Search results for: plant inoculation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3582

Search results for: plant inoculation

612 Phytogeography and Regional Conservation Status of Gymnosperms in Pakistan

Authors: Raees Khan, Mir A. Khan, Sheikh Z. Ul Abidin, Abdul S. Mumtaz

Abstract:

In the present study, phytogeography and conservation status of gymnosperms of Pakistan were investigated. 44 gymnosperms species of 18 genera and 9 families were collected from 66 districts of the country. Among the 44 species, 20 species were native (wild) and 24 species were exotic (cultivated). Ephedra sarocarpa of Ephedraceae was not collected in this study from its distribution area and most probably it may be Nationally Extinct now from this area. Previously in Gymnosperms Flora of Pakistan 34 species was reported. 12 new gymnosperms species were recorded for the first time. Pinus wallichiana (40 districts), Cedrus deodara (39 districts) Pinus roxburghii (36 districts), Picea smithiana (36 districts) and Abies pindrow (34 districts) have the maximum ecological amplitude. Juniperus communis (17districts) and Juniperus excelsa (14 districts) were the widely distributed among the junipers. Ephedra foliata (23 districts), Ephedra gerardiana (20 districts) and Ephedra intermedia (19 districts) has the widest distribution range. Taxus fuana was also wider distribution range and recorded in 19 districts but its population was not very stable. These species was recorded to support local flora and fuana, especially endemics. PCORD version 5 clustered all gymnosperms species into 4 communities and all localities into 5 groups through cluster analyses. The Two Way Cluster Analyses of 66 districts (localities) resulted 4 various plant communities. The Gymnosperms in Pakistan are distributed in 3 floristic regions i.e. Western plains of the country, Northern and Western mountainous regions and Western Himalayas. The assessment of the National conservation status of these species, 10 species were found to be threatened, 6 species were endangered, 4 species were critically endangered and 1 species have become extinct (Ephedra sarcocarpa). The population of some species i.e. Taxus fuana, Ephedra gerardiana, Ephedra monosperma, Picea smithiana and Abies spectabilis is decreasing at an alarming rate.

Keywords: conservation status, gymnosperms, phytogeography, Pakistan

Procedia PDF Downloads 261
611 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation

Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely

Abstract:

Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.

Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations

Procedia PDF Downloads 92
610 Development of Automated Quality Management System for the Management of Heat Networks

Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov

Abstract:

Any business needs a stable operation and continuous improvement, therefore it is necessary to constantly interact with the environment, to analyze the work of the enterprise in terms of employees, executives and consumers, as well as to correct any inconsistencies of certain types of processes and their aggregate. In the case of heat supply organizations, in addition to suppliers, local legislation must be considered which often is the main regulator of pricing of services. In this case, the process approach used to build a functional organizational structure in these types of businesses in Kazakhstan is a challenge not only in the implementation, but also in ways of analyzing the employee's salary. To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC according to the method of Kaplan and Norton, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system.

Keywords: balanced scorecard, heat supply, quality management system, the theory of fuzzy sets

Procedia PDF Downloads 367
609 Development of Essential Oil-Loaded Gelatin Hydrogels for Use as Antibacterial Wound Dressing

Authors: Piyachat Chuysinuan, Nitirat Chimnoi, Arthit Makarasen, Nanthawan Reuk-Ngam, Pitt Supaphol, Supanna Techasakul

Abstract:

In this work, biomaterial wound dressings was developed based on gelatin containing herbal substances (essential oil), a substance from the plant Eupatorium adenophorum Spreng (Crofton weed) that used as traditional wound healers. Gelatin hydrogel was prepared from a 10 wt-% gelatin solution. The oil in water (o/w) emulsion Eupatorium adenophorum of essential oil were prepared and used Pluronic F68 as a surfactant. The 10, 20, and 30 % v/v emulsion were mixed with gelatin solution and cast into film. These hydrogels were tested for their gel fraction, swelling and weight loss behavior. With an increase in the emulsion concentration the emulsion-loaded in hydrogels, the gel fraction were decreased due to the crosslink density, while the swelling and weight loss behavior were increased with an increasing in the emulsion content. The potential to use the emulsion-containing gelatin hydrogels as wound dressing was assessed on investigation the release characteristics of the as-loaded hydrogels. The E. adenophorum essential oil was first identified the chemical composition by using GC-MS analysis. The principal components of the oil were p-cymene (16.23%), bornyl acetate (11.84%), and amorpha-4, 7(11)-diene (10.51%). The hydrogel wound dressing containing essential oil was then characterized for their antibacterial activity against Gram-positive and Gram-negative in order to elucidate their potential for use as antibacterial wound dressings by using agar disk diffusion methods. The result showed that E. adenophorum essential oil and the emulsion-loaded gelatin hydrogel inhibited the growth of the test pathogens, Staphylococcus aureus and Staphylococcus epidermidis and increased with increasing the initial amount of essential oil in the hydrogels which confirmed their application as antibacterial wound dressings. Furthermore, the potential use of these wound dressings was further assessed in terms of the indirect cytotoxicity, in vitro attachment and proliferation of dermal human fibroblasts cultured in the hydrogel wound dressings.

Keywords: hydrogel, antibacterial wound dressing, Eupatorium adenophorum essential oil, gelatin

Procedia PDF Downloads 356
608 Monitoring Soil Organic Amendments Under Arid Climate: Evolution of Soil Quality and of Two Consecutive Barley Crops

Authors: Houda Oueriemmi, Petra Susan Kidd, Carmen Trasar-Cepeda, Beatriz Rodríguez-Garrido, Mohamed Moussa, Ángeles Prieto-Fernández, Mohamed Ouessar

Abstract:

Organic amendments are generally used for improving the fertility of arid and semi-arid soils. However, the price of farmyard manure, the organic amendment typically applied to many arid and semi-arid soils has highly increased in the last years. To investigate at field scale whether cheap, highly available organic amendments, such as sewage sludge compost and municipal solid waste compost, may be acceptable as substitutes for farmyard manure is therefore of great interest. A field plots experiment was carried out to assess the effects of a single application of three organic amendments on soil fertility, distribution of trace elements and on barley yield. Municipal solid waste compost (MSWC), farmyard manure (FYM) and sewage sludge compost (SSC) were applied at rates of 0, 20, 40 and 60 t ha⁻¹, and barley was cultivated in two consecutive years. Plant samples and soils were collected for laboratory analyses after two consecutive harvests. Compared with unamended soil, the application of the three organic residues improved the fertility of the topsoil, showing a significant dose-dependent increase of TOC, N, P contents up to the highest dose of 60 t ha⁻¹ (0.74%, 0.06% and 40 mg kg⁻¹, respectively). The enhancement of soil nutrient status impacted positively on grain yield (up to 51%). The distribution of trace elements in the soil, analysed by a sequential extraction procedure, revealed that the MSWC increased the acid-extractable Co and Cu and reducible Ni, while SSC increased reducible Co and Ni and oxidisable Cu, relative to the control soil.

Keywords: municipal solid waste compost, sewage sludge compost, fertility, trace metals

Procedia PDF Downloads 88
607 Phytolith Analysis of Intrabasaltic Palaeosols (Bole Beds) from the Deccan Volcanic Province of Western India: A Preliminary Study

Authors: Sayyed Mohammed Rafi

Abstract:

Phytolith studies were carried out for the intrabasaltic bole beds occurring in the western part of the Deccan Volcanic Province. This preliminary study indicates the presence of multiform phytoliths both in red and green boles. Red bole indicates well preserved elongate phytoliths from Acanthaceae plants while bulky Bulliform phytoliths mainly from Pleioblastus/ Andropogonea/reeds plants. Degeneration of few phytoliths from red bole indicates either leaching/etching or some other activity that is responsible for such post-preservation conditions. Phytoliths from the green bole, however, seem to be well preserved as compared to those from the red bole. The phytoliths from green bole are mainly of Festucoid types (especially small square and rectangular types) indicating the presence of Chrysobalanaceae type of vegetation followed by elongate phytoliths from Acanthaceae plant types. The Multiform Trichomes seems to be derived from Panicoid/Andropogonoid/Burseraceae/Fabaceae while Bulliforms from Pleioblastus/Andropogonea/reeds. Presences of silicified woody elements from both red and green boles indicate the presence of dicotyledonous plants which could have been in the form of small shrubs. The degenerated phytoliths in red bole suggest leaching/etching or higher intensity of weathering suggesting the existence of well-drained conditions during its formation that enhanced the leaching activity while the presence of well-preserved phytoliths in green bole point towards the existence of damp and desiccated conditions during its formation. The prevalence of dry condition during red bole formation could suggest their formation under higher temperature as compared to green bole. Based on the phytolith analysis it is too early to comment on the palaeoclimates which could have prevailed during the bole bed formations. However a detailed micromorphological, as well as phytolith analysis of more samples, can throw light on the palaeoenvironmental conditions as well as the biological activity during their formation.

Keywords: Deccan volcanic province, intrabasaltic bole beds, palaeoclimate, phytoliths

Procedia PDF Downloads 241
606 X-Ray Diffraction and Crosslink Density Analysis of Starch/Natural Rubber Polymer Composites Prepared by Latex Compounding Method

Authors: Raymond Dominic Uzoh

Abstract:

Starch fillers were extracted from three plant sources namely amora tuber (a wild variety of Irish potato), sweet potato and yam starch and their particle size, pH, amylose, and amylopectin percentage decomposition determined accordingly by high performance liquid chromatography (HPLC). The starch was introduced into natural rubber in liquid phase (through gelatinization) by the latex compounding method and compounded according to standard method. The prepared starch/natural rubber composites was characterized by Instron Universal testing machine (UTM) for tensile mechanical properties. The composites was further characterized by x-ray diffraction and crosslink density analysis. The particle size determination showed that amora starch granules have the highest particle size (156 × 47 μm) followed by yam starch (155× 40 μm) and then the sweet potato starch (153 × 46 μm). The pH test also revealed that amora starch has a near neutral pH of 6.9, yam 6.8, and sweet potato 5.2 respectively. Amylose and amylopectin determination showed that yam starch has a higher percentage of amylose (29.68), followed by potato (22.34) and then amora starch with the lowest value (14.86) respectively. The tensile mechanical properties testing revealed that yam starch produced the best tensile mechanical properties followed by amora starch and then sweet potato starch. The structure, crystallinity/amorphous nature of the product composite was confirmed by x-ray diffraction, while the nature of crosslinking was confirmed by swelling test in toluene solvent using the Flory-Rehner approach. This research study has rendered a workable strategy for enhancing interfacial interaction between a hydrophilic filler (starch) and hydrophobic polymeric matrix (natural rubber) yielding moderately good tensile mechanical properties for further exploitation development and application in the rubber processing industry.

Keywords: natural rubber, fillers, starch, amylose, amylopectin, crosslink density

Procedia PDF Downloads 169
605 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 43
604 Electrochemical Biosensor for the Detection of Botrytis spp. in Temperate Legume Crops

Authors: Marzia Bilkiss, Muhammad J. A. Shiddiky, Mostafa K. Masud, Prabhakaran Sambasivam, Ido Bar, Jeremy Brownlie, Rebecca Ford

Abstract:

A greater achievement in the Integrated Disease Management (IDM) to prevent the loss would result from early diagnosis and quantitation of the causal pathogen species for accurate and timely disease control. This could significantly reduce costs to the growers and reduce any flow on impacts to the environment from excessive chemical spraying. Necrotrophic fungal disease botrytis grey mould, caused by Botrytis cinerea and Botrytis fabae, significantly reduce temperate legume yield and grain quality during favourable environmental condition in Australia and worldwide. Several immunogenic and molecular probe-type protocols have been developed for their diagnosis, but these have varying levels of species-specificity, sensitivity, and consequent usefulness within the paddock. To substantially improve speed, accuracy, and sensitivity, advanced nanoparticle-based biosensor approaches have been developed. For this, two sets of primers were designed for both Botrytis cinerea and Botrytis fabae which have shown the species specificity with initial sensitivity of two genomic copies/µl in pure fungal backgrounds using multiplexed quantitative PCR. During further validation, quantitative PCR detected 100 spores on artificially infected legume leaves. Simultaneously an electro-catalytic assay was developed for both target fungal DNA using functionalised magnetic nanoparticles. This was extremely sensitive, able to detect a single spore within a raw total plant nucleic acid extract background. We believe that the translation of this technology to the field will enable quantitative assessment of pathogen load for future accurate decision support of informed botrytis grey mould management.

Keywords: biosensor, botrytis grey mould, sensitive, species specific

Procedia PDF Downloads 173
603 Treatment of Acid Mine Lake by Ultrasonically Modified Fly Ash at Different Frequencies

Authors: Burcu Ileri, Deniz Sanliyuksel Yucel, Onder Ayyildiz

Abstract:

The oxidation of pyrite in water results in the formation of acid mine drainage, which typically forms extremely acid mine lake (AML) in the depression areas of abandoned Etili open-pit coal mine site, Northwest Turkey. Nine acid mine lakes of various sizes have been located in the Etili coal mine site. Hayirtepe AML is one of the oldest lake having a mean pH value of 2.9 and conductivity of 4550 μS/cm, and containing elevated concentrations of Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn. The water quality of the lake has been deteriorated due to its high chemical composition, in particular, increasing heavy metal pollution. In this study, fly ash (FA), a coal combustion by-product from fluidized bed thermal power plant in the northwestern part of Turkey, was used as an adsorbent for the treatment of Hayirtepe AML. The FA is a relatively abundant and cost effective material, but its use in adsorption processes usually require excessive adsorbent doses. To increase adsorption efficiency and lower the adsorbent dose, we modified the FA by means of ultrasonic treatment (20 kHz and 40 kHz). The images of scanning electron microscopy (SEM) have demonstrated that ultrasonic treatment not only decreased the size of ash particles but also created pits and cracks on their surfaces which in turn led to a significant increase in the BET surface area. Both FA and modified fly ash were later tested for the removal of heavy metals from the AML. The effect of various operating parameters such as ultrasonic power, pH, ash dose, and adsorption contact time were examined to obtain the optimum conditions for the treatment process. The results have demonstrated that removal of heavy metals by ultrasound-modified fly ash requires much shorter treatment times and lower adsorbent doses than those attained by the unmodified fly ash. This research was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK), (Project no: 116Y510).

Keywords: acid mine lake, heavy metal, modified fly ash, ultrasonic treatment

Procedia PDF Downloads 198
602 Wear Progress and -Mechanisms in Torpedo Ladles in Steel Industry

Authors: Mattahias Maj, Fabio Tatzgern, Karl Adam, Damir Kahrimanovic, Markus Varga

Abstract:

Torpedo ladles are necessary transport carriages in steel production to move the molten crude iron from the blast furnace to the steel refining plant. This requires the ladles to be high temperature resistant and insulate well to preserve the temperature and hold the risk of solidification at bay. Therefore, the involved refractories lining the inside of the torpedo ladles are chosen mostly according to their thermal properties, although wear of the materials by the liquid iron is also of major importance. In this work, we combined investigations of the thermal behaviour with wear studies of the lining over the whole lifetime of a torpedo ladle. Additional numerical simulations enabled a detailed model of the mechanical loads and temperature propagation at the various stations (heating, filling, emptying, cooling). The core of the investigation were detailed 3D measurements of the ladle’s cavity and thereby quantitative information of the wear progress at different time intervals during the lifetime of the ladles. The measurements allowed for a separation of different wear zones according to severity, namely the “splash zone” where the melt directly hits the ladle, the “melt zone” where during transport always liquid melt is present, and the “slag zone”, where the slag floats on the melt causing the most severe wear loss. Numerical simulations of the filling process were taken to calculate stress levels and temperature gradients, which led to the different onset of wear on those zones. Thermal imaging and punctual temperature measurements allowed for a study of the thermal consequences entailed by the wear onset. Additional “classical” damage analysis of the worn refractories complete the investigation. Thereby the wear mechanisms leading to the substantial wear loss were disclosed.

Keywords: high temperature, tribology, liquid-solid interaction, refractories, thermography

Procedia PDF Downloads 225
601 Evaluation of Certain Medicinal Plants for in vitro Anti-Oxidant and Anti-Glycation Activities

Authors: K. Shailaja

Abstract:

The advanced glycation end products (AGEs) formed between the reducing sugar and protein as a result of Oxidative stress and non-enzymatic glycosylation play an important role in pathogenesis of diabetes and aging complication. Glycation results in the production of free radicals. The oxidation process is believed to play an important role in AGEs formation. Thus agents with antioxidative property and antiglycation activity may retard the process of AGEs formation. Selected medicinal plants for the present study include Catharanthus roseus, Bougainvillea spectabilis (pink flowers), Cinnamomum tamala, Cinnamomum zeylanica, Abutilon indicum, Asparagus racemosus, and Sapindus emarginatus. The crude ethanolic extracts of the selected medicinal plants at varying concentrations ranging from 1-100 mg/ml were evaluated for in vitro antioxidant and protein glycation activities by FRAP and glucose-BSA assay respectively. Among all the plants tested, Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum showed strong antioxidant activity The antioxidant activity was expressed as mg of Gallic acid/ gm sample which was found to be 4.3 mg, 1.3mg, and 1.3mg respectively for Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum. The results of inhibition of the initial glycation product i.e., fructosamine was found to be 35% for Asparagus racemosus, Cinnamomum tamala and Abutilon indicum followed by the other plant extracts. The results indicate that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used not only for reducing oxidative stress in diabetes but also open a new research avenues in the field of Natural Products.

Keywords: in vitro antioxidant activity, anti-glycation activity, ethanol extracts, polyphenols, Catharanthus roseus, Cinnamomum tamala

Procedia PDF Downloads 430
600 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 389
599 Antimicrobial Activity of Endophytes on some Selected Clinical Isolates (Escherichia coli, Staphylococcus aureus, Salmonella Typhi, Bacillus subtilis, Klebsiella pneumoniae, Aspergillus fumigatus, Pseudomomonas aeruginosa and Penicillium chryysogenum)

Authors: Dawang D. N., Dasat G. S., Nden D.

Abstract:

Endophyte means “in the plant” are referred to all microorganisms that live in the internal tissues of stems, petioles, roots and leaves of plants causing no apparent symptoms of disease. Secondary metabolites from fungal endophytes have an enormous potential applications as antioxidant, antimicrobial, anticancer and antidiabeties. Thus, this study aimed to determine the antimicrobial activity of these metabolites against some clinical isolates. The fungi were subjected to fermentation medium and the metabolites were extracted using ethyl acetate. The fungal extracts showed both antibacterial and antifungal activities with maximum zone of inhibition diameter of 10.5mm against Aspergillus fumigatus. Staphylococcus aureus was inhibited by all the five crude extracts with inhibition zone diameter of 4mm. Endophytic fungal crude extract2 (EDF2) exhibited antimicrobial effect against all the test organisms used, EDF4 was active against all test organisms except on Penicillium chrysogenum and Klebsiella pneumoniae. Antibacterial standard of ciprofloxacin which is 15mm is comparable to the effect of endophytic extract of EDF1 and EDF2. Klebsiella pneumoniae was resistant to EDF4 and EDF5. EDF3 showed a wide range of antimicrobial activity against all the test organisms used. The highest inhibition zone diameter of 10.50mm recorded against Aspergillus fumigatus is comparable to antifungal standard of fluconazole (15.5mm). The result of this study suggests that endophytic fungi associated with the roots of Irish potato could be a promising source of novel bioactive compounds of pharmaceutical and industrial importance.

Keywords: endophyte, fungal extract, antimicrobial, potato

Procedia PDF Downloads 123
598 Assessment of Multi-Domain Energy Systems Modelling Methods

Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell

Abstract:

Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.

Keywords: CHPV, thermal storage, control, dynamic simulation

Procedia PDF Downloads 240
597 Treatment of Histopathological Symptoms in N-Nitrosopyrrolidine Induced Changes in Lung Tissue by Isolated Flavonoid from Indigofera tinctoria

Authors: Aastha Agarwal, Veena Sharma

Abstract:

N-nitrosopyrollidine or NPYR is a tobacco-specific nitrosamine which upon intoxicated causes abnormal production of Reactive Oxygen Species disrupt the endogenous antioxidant system. The study was designed to evaluate the histological changes in lung tissue of Mus musculus in NPYR administered lungs and effect of isolated flavonoid 3,6-dihydroxy-(3’,4’,7’-trimethoxyphenyl)-chromen-4-one-7-glucoside (ITC) from experimental plant Indigofera tinctorial. Post treatment with isolated compound significantly restored the abnormal symptoms and changes in pulmonary tissue. Transverse section of mouse lung in control animals appeared as a thin lace. Histologically, most of the lung was arranged as alveoli which were thin walled structures made up of single layered squamous epithelial cells. In the transverse section of lung at 100 X will clearly show the component of alveoli, surround by a thin layer of connective tissue and blood vessels. Smaller bronchioles were lined by cuboidal epithelial cells while larger bronchioles were lined by ciliated columnar epithelium layer while in NPYR intoxicated lungs signs of vast pulmonary damages and carcinogenesis as alveolar damage, necrosis, DADs or defused alveolar damages hyperplasia, metaplasia, dysplasia and next stage of carcinogenesis were revealed. Treatment with ITC showed the significant positive changes in the lung tissue due to the side hydroxyl and methoxy groups in its structure which help in combating oxidative injuries and give protection from the free radicals generated during the metabolism of NPYR in body. Thus, histopathological analysis confirms the development of the cancerous conditions in the lung tissue in mice model and the protective effects of ITC.

Keywords: flavonoid, histopathology, Indigofera tinctoria, lung

Procedia PDF Downloads 296
596 Evaluation of Ficus racemosa (Moraceae) as a Potential Source for Drug Formulation Against Coccidiosis

Authors: Naveeda Akhtar Qureshi, Wajiha

Abstract:

Coccidiosis is a protozoan parasitic disease of genus Eimeria. It is an avian infection causing a great economic loss of 3 billion USD per year globally. A number of anticoccidial drugs are in use however many of them have side effects and cost effective. With increase in poultry demand throughout the world there is a need of more drugs and vaccines against coccidiosis. The present study is based upon the use of F. racemosa a medicinal plant to be a potential source of anticoccidial agents. The methanolic leaves extract was fractionated by column and thin layer chromatography and got nineteen fractions. Each fraction different concentrations was evaluated for its anticoccidial properties in an invitro experiment against E. tenella, E. necatrix and E. mitis. The anticoccidial active fractions were further characterized by spectroscopy (UV-Vis, FTIR) and GC-MS analysis. The in silico molecular docking of active fractions identified compounds were carried out. Among all fractions significantly maximum sporulation inhibition efficacy was shown by F-19 (67.11±2.18) followed by F-15 (65.21±1.34) at concentration of 30mg/ml against E. tenella. The significantly highest sporozoites viability inhibition was shown by F-19 (69.23±2.11) followed by F-15 (67.14±1.52) against E. necatrix at concentration 30mg/ml. Anticoccidial active fractions 15 and 19 showed peak spectrum at 207 and 202nm respectively by UV analysis. Their FTIR analysis confirmed the presence of carboxylic acid, amines, phenols, etc. Anticoccidial active compounds like Cyclododecane methanol, oleic acid, Octadecanoic acid, etc were identified by GC-MS analysis. Identified compounds in silico molecular docking study showed that cyclododecane methanol of F-19 and oleic acid of F-15 showed highest binding affinity with target S-Adenosylmethionine synthase. Hence for further authentication in vivo anticoccidial studies are recommended.

Keywords: ficus racemosa, cluster fig, column chromatography, anticoccidial fractions, GC-MS, molecular docking., s-adenosylmethionine synthase

Procedia PDF Downloads 85
595 Ankaferd Blood Stopper (ABS) Has Protective Effect on Colonic Inflammation: An in Vitro Study in Raw 264.7 and Caco-2 Cells

Authors: Aysegul Alyamac, Sukru Gulec

Abstract:

Ankaferd Blood Stopper (ABS) is a plant extract used to stop bleeding caused by injuries and surgical interventions. ABS also involved in wound healing of intestinal mucosal damage due to oxidative stress and inflammation. Inflammatory Bowel Disease (IBD) is a common chronic disorder of the gastrointestinal tract that causes abdominal pain, diarrhea, and gastrointestinal bleeding, and increases the risk of colon cancer. Inflammation is an essential factor in the development of IBD. The various studies have been performed about the physiological effects of ABS; however, ABS dependent mechanism on colonic inflammation has not been elucidated. Thus, the protective effect of ABS on colonic inflammation was investigated in this study. The Caco-2 and RAW 264.7 murine macrophage cells were used as a model of in vitro colonic inflammation. RAW 264.7 cells were treated with lipopolysaccharide (LPS) for 12 hours to induce the inflammation, and a conditional medium was obtained. Caco-2 cells were treated with 15 µl/ml ABS for 4 hours, then incubated with conditional medium and the cells also were incubated with 15 µl/ml ABS and conditional medium together for 4 hours. Tumor necrosis factor alpha (TNF-α) protein levels were targeted in testing inflammatory condition and its level was significantly increased (25 fold, p<0.001) compared to the control group by using Enzyme-Linked Immunosorbent Assay (ELISA) method. The COX-2 mRNA level was used as a marker gene to show the possible anti-inflammatory effect of ABS in Caco-2 cells. RAW cells-derived conditional medium significantly (3.3 fold, p<0.001) induced cyclooxygenase-2 (COX-2) mRNA levels in Caco-2 cells. The pretreatment of Caco-2 cells caused a significant decrease (3.3 fold, p<0.001) in COX-2 mRNA levels relative to conditional medium given group. Furthermore, COX-2 mRNA level was significantly reduced (4,7 fold, p<0.001) in ABS and conditional medium treated group. These results suggest that ABS might have an anti-inflammatory effect in vitro.

Keywords: Ankaferd blood stopper, CaCo-2, colonic inflammation, RAW 264.7

Procedia PDF Downloads 146
594 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort

Procedia PDF Downloads 231
593 Determination of Vinpocetine in Tablets with the Vinpocetine-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis

Authors: Faisal A. Salih

Abstract:

Vinpocetine (Vin) is an ethyl ester of apovincamic acid and is a semisynthetic derivative of vincamine, an alkaloid from plants of the genus Periwinkle (plant) vinca minor. It was found that this compound stimulates cerebral metabolism: it increases the uptake of glucose and oxygen, as well as the consumption of these substances by the brain tissue. Vinpocetine enhances the flow of blood in the brain and has a vasodilating, antihypertensive, and antiplatelet effect. Vinpocetine seems to improve the human ability to acquire new memories and restore memories that have been lost. This drug has been clinically used for the treatment of cerebrovascular disorders such as stroke and dementia memory disorders, as well as in ophthalmology and otorhinolaryngology. It has no side effects, and no toxicity has been reported when using vinpocetine for a long time. For the quantitative determination of Vin in dosage forms, the HPLC methods are generally used. A promising alternative is potentiometry with Vin- selective electrode, which does not require expensive equipment and materials. Another advantage of the potentiometric method is that the pills and solutions for injections can be used directly without separation from matrix components, which reduces both analysis time and cost. In this study, it was found that the choice of a good plasticizer an electrode with the following membrane composition: PVC (32.8 wt.%), ortho-nitrophenyl octyl ether (66.6 wt.%), tetrakis-4-chlorophenyl borate (0.6 wt.%) exhibits excellent analytical performance: lower detection limit (LDL) 1.2•10⁻⁷ M, linear response range (LRR) 1∙10⁻³–3.9∙10⁻⁶ M, the slope of the electrode function 56.2±0.2 mV/decade). Vin masses per average tablet weight determined by direct potentiometry (DP) and potentiometric titration (PT) methods for the two different sets of 10 tablets were (100.35±0.2–100.36±0.1) mg for two sets of blister packs. The mass fraction of Vin in individual tablets, determined using DP, was (9.87 ± 0.02–10.16 ±0.02) mg, while the RSD was (0.13–0.35%). The procedure has very good reproducibility, and excellent compliance with the declared amounts was observed.

Keywords: vinpocetine, potentiometry, ion selective electrode, pharmaceutical analysis

Procedia PDF Downloads 73
592 Recovery of Selenium from Scrubber Sludge in Copper Process

Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu

Abstract:

The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.

Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂

Procedia PDF Downloads 205
591 Evaluation of the Shelf Life of Horsetail Stems Stored in Ecological Packaging

Authors: Rosana Goncalves Das Dores, Maira Fonseca, Fernando Finger, Vicente Casali

Abstract:

Equisetum hyemale L. (horsetail, Equisetaceae) is a medicinal plant used and commercialized in simple paper bags or non-ecological packaging in Brazil. The aim of this work was to evaluate the relation between the bioactive compounds of horsetail stems stored in ecological packages (multi-ply paper sacks) at room temperature. Stems in primary and secondary stage were harvested from an organic estate, on December 2016, selected, measured (length from the soil to the apex (cm), stem diameter at ground level (DGL mm) and breast height (DBH mm) and cut into 10 cm. For the post-harvest evaluations, stems were stored in multi-ply paper sacks and evaluated daily to the respiratory rate, fresh weight loss, pH, presence of fungi / mold, phenolic compounds and antioxidant activity. The analyses were done with four replicates, over time (regression) and compared at 1% significance (Tukey test). The measured heights were 103.7 cm and 143.5 cm, DGL was 2.5mm and 8.4 mm and DBH of 2.59 and 6.15 mm, respectively for primary and secondary stems stage. At both stages of development, in storage in multi-ply paper sacks, the greatest mass loss occurred at 48 h, decaying up to 120 hours, stabilizing at 192 hours. The peak respiratory rate increase occurred in 24 hours, coinciding with a change in pH (temperature and mean humidity was 23.5°C and 55%). No fungi or mold were detected, however, there was loss of color of the stems. The average yields of ethanolic extracts were equivalent (approximately 30%). Phenolic compounds and antioxidant activity were higher in secondary stems stage in up to 120 hours (AATt0 = 20%, AATt30 = 45%), decreasing at the end of the experiment (240 hours). The packaging used allows the commercialization of fresh stems of Equisetum for up to five days.

Keywords: paper sacks, phenolic content, antioxidant activity, medicinal plants, post-harvest, ecological packages, Equisetum

Procedia PDF Downloads 166
590 Effect of Select Surfactants on Activities of Soil Enzymes Involved in Nutrient Cycling

Authors: Frieda Eivazi, Nikita L. Mullings

Abstract:

Soils are recipient for surfactants in herbicide formulations. Surfactants entering the soil environment can possibly disrupt different chemical, physical and biological interactions. Therefore, it is critical that we understand the fate, behavior and transport of surfactants upon entering the soil. A comprehensive study was conducted to examine effect of surfactants on nutrient uptake, microbial community, and enzyme activity. The research was conducted in the greenhouse growing corn (Zea mays) as a test plant in a factorial experiment (three surfactants at two different rates with control, and three herbicides) organized as randomized blocked design. Surfactants evaluated were Activator 90, Agri-Dex, and Thrust; herbicides were glyphosate, atrazine, and bentazon. Treatments examined were surfactant only, herbicide only, and surfactant + herbicide combinations. Corn was planted in fertilized soils (silt loam and silty clay) with moisture content maintained at the field capacity for optimum growth. This paper will report results of above mentioned treatments on acid phosphatase, beta-glucosidase, arylsulfatase, beta-glucosaminidase, and dehydrogenase activities. In general, there were variations in the enzyme activities with some inhibition and some being enhanced by the treatments. Activator 90 appeared to have the highest inhibitory effect on enzymatic activities. Atrazine application significantly decreased the activities of acid phosphatase, beta-glucosidase, and dehydrogenase in both soils; however, combination of Atrazine + Agridex increased the acid phosphatase activity while significantly inhibiting the other enzyme activities in soils. It was concluded that long-term field studies are needed to validate changes in nutrient uptake, microbial community and enzyme activities due to surfactant-herbicide combination effects.

Keywords: herbicides, nutrient cycling, soil enzymes, surfactant

Procedia PDF Downloads 251
589 Innovate, Educate, and Transform, Tailoring Sustainable Waste Handling Solutions for Nepal’s Small Populated Municipalities: Insights From Chandragiri Municipality

Authors: Anil Kumar Baral

Abstract:

The research introduces a ground-breaking approach to waste management, emphasizing innovation, education, and transformation. Using Chandragiri Municipality as a case study, the study advocates a shift from traditional to progressive waste management strategies, contributing an inventive waste framework, sustainability advocacy, and a transformative blueprint. The waste composition analysis highlights Chandragiri's representative profile, leading to a comprehensive plan addressing challenges and recommending a transition to a profitable waste treatment model, supported by relevant statistics. The data-driven approach incorporates the official data of waste Composition from Chandragiri Municipality as secondary data and incorporates the primary data from Chandragiri households, ensuring a nuanced perspective. Discussions on implementation, viability, and environmental preservation underscore the dual benefit of sustainability. The study includes a comparative analysis, monitoring, and evaluation framework, examining international relevance and collaboration, and conducting a social and environmental impact assessment. The results indicate the necessity for creative changes in Chandragiri's waste practices, recommending separate treatment centers in wards level rather than Municipal level, composting machines, and a centralized waste treatment plant. Educational reforms involve revising school curricula and awareness campaigns. The transformation's success hinges on reducing waste size, efficient treatment center operation, and ongoing public literacy. The conclusion summarizes key findings, envisioning a future with sustainable waste management practices deeply embedded in the community fabric.

Keywords: innovate, educate, transform, municipality, method

Procedia PDF Downloads 46
588 Antibiotic Resistance and Susceptibility of Bacteria Strains Isolated from Sheep Milk

Authors: Fatima Bouazza, Rachida Hassikou, Lamiae Amallah, Jihane Ennadir, Khadija Khedid

Abstract:

This study evaluated the in vitro resistance and susceptibility of Enterobacteriaceae (Escherichia coli and Klebsiella oxytoca strains) and Staphylococci strains, isolated from sheep’s milk, against antibiotics and essential oils from Thymus satureioides and Mentha pulegium. Antibiotic resistance tests were done using disc diffusion while essential oils were extracted by steam distillation, and yields were calculated relative to plant dry matter. Gas chromatography-mass Spectrometry (GC-MS) was used to analyze each oil's chemical composition. The AMC, CTX, FOX, NA, CN, CIP, and OFX were very effective against the E. coli strains tested. Half of the strains were resistant to AMC, 60% to TIC, and 80% to TE. The K. oxytoca was resistant against AMC, FOX, and TIC (100%). Antibiotic-resistant testing on Staphylococci strains indicated Staphylococcus capitis and Staphylococcus chromogenes as the most sensitive. Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus cohnii ureal exhibited less resistance to OX, TE, PT, E, and P. The M. pulegium resulted in a higher yield of essential oil of 3.2% oil compared to T. satureioides with only 1.85% yield. Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus cohnii ureal had lower OX, TE, PT, E, and P resistance. M. pulegium yielded 3.2% essential oil compared to 1.85% for T. satureioides. The monoterpene oxygenated derivatives, monoterpene hydrocarbons, and phenols are found in essential oil extracts. T. satureioides essential oil had high antibacterial activity even at low concentrations (0.2; 0.55 g/mL). The Minimal Bactericidal Concentration (MBC) values indicate that the essential oils from the plants analyzed had bactericidal effects on all strains tested and are similar to the Minimal Inhibitory Concentration (MIC) values. The high antibacterial properties of these medicinal plants, against bacteria isolated from sheep’s milk, provide an opportunity to use these medicinal plants in the breeding sector as additives and preservatives in the dairy industry.

Keywords: antibiotic resistance, medicinal plants, essential oils, enterobacteriaceae, staphylococci, sheep milk

Procedia PDF Downloads 160
587 Influence of Temperature on the Development and Feeding Activity of Southern Green Stink Bug Nezara viridula (Heteroptera: Pentatomidae)

Authors: Pavitra Sharma, A. K. Singh

Abstract:

The establishment of pest population in a habitat is greatly influenced by abiotic factors, such as temperature, photoperiod, and humidity. These factors influence the biology and behavior of insects and their pest status. Nezara viridula (Heteroptera: Pentatomidae), commonly known as southern green stink bug, is economically important pest of legumes. Both nymphs and adult suck the sap from different part of the plant and deteriorate the standing crop. Present study involves effects of temperature on incubation, hatching success and nymphal duration of N. viridula. The results indicated that the development of eggs requires optimal temperature range. Temperature conditions above and below the optimum range affect the incubation period as well as the percent hatchability of eggs. At 19°C, the egg incubation period was longest whereas it was shortest at 27°C. The change in temperature from the optimum condition also affected the hatchability of eggs in N. viridula. Decrease in the hatchability was observed with the decrease in temperature. However, the results were not statistically significant. Decrease in temperature from the optimum temperature to 19°C, also resulted in an increase in nymphal duration of N. viridula. However, no such effect of temperature within the studied range was observed on the morphology of nymphs or adults. Variation in temperature also had no adverse effects on the survival of laboratory bred population of Nezara nymphs. The feeding activity of the bug in relation to photoperiod was assessed by counting the number of punctures on the food surface. The results indicated that day-night regime did not affect the feeding activity of the bug significantly. The present study enhances our knowledge about the effect of environmental factors on the biology of insects and developing the strategy for ‘Integrated Pest Management’ of hemipteran insects by management of the physical factors.

Keywords: development, feeding, hatchability, Nezara viridula

Procedia PDF Downloads 178
586 Eco-Agriculture for Effective Solid Waste Management in Minna, Nigeria

Authors: A. Abdulkadir, Y. M. Bello, A. A. Okhimamhe, H. Ibrahim, M. B. Matazu, L. S. Barau

Abstract:

The increasing volume of solid waste generated, collected and disposed daily complicate adequate management of solid waste by the relevant agency like Niger State Environmental Protection Agency (NISEPA). In addition, the impacts of solid waste on the natural environment and human livelihood require identification of cost-effective ways for sustainable municipal waste management in Nigeria. These signal the need for identifying environment-friendly initiative and local solution to address municipal solid waste. A research field was secured at Pago, Minna, Niger State which is located in the guinea savanna belt of Nigeria, within longitude 60 3614311- 4511 and latitude 90 291 37.6111- .6211 N. Poultry droppings, decomposed household waste manure and NPK treatment were used. The experimental field was divided into three replications and four (4) treatments on each replication making a total of twelve (12) plots. The treatments were allotted using Randomized Complete Block Design (RCBD) and Data collected was analyzed using SPSS software and RCBD. The result depicts variation in plant height and number of leaves at 50% flowering; Poultry dropping records the highest height as a number of leaves for waste manure competes fairly well with NPK treatment. Similarly, the varying treatments significantly increase vegetable yield, as the control (Nontreatment) records the least yield for the three vegetable samples. Adoption of this organic manure for cultivation does not only enhance environment quality and attainment of food security but will contribute to local economic development, poverty alleviation, and social inclusion.

Keywords: environmental issues, food security, NISEPA, solid waste

Procedia PDF Downloads 345
585 Potentialities of Onopordum Tauricum (Willd.) as Milk Clotting Agent

Authors: Massimo Mozzon, Nadia Raffaelli

Abstract:

Proteases from herbs, woody plants, and trees are exploited for cheesemaking in several countries, especially in South Europe and West Africa. Particularly, “thistles” belonging to several genera within the Asteraceae family (Cynara, Silybum, Centaurea, Carlina, Cirsium, Onopordum) are traditionally used in Mediterranean countries for clotting raw ewe’s and goat’s milk. For the first time, the clotting performance of an aqueous extract from flowers of Onopordum tauricum Willd. (Taurian thistle, bull cottonthistle) were tested in milk of different origin (cow, goat, ewe). The vegetable material was collected in the Central Apennines range, between the Marche and Umbria regions. A response surface methodology (RSM) approach was used to study the effect of the curdling variables (temperature, pH, amount of enzymatic extract) on the technological performance of the thistle extract. A three-step procedure for the purification of the enzyme (ammonium sulphate precipitation, gel filtration and ion-exchange chromatography) was also carried out. The milk clotting activity (MCA) of O. tauricum crude extracts was strongly affected by temperature, pH and by the interaction between these two variables, according to a second-order response surface model, while the milk/coagulant ratio did not affect in a significant way the clotting properties. Experimental data showed that the addition of 10 mM CaCl2 reduced the clotting time of ewe’s, goat’s, and cow’s milk by about 3-fold, 8-fold, and 14-fold, respectively, at 35°C and pH 6.7-6.8. After purification, an enzymatic preparation very close to homogeneity was obtained, which showed a major band at about 30 kDa when analyzed by SDS-PAGE. The identity of the enzyme as an aspartic protease was confirmed by inhibition studies. Cheese-making trials were carried out to check the scale-up (1 to 5 L of milk; 37 °C; 10 mM CaCl2 fortification) and set the recipe: 35-45% of curd yields were recorded, according to curd cutting and pressing.

Keywords: milk clotting activity, Onopordum tauricum, plant proteases, vegetable rennet

Procedia PDF Downloads 159
584 Occurence And Management Of Coliform Bacteria On Tomatoes

Authors: Cho Achidi

Abstract:

Tomato is a crucial food crop significantly contributes to global food and nutrition security. However, postharvest losses severely limit its role. Therefore, it is necessary to develop sustainable strategies to minimize these losses and improve the shelf-life of tomato fruits. One of the major concerns is bacterial infections, particularly by faecal coliform bacteria, which can cause food poisoning and illnesses like diarrhoea and dysentery. This study seeks to identify the presence of coliform bacteria on tomato fruits in fields and markets in Muea, Buea Municipality. The study also evaluated different management strategies to reduce the bacterial incidence and load on tomato fruits. A total of 200 fruits were sampled for both the coliform survey and shelf-life analysis. Ten farmers and traders provided samples, including asymptomatic and symptomatic tomato fruits. The samples designated for shelf-life analysis were treated with Aquatab, warm water, lemon, and onion. The results indicated that out of the 80 symptomatic samples collected, 12.5% contained faecal and total coliform species. Among the ten farms sampled, 14% were infected with coliform bacteria, with the highest infestation rate of 60% recorded in field 4. Furthermore, 15% of the asymptomatic tomato fruits were found to be infected by coliform bacteria. Regarding the management strategies, Aquatabs exhibited the highest efficacy in reducing the incidence of coliform bacteria on tomato fruits, followed by onion and lemon extracts. Although hot water treatment effectively removed bacteria from the fruits, damaging the cell wall negatively affected their shelf-life. Overall, this study emphasizes the severity of coliform bacterial pathogens in the Muea area, particularly their occurrence on asymptomatic tomatoes, which poses a significant concern for plant quarantine services. It also demonstrates potential options for mitigating this bacterial challenge.

Keywords: tomato, shelf-life analysis, food and nutrition security, coliform bbacteria

Procedia PDF Downloads 65
583 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate

Authors: Beenish Saba, Ann D. Christy

Abstract:

Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.

Keywords: microbial fuel cell, landfill leachate, power generation, MFC

Procedia PDF Downloads 316