughput sequencing, most of the coding errors were uncovered to be the consequences of cytosine deamination which can be easily removed from the DNA using enzymatic treatment. The methodology to repair DNA sequences is still in development, it can be basically explained by the process of reintroducing cytosine rather than uracil. This technique is thus restricted to amplified DNA molecules. To eliminate any type of damage (particularly those that block PCR) is a process still pending the complete repair methodologies; DNA detection right after extraction is highly needed. Before using any resources into extensive, unreasonable and uncertain repair techniques, it is vital to distinguish between two possible hypotheses; (i) DNA is none existent to be amplified to begin with therefore completely un-repairable, (ii) the DNA is refractory to PCR and it is worth to be repaired and amplified. Hence, it is extremely important to develop a non-enzymatic technique to detect the most degraded DNA.

Keywords: ancient DNA, DNA barcodong, enzymatic repair, PCR

Procedia PDF Downloads 389
815 DNA Prime/MVTT Boost Enhances Broadly Protective Immune Response against Mosaic HIV-1 Gag

Authors: Wan Liu, Haibo Wang, Cathy Huang, Zhiwu Tan, Zhiwei Chen

Abstract:

The tremendous diversity of HIV-1 has been a major challenge for an effective AIDS vaccine development. Mosaic approach presents the potential for vaccine design aiming for global protection. The mosaic antigen of HIV-1 Gag allows antigenic breadth for vaccine-elicited immune response against a wider spectrum of viral strains. However, the enhancement of immune response using vaccines is dependent on the strategy used. Heterologous prime/boost regimen has been shown to elicit high levels of immune responses. Here, we investigated whether priming using plasmid DNA with electroporation followed by boosting with the live replication-competent modified vaccinia virus vector TianTan (MVTT) combined with the mosaic antigenic sequence could elicit a greater and broader antigen-specific response against HIV-1 Gag in mice. When compared to DNA or MVTT alone, or MVTT/MVTT group, DNA/MVTT group resulted in coincidentally high frequencies of broadly reactive, Gag-specific, polyfunctional, long-lived, and cytotoxic CD8+ T cells and increased anti-Gag antibody titer. Meanwhile, the vaccination could upregulate PD-1+, and Tim-3+ CD8+ T cell, myeloid-derived suppressive cells and Treg cells to balance the stronger immune response induced. Importantly, the prime/boost vaccination could help control the EcoHIV and mesothelioma AB1-gag challenge. The stronger protective Gag-specific immunity induced by a Mosaic DNA/MVTT vaccine corroborate the promise of the mosaic approach, and the potential of two acceptably safe vectors to enhance anti-HIV immunity and cancer prevention.

Keywords: DNA/MVTT vaccine, EcoHIV, mosaic antigen, mesothelioma AB1-gag

Procedia PDF Downloads 224
814 Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and SHF Bands of Small Cell 5G Networks

Authors: Emanuel Teixeira, Anderson Ramos, Marisa Lourenço, Fernando J. Velez, Jon M. Peha

Abstract:

This article discusses the benefit cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60 and 73 GHz frequency bands and the influence of carrier-to-noise-plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies, by considering the unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimeter wavebands and for longest distances an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.

Keywords: millimetre wavebands, SHF band, SINR, cost benefit analysis, 5G

Procedia PDF Downloads 125
813 A Retrospective Cross Sectional Study of Blood Culture Results in a Tertiary Hospital, Ekiti, Nigeria

Authors: S. I. Nwadioha, M. S. Odimayo, J. A. Omotayo, A. Olu Taiwo, O. E. Olabiyi

Abstract:

The current study was conducted to determine the epidemiology and antibiotic sensitivity pattern of bacteria isolated from blood of septicemic patients for improved antibiotic therapy. A three-year descriptive study has been carried out at Microbiology Laboratory, Ekiti State University Teaching Hospital, Ado Ekiti, from April 2012 to April 2015. Information compiled from patients’ records includes age, sex, isolated organisms and antibiotic susceptibility patterns. Three hundred and thirteen blood cultures were collected from neonatology and pediatrics wards, Out Patients’ Department (OPD) and from other adult patients. Forty-one cultures yielded mono microbial growth (no polymicrobial growth), giving an incidence of 13.1% positive blood culture (N=41/313). There were 58.4% Gram-negative bacilli and 41.6% Gram-positive cocci in the microbial growth. Bacteria isolated were Staphylococcus aureus 34%(14/41), Klebsiella species22% (9/41), Enterococci 17%(7/41), Proteus species12%(5/41), Escherichia coli 7%(3/41) and Streptococcal pneumoniae 7%(3/41). There was a (35%) higher occurrence of septicemia in neonates than in any other age groups in the hospital. Bacterial sensitivity to 13 antibiotic agents was determined by antibiotics disc diffusion using modified Kirby Bauer’s method. Gram-positive organisms showed a higher antibiotic sensitivity ranging from 14- 100% than the Gram-negative bacteria (11-80%). Staphylococcus aureus and Klebsiella species are the most prevalent organisms. The third generation Cephalosporins (Ceftriaxone) and Floroquinolone(Levofloxacin, Ofloxacin) have proved reliable for management of these blood infections.

Keywords: blood cultures, septicemia, antibiogram, Nigeria

Procedia PDF Downloads 211
812 Patterns of Malignant and Benign Breast Lesions in Hail Region: A Retrospective Study at King Khalid Hospital

Authors: Laila Seada, Ashraf Ibrahim, Amjad Al Shammari

Abstract:

Background and Objectives: Breast carcinoma is the most common cancer of females in Hail region, accounting for 31% of all diagnosed cancer cases followed by thyroid carcinoma (25%) and colorectal carcinoma (13%). Methods: In the present retrospective study, all cases of breast lesions received at the histopathology department in King Khalid Hospital, Hail, during the period from May 2011 to April 2016 have been retrieved from department files. For all cases, a trucut biopsy, lumpectomy, or modified radical mastectomy was available for histopathologic diagnosis, while 105/140 (75%) had, as well, preoperative fine needle aspirates (FNA). Results: 49 cases out of 140 (35%) breast lesions were carcinomas: 44/49 (89.75%) was invasive ductal, 2/49(4.1%) invasive lobular carcinomas, 1/49(2.05%) intracystic low grade papillary carcinoma and 2/49 (4.1%) ductal carcinoma in situ (DCIS). Mean age for malignant cases was 45.06 (+/-10.58): 32.6% were below the age of 40 and 30.6 below 50 years, 18.3% below 60 and 16.3% below 70 years. For the benign group, mean age was 32.52 (+/10.5) years. Benign lesions were in order of frequency: 34 fibroadenomas, 14 fibrocystic disease, 12 chronic mastitis, five granulomatous mastitis, three intraductal papillomas, and three benign phyllodes tumor. Tubular adenoma, lipoma, skin nevus, pilomatrixoma, and breast reduction specimens constituted the remaining specimens. Conclusion: Breast lesions are common in our series and invasive carcinoma accounts for more than 1/3rd of the lumps, with 63.2% incidence in pre-menopausal ladies, below the age of 50 years. FNA as a non-invasive procedure, proved to be an effective tool in diagnosing both benign and malignant/suspicious breast lumps and should continue to be used as a first assessment line of palpable breast masses.

Keywords: age incidence, breast carcinoma, fine needle aspiration, hail region

Procedia PDF Downloads 254
811 White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes

Authors: Manasa Perikala, Asha Bhardwaj

Abstract:

Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots.

Keywords: carbon dots, photoluminescence, size effects on emission in CDs, surface modification of carbon dots

Procedia PDF Downloads 117
810 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence

Authors: K. N. Kiran, S. Anish

Abstract:

It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.

Keywords: boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow

Procedia PDF Downloads 334
809 Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water

Authors: Feleke Terefe Fanta

Abstract:

Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD.

Keywords: WASTE WATER, COPPER DOPED ZEOITE X, ADSORPITION, HEAVY METAL, DISINFECTION, AKAKI RIVER

Procedia PDF Downloads 38
808 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 37
807 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: apparent temperature, health, safety work, scaffoldings

Procedia PDF Downloads 163
806 Effect of Different Sterilization Processes on Drug Loaded Silicone-Hydrogel

Authors: Raquel Galante, Marina Braga, Daniela Ghisleni, Terezinha J. A. Pinto, Rogério Colaço, Ana Paula Serro

Abstract:

The sensitive nature of soft biomaterials, such as hydrogels, renders their sterilization a particularly challenging task for the biomedical industry. Widely used contact lenses are now studied as promising platforms for topical corneal drug delivery. However, to the best of the authors knowledge, the influence of sterilization methods on these systems has yet to be evaluated. The main goal of this study was to understand how different pairs drug-hydrogel would interact under an ozone-based sterilization method in comparison with two conventional processes (steam heat and gamma irradiation). For that, Si-Hy containing hydroxylethyl methacrylate (HEMA) and [tris(trimethylsiloxy)silyl]propyl methacrylate (TRIS) was produced and soaked in different drug solutions, commonly used for the treatment of ocular diseases (levofloxacin, chlorhexidine, diclofenac and timolol maleate). The drug release profiles and main material properties were evaluated before and after the sterilization. Namely, swelling capacity was determined by water uptake studies, transparency was accessed by UV-Vis spectroscopy, surface topography/morphology by scanning electron microscopy (SEM) and mechanical properties by performing tensile tests. The drug released was quantified by high performance liquid chromatography (HPLC). The effectiveness of the sterilization procedures was assured by performing sterility tests. Ozone gas method led to a significant reduction of drug released and to the formation of degradation products specially for diclofenac and levofloxacin. Gamma irradiation led to darkening of the loaded Si-Hys and to the complete degradation of levofloxacin. Steam heat led to smoother surfaces and to a decrease of the amount of drug released, however, with no formation of degradation products. This difference in the total drug released could be the related to drug/polymer interactions promoted by the sterilization conditions in presence of the drug. Our findings offer important insights that, in turn, could be a useful contribution to the safe development of actual products.

Keywords: drug delivery, silicone hydrogels, sterilization, gamma irradiation, steam heat, ozone gas

Procedia PDF Downloads 292
805 Implementation of the Canadian Emergency Department Triage and Acuity Scale (CTAS) in an Urgent Care Center in Saudi Arabia

Authors: Abdullah Arafat, Ali Al-Farhan, Amir Omair

Abstract:

Objectives: To review and assess the effectiveness of the implemented modified five-levels triage and acuity scale triage system in AL-Yarmook Urgent Care Center (UCC), King Abdulaziz Residential city, Riyadh, Saudi Arabia. Method: The applied study design was an observational cross sectional design. A data collection sheet was designed and distributed to triage nurses; the data collection was done during triage process and was directly observed by the co-investigator. Triage system was reviewed by measuring three time intervals as quality indicators: time before triage (TBT), time before being seen by physician (TBP) and total length of stay (TLS) taking in consideration timing of presentation and level of triage. Results: During the study period, a total of 187 patients were included in our study. 118 visits were at weekdays and 68 visits at weekends. Overall, 173 patients (92.5%) were seen by the physician in timely manner according to triage guidelines while 14 patients (7.5%) were not seen at appropriate time.Overall, The mean time before seen the triage nurse (TBT) was 5.36 minutes, the mean time to be seen by physician (TBP) was 22.6 minutes and the mean length of stay (TLS) was 59 minutes. The data didn’t showed significant increase in TBT, TBP, and number of patients not seen at the proper time, referral rate and admission rate during weekend. Conclusion: The CTAS is adaptable to countries beyond Canada and worked properly. The applied CTAS triage system in Al-Yarmook UCC is considered to be effective and well applied. Overall, urgent cases have been seen by physician in timely manner according to triage system and there was no delay in the management of urgent cases.

Keywords: CTAS, emergency, Saudi Arabia, triage, urgent care

Procedia PDF Downloads 302
804 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 374
803 Comparison between Some of Robust Regression Methods with OLS Method with Application

Authors: Sizar Abed Mohammed, Zahraa Ghazi Sadeeq

Abstract:

The use of the classic method, least squares (OLS) to estimate the linear regression parameters, when they are available assumptions, and capabilities that have good characteristics, such as impartiality, minimum variance, consistency, and so on. The development of alternative statistical techniques to estimate the parameters, when the data are contaminated with outliers. These are powerful methods (or resistance). In this paper, three of robust methods are studied, which are: Maximum likelihood type estimate M-estimator, Modified Maximum likelihood type estimate MM-estimator and Least Trimmed Squares LTS-estimator, and their results are compared with OLS method. These methods applied to real data taken from Duhok company for manufacturing furniture, the obtained results compared by using the criteria: Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Mean Sum of Absolute Error (MSAE). Important conclusions that this study came up with are: a number of typical values detected by using four methods in the furniture line and very close to the data. This refers to the fact that close to the normal distribution of standard errors, but typical values in the doors line data, using OLS less than that detected by the powerful ways. This means that the standard errors of the distribution are far from normal departure. Another important conclusion is that the estimated values of the parameters by using the lifeline is very far from the estimated values using powerful methods for line doors, gave LTS- destined better results using standard MSE, and gave the M- estimator better results using standard MAPE. Moreover, we noticed that using standard MSAE, and MM- estimator is better. The programs S-plus (version 8.0, professional 2007), Minitab (version 13.2) and SPSS (version 17) are used to analyze the data.

Keywords: Robest, LTS, M estimate, MSE

Procedia PDF Downloads 218
802 Application of Electrochemical Impedance Spectroscopy to Monitor the Steel/Soil Interface During Cathodic Protection of Steel in Simulated Soil Solution

Authors: Mandlenkosi George Robert Mahlobo, Tumelo Seadira, Major Melusi Mabuza, Peter Apata Olubambi

Abstract:

Cathodic protection (CP) has been widely considered a suitable technique for mitigating corrosion of buried metal structures. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. The aim of this study was to investigate the evolution of the electrochemical processes at the steel/soil interface during the application of CP on steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for 4 days before applying CP for a further 11 days. A previously modified non-destructive voltammetry technique was applied before and after the application of CP to measure the corrosion rate. Electrochemical impedance spectroscopy (EIS), in combination with mathematical modeling through equivalent electric circuits, was applied to determine the electrochemical behavior at the steel/soil interface. The measured corrosion rate was found to have decreased from 410 µm/yr to 8 µm/yr between days 5 and 14 because of the applied CP. Equivalent electrical circuits were successfully constructed and used to adequately model the EIS results. The modeling of the obtained EIS results revealed the formation of corrosion products via a mixed activation-diffusion mechanism during the first 4 days, while the activation mechanism prevailed in the presence of CP, resulting in a protective film. The x-ray diffraction analysis confirmed the presence of corrosion products and the predominant protective film corresponding to the calcareous deposit.

Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, EIS

Procedia PDF Downloads 40
801 Genetic Characterization of Acanthamoeba Isolates from Amoebic Keratitis Patients

Authors: Sumeeta Khurana, Kirti Megha, Amit Gupta, Rakesh Sehgal

Abstract:

Background: Amoebic keratitis is a painful vision threatening infection caused by a free living pathogenic amoeba Acanthamoeba. It can be misdiagnosed and very difficult to treat if not suspected early. The epidemiology of Acanthamoeba genotypes causing infection in our geographical area is not yet known to the best of our knowledge. Objective: To characterize Acanthamoeba isolates from amoebic keratitis patients. Methods: A total of 19 isolates obtained from patients with amoebic keratitis presenting to the Advanced Eye Centre at Postgraduate Institute of Medical Education and Research, a tertiary care centre of North India over a period of last 10 years were included. Their corneal scrapings, lens solution and lens case (in case of lens wearer) were collected for microscopic examination, culture and molecular diagnosis. All the isolates were maintained in the Non Nutrient agar culture medium overlaid with E.coli and 13 strains were axenised and maintained in modified Peptone Yeast Dextrose Agar. Identification of Acanthamoeba genotypes was based on amplification of diagnostic fragment 3 (DF3) region of the 18srRNA gene followed by sequencing. Nucleotide similarity search was performed by BLAST search of sequenced amplicons in GenBank database (http//www.ncbi.nlm.nih.gov/blast). Multiple Sequence alignments were determined by using CLUSTAL X. Results: Nine out of 19 Acanthamoeba isolates were found to belong to Genotype T4 followed by 6 isolates of genotype T11, 3 T5 and 1 T3 genotype. Conclusion: T4 is the predominant Acanthamoeba genotype in our geographical area. Further studies should focus on differences in pathogenicity of these genotypes and their clinical significance.

Keywords: Acanthamoeba, free living amoeba, keratitis, genotype, ocular

Procedia PDF Downloads 224
800 Levansucrase from Zymomonas Mobilis KIBGE-IB14: Production Optimization and Characterization for High Enzyme Yield

Authors: Sidra Shaheen, Nadir Naveed Siddiqui, Shah Ali Ul Qader

Abstract:

In recent years, significant progress has been made in discovering and developing new bacterial polysaccharides producing organisms possessing extremely functional properties. Levan is a natural biopolymer of fructose which is produced by transfructosylation reaction in the presence of levansucrase. It is one of the industrially promising enzymes that offer a variety of industrial applications in the field of cosmetics, foods and pharmaceuticals. Although levan has significant applications but the yield of levan produced is not equal to other biopolymers due to the inefficiency of producer microorganism. Among wide range of levansucrase producing microorganisms, Zymomonas mobilis is considered as a potential candidate for large scale production of this natural polysaccharide. The present investigation is concerned with the isolation of levansucrase producing natural isolate having maximum enzyme production. Furthermore, production parameters were optimized to get higher enzyme yield. Levansucrase was partially purified and characterized to study its applicability on industrial scale. The results of this study revealed that the bacterial strain Z. mobilis KIBGE-IB14 was the best producer of levansucrase. Bacterial growth and enzyme production was greatly influenced by physical and chemical parameters. Maximum levansucrase production was achieved after 24 hours of fermentation at 30°C using modified medium of pH-6.5. Contrary to other levansucrases, the one presented in the current study is able to produce high amount of products in relatively short period of time with optimum temperature at 35°C. Due to these advantages, this enzyme can be used on large scale for commercial production of levan and other important metabolites.

Keywords: levansucrase, metabolites, polysaccharides, transfructosylation

Procedia PDF Downloads 484
799 Failure of Cable Reel Flat Spring of Crane: Beyond Fatigue Life Use

Authors: Urbi Pal, Piyas Palit, Jitendra Mathur, Abhay Chaturvedi, Sandip Bhattacharya

Abstract:

The hot rolled slab lifting crane cable reel drum (CRD) failed due to failure of cable reel flat spring which are inside the cassette of CRD. CRD is used for the movement of tong cable. Stereoscopic observation revealed beach marks and Scanning Electron Microscopy showed striations confirming fatigue mode of failure. Chemical composition should be spring steel (Cr-Mo-V) as per IS 3431:1982 instead of C-Mn steel. To find out the reason of fatigue failure, the theoretical fatigue life of flat spiral spring has been calculated. The calculation of number of fatigue cycles included bending moment, maximum stress on the spring, ultimate tensile strength and alternative stress. The bending moment determination has been taken account with various parameters like Young’s Modulus, width, thickness, outer diameter, arbor diameter, pay out the length and angular deflection in rotations. With all the required data, the calculated fatigue life turned to be 10000 cycles, but the spring served 15000 cycles which clearly indicated beyond fatigue life usage. Different UTS values have been plotted with respect to the number of fatigue cycles and clearly showed that the increase in UTS by 40% increases fatigue life by 50%. The significance of higher UTS lied here, and higher UTS depends on modified chemistry with proper tempered martensite microstructure. This kind of failure can be easily avoided by changing the crane spring maintenance schedule from 2 years to 1.5 years considering 600 cycles per month. The plant has changed changing the schedule of cable reel spring and procured new flat reel spring made of 50CrV2 steel.

Keywords: cable reel spring, fatigue life, stress, spring steel

Procedia PDF Downloads 132
798 A Cross-Sectional Assessment of Maternal Food Insecurity in Urban Settings

Authors: Theresia F. Mrema, Innocent Semali

Abstract:

Food insecurity to pregnant women seriously impedes efforts to reduce maternal mortality in resource poor countries. This study was carried out to assess determinants food insecurity among pregnant women in urban areas. A cross sectional study design was used to collect data for the period of two weeks. A structured questionnaire with both closed and open ended questions was used to interview a total of 225 randomly selected pregnant women who attend the three randomly selected antenatal care clinics in Temeke Municipal council. The food insecurity was measured using a modified version of the USDA’s core food security module which consists of 15questions. Logistic regression analysis was used to obtain strength of association between dependent and independent variables. Among 225 pregnant women attending antenatal care (ANC) interviewed 55.1% were food insecure. Food insecurity declined with increasing household wealth, it was also significantly low among those with less than three children compared with having more. Low level of food insecurity was associated with having Secondary education (Adjusted OR=0.24; 95%CI, 0.12–0.48), College Education (OR=0.156; 95%CI, 0.05-0.46), paid employment (OR=0.322; 95%CI, 0.11-0.96) and high income (OR=0.031; 95%CI, 0.01–0.07). Also, having head of the household with secondary education (OR=0.51; 95%CI, 0.07-0.32) college education (OR=0.04; 95%CI, 0.01-0.13) and paid employment (OR=0.225; 95%CI, 0.12-0.42). Food insecurity is a significant problem among pregnant women in Temeke Municipal which might significantly affect health of the pregnant woman and foetus due to higher maternal malnutrition which increases risk of miscarriage, maternal and infant mortality, and poor pregnancy outcomes. The study suggests a multi-sectoral approach in order to address this problem.

Keywords: food security, nutrition, pregnant women, urban settings

Procedia PDF Downloads 342
797 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates

Authors: Sisaynew Tesfaw Admassu

Abstract:

The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.

Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates

Procedia PDF Downloads 54
796 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate

Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon

Abstract:

The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.

Keywords: encapsulation, flexible, low melting point alloy, OLED

Procedia PDF Downloads 581
795 Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream

Authors: Piotr Kunecki, Magdalena Wdowin

Abstract:

The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214.

Keywords: fly ash, synthetic zeolites, elemental mercury removal, sorption, simulated gas stream

Procedia PDF Downloads 65
794 Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging

Authors: Ju Young Kim, Mohammad Zahirul Islam, Mahmuda Akter Mele, Su Jeong Han, Hyuk Sung Yoon, In-Lee Choi, Ho-Min Kang

Abstract:

Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Keywords: chlorine dioxide, ethylene, fungi, sodium hypochlorite

Procedia PDF Downloads 350
793 Nutrition Role in the Management of Psychiatric Disorders

Authors: Abeer Mohammed, Nevein Mustafa Elashery, Mona Hassan Abdel Aal, Ereny Wilson Nagib

Abstract:

The Aim of the current study is to investigate nutrition role in the management of psychiatric disorders. Research Design: A quasi- experimental research design was utilized for this study. Setting The study was conducted at outpatient clinic at Institute of Psychiatry affiliated to Ain Shams University hospitals, using a convenient sample of 50 psychiatric patients with depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders. Tools: data were collected through; first, an interview questionnaire covering socio-demographic characteristics, second, nutrition assessment tools Third, nutrition risk assessment. Fourth, nutrition management program Results showed that there were highly statistically significant improvements in modified nutritional supplements for patients with depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders' patients after conducting the nutrition management program. Regarding psychiatric patients’ knowledge about healthy food, healthy nutritional habits, and patients’ awareness & readiness for change, there were highly statistically significant improvements. Concerning signs and symptoms of psychiatric disorders, there were highly statistically significant improvements for depression, schizophrenia, bipolar disorders, and obsessive-compulsive patients after conducting the management program. In conclusion, the nutrition management program was effective in improving symptoms associated with, depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders. The study recommended that nurses should have more contribution in counseling psychiatric patients, and their families about healthy diet and healthy habits. Further research should recommend studying the effectiveness of herbs on enhancing mental health for psychiatric patients.

Keywords: nutrition, role, management, psychiatric disorders

Procedia PDF Downloads 320