Search results for: fuzzy stability
1120 The Role of Online Social Networks in Social Movements: Social Polarization and Violations against Social Unity and Privacy of Individuals in Turkey
Authors: Tolga Yazıcı
Abstract:
As a matter of the fact that online social networks like Twitter, Facebook and MySpace have experienced an extensive growth in recent years. Social media offers individuals with a tool for communicating and interacting with one another. These social networks enable people to stay in touch with other people and express themselves. This process makes the users of online social networks active creators of content rather than being only consumers of traditional media. That’s why millions of people show strong desire to learn the methods and tools of digital content production and necessary communication skills. However, the booming interest in communication and interaction through online social networks and high level of eagerness to invent and implement the ways to participate in content production raise some privacy and security concerns. This presentation aims to open the assumed revolutionary, democratic and liberating nature of the online social media up for discussion by reviewing some recent political developments in Turkey. Firstly, the role of Internet and online social networks in mobilizing collective movements through social interactions and communications will be questioned. Secondly, some cases from Gezi and Okmeydanı Protests and also December 17-25 period will be presented in order to illustrate misinformation and manipulation in social media and violation of individual privacy through online social networks in order to damage social unity and stability contradictory to democratic nature of online social networking.Keywords: online social media networks, democratic participation, social movements, social polarization, privacy of individuals, Turkey
Procedia PDF Downloads 3431119 Polyvinyl Alcohol Processed Templated Polyaniline Films: Preparation, Characterization and Assessment of Tensile Strength
Authors: J. Subbalakshmi, G. Dhruvasamhith, S. M. Hussain
Abstract:
Polyaniline (PANI) is one of the most extensively studied material among the conducting polymers due to its simple synthesis by chemical and electrochemical routes. PANIs have advantages of chemical stability and high conductivity making their commercial applications quite attractive. However, to our knowledge, very little work has been reported on the tensile strength properties of templated PANIs processed with polyvinyl alcohol and also, detailed study has not been carried out. We have investigated the effect of small molecule and polymers as templates on PANI. Stable aqueous colloidal suspensions of trisodium citrate (TSC), poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS), and polyethylene glycol (PEG) templated PANIs were prepared through chemical synthesis, processed with polyvinyl alcohol (PVA) and were fabricated into films by solution casting. Absorption and infra-red spectra were studied to gain insight into the possible molecular interactions. Surface morphology was studied through scanning electron microscope and optical microscope. Interestingly, tensile testing studies revealed least strain for pure PVA when compared to the blends of templated PANI. Furthermore, among the blends, TSC templated PANI possessed maximum elasticity. The ultimate tensile strength for PVA processed, PEG-templated PANI was found to be five times more than other blends considered in this study. We establish structure–property correlation with morphology, spectral characterization and tensile testing studies.Keywords: surface morphology, processed films, polyvinyl alcohol, templated polyanilines, tensile testing
Procedia PDF Downloads 2141118 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs
Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan
Abstract:
Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.Keywords: PL, phosphor, quantum yield, white LED
Procedia PDF Downloads 761117 Simultaneous Determination of Six Characterizing/Quality Parameters of Biodiesels via 1H NMR and Multivariate Calibration
Authors: Gustavo G. Shimamoto, Matthieu Tubino
Abstract:
The characterization and the quality of biodiesel samples are checked by determining several parameters. Considering a large number of analysis to be performed, as well as the disadvantages of the use of toxic solvents and waste generation, multivariate calibration is suggested to reduce the number of tests. In this work, hydrogen nuclear magnetic resonance (1H NMR) spectra were used to build multivariate models, from partial least squares (PLS) regression, in order to determine simultaneously six important characterizing and/or quality parameters of biodiesels: density at 20 ºC, kinematic viscosity at 40 ºC, iodine value, acid number, oxidative stability, and water content. Biodiesels from twelve different oils sources were used in this study: babassu, brown flaxseed, canola, corn, cottonseed, macauba almond, microalgae, palm kernel, residual frying, sesame, soybean, and sunflower. 1H NMR reflects the structures of the compounds present in biodiesel samples and showed suitable correlations with the six parameters. The PLS models were constructed with latent variables between 5 and 7, the obtained values of r(cal) and r(val) were greater than 0.994 and 0.989, respectively. In addition, the models were considered suitable to predict all the six parameters for external samples, taking into account the analytical speed to perform it. Thus, the alliance between 1H NMR and PLS showed to be appropriate to characterize and evaluate the quality of biodiesels, reducing significantly analysis time, the consumption of reagents/solvents, and waste generation. Therefore, the proposed methods can be considered to adhere to the principles of green chemistry.Keywords: biodiesel, multivariate calibration, nuclear magnetic resonance, quality parameters
Procedia PDF Downloads 5421116 Nourishing the Hive: The Interplay of Nutrition, Gene Expression, and Queen Egg-Laying in Honeybee Colonies
Authors: Damien P. Fevre, Peter K. Dearden
Abstract:
Honeybee population sustainability is a critical concern for environmental stability and human food security. The success of a colony relies heavily on the egg-laying capacity of the queen, as it determines the production of thousands of worker bees who, in turn, perform essential functions in foraging and transforming food to make it digestible for the colony. The main sources of nutrition for honeybees are nectar, providing carbohydrates, and pollen, providing protein. This study delves into the impact of the proportion of these macronutrients on the food consumption patterns of nurse bees responsible for feeding the queen and how it affects the characteristics of the eggs produced. Using nutritional geometry, qRT-PCR, and RNA-seq analysis, this study sheds light on the pivotal role of nutrition in influencing gene expression in nurse bees, honeybee queen egg-laying capacity and embryonic development. Interestingly, while nutrition is crucial, the queen's genotype plays an even more significant role in this complex relationship, highlighting the importance of genotype-by-environment interactions. Understanding the interplay between genotype and nutrition is key to optimizing beekeeping management and strategic queen breeding practices. The findings from this study have significant implications for beekeeping practices, emphasizing the need for an appropriate nutrition to support the social nutrition of Apis mellifera. Implementing these insights can lead to improved colony health, increased productivity, and sustainable honeybee conservation efforts.Keywords: honeybee, egg-laying, nutrition, transcriptomics
Procedia PDF Downloads 1011115 Formulation, Evaluation and Statistical Optimization of Transdermal Niosomal Gel of Atenolol
Authors: Lakshmi Sirisha Kotikalapudi
Abstract:
Atenolol, the widely used antihypertensive drug is ionisable and degrades in the acidic environment of the GIT lessening the bioavailability. Transdermal route may be selected as an alternative to enhance the bioavailability. Half-life of the drug is 6-7 hours suggesting the requirement of prolonged release of the drug. The present work of transdermal niosomal gel aims to extend release of the drug and increase the bioavailability. Ethanol injection method was used for the preparation of niosomes using span-60 and cholesterol at different molar ratios following central composite design. The prepared niosomes were characterized for size, zeta-potential, entrapment efficiency, drug content and in-vitro drug release. Optimized formulation was selected by statistically analyzing the results obtained using the software Stat-Ease Design Expert. The optimized formulation also showed high drug retention inside the vesicles over a period of three months at a temperature of 4 °C indicating stability. Niosomes separated as a pellet were dried and incorporated into the hydrogel prepared using chitosan a natural polymer as a gelling agent. The effect of various chemical permeation enhancers was also studied over the gel formulations. The prepared formulations were characterized for viscosity, pH, drug release using Franz diffusion cells, and skin irritation test as well as in-vivo pharmacological activities. Atenolol niosomal gel preparations showed the prolonged release of the drug and pronounced antihypertensive activity indicating the suitability of niosomal gel for topical and systemic delivery of atenolol.Keywords: atenolol, chitosan, niosomes, transdermal
Procedia PDF Downloads 2971114 USTTB (UCRC) Financial Management, Strengths and Weaknesses
Authors: Samba Lamine Cisse, Cheick Oumar Tangara, Seynabou Sissoko, Mahamadou Diakite, Seydou Doumbia
Abstract:
Background: Financial management of a scientific research center is a crucial element in achieving ambitious scientific goals. It can be a driving force for research success, but it also has shortcomings that are important to understand. This study focuses on the crucial aspects of financial management in the context of scientific research centers, more specifically the USTTB (UCRC) in Mali in terms of strengths and weaknesses. Methodology: This study concerns the case of the UCRC, one of the USTTB's research centers. It is a qualitative study based on years of experience in project management at the USTTB, and on analyses and interpretations of everyday activities. Result: It offers practical recommendations for improving the financial stability of research institutions, thereby contributing to their mission of promoting scientific research and innovation. Scientific research centers play a crucial role in the development of knowledge, and their effective operation largely depends on the appropriate management of their financial resources. It begins with an in-depth analysis of UCRC's typical financial structure, highlighting its types and sources of funding, followed by an analysis of the strengths and weaknesses of its current financial management system. Conclusion: Financial management of a scientific research center is essential to ensure the continuity of research activities, the development of innovative projects and the achievement of scientific objectives. Adaptive financial management focused on efficiency, diversification of funding and risk control. They are essential to meeting these challenges and fostering excellence in scientific research.Keywords: financial, management, strengths, weaknesses, recommendations
Procedia PDF Downloads 231113 Design Considerations for the Construction of an Open Decontamination Facility for Managing Civil Emergencies
Authors: Sarmin, S., Ologuin, R.S.
Abstract:
Background: Rapid population growth and land constraints in Singapore results in a possible situation in which we face a higher number of casualties and lack of operational space in healthcare facilities during disasters and HAZMAT events, collectively known as Civil Emergencies. This creates a need for available working space within hospital grounds to be amphibious or multi-functional, to ensure the institution’s capability to respond efficiently to Civil Emergencies. The Emergency Department (ED) mitigates this issue by converting the Ambulance Assembly Area used during peacetime into an Open Decontamination Facility (ODF) during Civil Emergency Response, for decontamination of casualties before they proceed to treatment areas into Ambulance Assembly Area used during peacetime. Aims: To effectively operationalize the Open Decontamination Facility (ODF) through the reduction of manual handling. Methods: From past experiences on Civil Emergency exercises, it was labor-intensive for staff to set up the Open Decontamination Facility (ODF). Manual handling to set up the Decontamination lanes by bringing down the curtains and supply of water was required to be turned on. Conclusion: The effectiveness of the design construction of an Open Decontamination Facility (ODF) is based on the use of automation of bringing down the curtains on the various lanes. The use of control panels for water supply to decontaminate patients. Safety within the ODF was considered with the installation of panic buttons, intercom for staff communication, and perimeter curtains were installed with stability arm to manage the condition with high wind velocity.Keywords: civil emergencies, disaster, emergency department, Hazmat
Procedia PDF Downloads 1001112 Gratitude, Forgiveness and Relationship Satisfaction in Dating College Students: A Parallel Multiple Mediator Model
Authors: Qinglu Wu, Anna Wai-Man Choi, Peilian Chi
Abstract:
Gratitude is one individual strength that not only facilitates the mental health, but also fosters the relationship satisfaction in the romantic relationship. In terms of moral effect theory and stress-and-coping theory of forgiveness, present study not only investigated the association between grateful disposition and relationship satisfaction, but also explored the mechanism by comprehensively examining the potential mediating roles of three profiles of forgiveness (trait forgivingness, decisional forgiveness, emotional forgiveness), another character strength that highly related to the gratitude and relationship satisfaction. Structural equation modeling was used to conduct the multiple mediator model with a sample of 103 Chinese college students in dating relationship (39 male students and 64 female students, Mage = 19.41, SD = 1.34). Findings displayed that both gratitude and relationship satisfaction positively correlated with decisional forgiveness and emotional forgiveness. Emotional forgiveness was the only mediator, and it completely mediated the relationship between gratitude and relationship satisfaction. Gratitude was helpful in enhancing individuals’ perception of satisfaction in romantic relationship through replacing negative emotions toward partners with positive ones after transgression in daily life. It highlighted the function of emotional forgiveness in personal healing and peaceful state, which is important to the perception of satisfaction in relationship. Findings not only suggested gratitude could provide a stability for forgiveness, but also the mechanism of prosocial responses or positive psychological processes on relationship satisfaction. The significant roles of gratitude and emotional forgiveness could be emphasized in the intervention working on the romantic relationship development or reconciliation.Keywords: decisional forgiveness, emotional forgiveness, gratitude, relationship satisfaction, trait forgivingness
Procedia PDF Downloads 2731111 Exploring a Net-Metering Policy Towards Solar Energy Technology Adoption and Sustainability
Authors: Jane Osei, Kerry Brown, Mehran Nejati
Abstract:
Numerous studies have established that solar energy is the second most prevalent form of alternative renewable energy globally, particularly in regions with abundant sunlight. The adoption and ongoing sustainability of solar technology are pivotal for the transition to renewable energy sources. However, the literature indicates that some countries, especially in the developing world, may impede this transition. Despite various policy initiatives aimed at supporting the adoption of solar technology, the long-term effectiveness of these policies remains uncertain. This study investigates the current policy drivers influencing the success or failure of solar energy technology adoption and sustainability. It employs a qualitative review approach to compare strategies for implementing the net-metering policy incentive in both developing and developed countries, identifying successful and unsuccessful strategies and drawing conclusions on the lessons learned. The study's findings reveal that the effective implementation of net metering depends on regional variations in solar radiation and differing levels of electricity demand across regions. Further, the study found that the implementation of net metering has faced challenges in some countries due to regulatory barriers and bottlenecks that hinder private sector involvement and business sustainability. Economic stability also significantly impacts net metering implementation. This study concludes that governments should strive to balance benefit-sharing to attract more private-sector investment in solar technology while ensuring the viability of government energy regulatory bodies.Keywords: solar energy technology, adoption, sustainability, net-metering
Procedia PDF Downloads 371110 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer
Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari
Abstract:
Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.Keywords: cosmetic products, methylparaben, molecularly imprinted polymer, wastewater
Procedia PDF Downloads 3201109 Synthesis, Characterization, Theoretical Crystal Structures and Antitubercular Activity Study of (E)-N'-(2,4-Dihydroxybenzylidene) Nicotinohydrazide and Some of Its Metal Complexes
Authors: Ogunniran Kehinde Olurotimi, Adekoya Joseph, Ehi-Eromosele Cyril, Mehdi Shihab, Mesubi Adediran, Tadigoppula Narender
Abstract:
Nicotinic acid hydrazide and 2,4-dihydoxylbenzaldehyde were condensed at 20°C to form an acylhydrazone (H3L) with ONO coordination pattern. The structure of the acylhydrazone was elucidated by using CHN analyzer, ESI mass spectrometry, IR, 1H NMR, 13C NMR and 2D NMR such as COSY and HSQC. Thereafter, five novel metal complexes [Mn(II), Fe(II), Pt(II) Zn(II) and Pd(II)] of the hydrazone ligand were synthesized and their structural characterization were achieved by several physicochemical methods, namely elemental analysis, electronic spectra, infrared, EPR, molar conductivity and powder X-ray diffraction studies. Structural geometries of some of the compounds were supported by using Hyper Chem-8 program for the molecular mechanics and semi-empirical calculations. The stability energy (E) and electron potentials (eV) for the frontier molecules were calculated by using PM3 method. An octahedral geometry was suggested for both Pd(II) and Zn(II) complexes while both Mn(II) and Fe(II) complexes conformed with tetrahedral pyramidal. However, Pt(II) complex agreed with tetrahedral geometry. In vitro antitubercular activity study of the ligand and the metal complexes were evaluated against Mycobacterium tuberculosis, H37Rv, by using micro-diluted method. The results obtained revealed that (PtL1) (MIC = 0.56 µg/mL), (ZnL1) (MIC = 0.61 µg/mL), (MnL1) (MIC = 0.71 µg/mL) and (FeL1) (MIC = 0.82 µg/mL), exhibited a significant activity when compared with first line drugs such as isoniazid (INH) (MIC = 0.9 µg/mL). H3L1 exhibited lesser antitubercular activity with MIC value of 1.02 µg/mL. However, the metal complexes displayed higher cytoxicity but were found to be non-significant different (P ˂ 0.05) to isoniazid drug.Keywords: hydrazones, electron spin resonance, thermogravimetric, powder X-ray diffraction, antitubercular agents
Procedia PDF Downloads 2701108 Immobilization of Lead in Contaminated Soil Using Enzyme Induced Calcite Precipitation (EİCP) Along with Coconut Fiber Biochar (CFB)
Authors: Kaniz Roksana, Aluthgun Hewage Shaini, Cheng Zhu
Abstract:
Lead is environmentally hazardous because it may persist for a long time in soil, water, and air, and it can travel large distances when carried by wind or water. Lead is toxic to many different species of organisms and has the potential to disrupt ecosystem stability. Moreover, lead can contaminate crops and livestock, which can then have an adverse effect on human health. This study was conducted to use the enzyme-induced calcium carbonate precipitation (EICP) technique from soybean crude extract urease along coconut fiber derived biochar’s (CFB) to bioremediate lead. To study the desorption rates of heavy metals from the soil, lead (Pb) was added to the soil at load ratios of 50 and 100 mg/kg. There were five separate treatment soil columns created: control sample, only CFB, only EICP, EICP with 2% (w/w) CFB, and EICP with 4% (w/w) CFB. Laboratory scale experiment demonstrates significant lead removal from soil. The amount of CaCO₃ precipitated in the soil was measured using a gravimetric acid digestion test, which related heavy metal desorption to the amount of precipitated calcium carbonate. These findings were validated using a scanning electron microscope (SEM), which revealed calcium carbonate and lead coprecipitation. As a result, the study reveals that the EICP technique, in conjunction with coconut fiber biochar, could be an efficient alternative in the remediation of heavy metal ion-contaminated soils.Keywords: enzyme induced calcium carbonate precipitation (EICP), coconut fiber derived biochar’s (CFB), bioremediation, heavy metal
Procedia PDF Downloads 781107 A Study of the British Security Disembedding Mechanism from a Comparative Political Perspective: Centering on the Bosnia War and the Russian-Ukrainian War
Abstract:
Globalization has led to an increasingly interconnected international community and transmitted risks to every corner of the world through the chain of globalization. Security risks arising from international conflicts seem inescapable. Some countries have begun to build their capacity to deal with the globalization of security risks. They establish disembedding security mechanisms that transcend spatial or temporal boundaries and promote security cooperation with countries or regions that are not geographically close. This paper proposes four hypotheses of the phenomenon of "risks and security disembedding" in the post-Cold War international society and uses them to explain The United Kingdom’s behavior in the Bosnian War and the Russo-Ukrainian War. In the Bosnian War, confident in its own security and focused on maintaining European stability, The UK has therefore chosen to be cautious in its use of force in international frameworks such as the EU and to maintain a very limited intervention in Bosnia and Herzegovina's affairs. In contrast, the failure of the EU and NATO’s security mechanism in the Russo-Ukrainian war heightened Britain's anxiety, and the volatile international situation led it to show a strong tendency towards security disembedding, choosing to conclude security communities with extra-territorial states. Analysis suggests that security mechanisms are also the starting point of conflict and that countries will rely more on disembedding mechanisms to counteract the global security risks. The current mechanism of security disembedding occurs as a result of the global proliferation of security perceptions as a symbolic token and the recognition of an expert system of security mechanisms formed by states with similar security perceptions.Keywords: disembedding mechanism, bosnia war, the russian-ukrainian war, british security strategy
Procedia PDF Downloads 871106 Preparation of Pegylated Interferon Alpha-2b with High Antiviral Activity Using Linear 20 KDa Polyethylene Glycol Derivative
Authors: Ehab El-Dabaa, Omnia Ali, Mohamed Abd El-Hady, Ahmed Osman
Abstract:
Recombinant human interferon alpha 2 (rhIFN-α2) is FDA approved for treatment of some viral and malignant diseases. Approved pegylated rhIFN-α2 drugs have highly improved pharmacokinetics, pharmacodynamics and therapeutic efficiency compared to native protein. In this work, we studied the pegylation of purified properly refolded rhIFN-α2b using linear 20kDa PEG-NHS (polyethylene glycol- N-hydroxysuccinimidyl ester) to prepare pegylated rhIFN-α2b with high stability and activity. The effect of different parameters like rhIFN-α2b final concentration, pH, rhIFN-α2b/PEG molar ratios and reaction time on the efficiency of pegylation (high percentage of monopegylated rhIFN-α2b) have been studied in small scale (100µl) pegylation reaction trials. Study of the percentages of different components of these reactions (mono, di, polypegylated rhIFN-α2b and unpegylated rhIFN-α2b) indicated that 2h is optimum time to complete the reaction. The pegylation efficiency increased at pH 8 (57.9%) by reducing the protein concentration to 1mg/ml and reducing the rhIFN-α2b/PEG ratio to 1:2. Using larger scale pegylation reaction (65% pegylation efficiency), ion exchange chromatography method has been optimized to prepare and purify the monopegylated rhIFN-α2b with high purity (96%). The prepared monopegylated rhIFN-α2b had apparent Mwt of approximately 65 kDa and high in vitro antiviral activity (2.1x10⁷ ± 0.8 x10⁷ IU/mg). Although it retained approximately 8.4 % of the antiviral activity of the unpegylated rhIFN-α2b, its activity is high compared to other pegylated rhIFN-α2 developed by using similar approach or higher molecular weight branched PEG.Keywords: antiviral activity, rhIFN-α2b, pegylation, pegylation efficiency
Procedia PDF Downloads 1791105 Force Distribution and Muscles Activation for Ankle Instability Patients with Rigid and Kinesiotape while Standing
Authors: Norazlin Mohamad, Saiful Adli Bukry, Zarina Zahari, Haidzir Manaf, Hanafi Sawalludin
Abstract:
Background: Deficit in neuromuscular recruitment and decrease force distribution were the common problems among ankle instability patients due to altered joint kinematics that lead to recurrent ankle injuries. Rigid Tape and KT Tape had widely been used as therapeutic and performance enhancement tools in ankle stability. However the difference effect between this two tapes is still controversial. Objective: To investigate the different effect between Rigid Tape and KT Tape on force distribution and muscle activation among ankle instability patients while standing. Study design: Crossover trial. Participants: 27 patients, age between 18 to 30 years old participated in this study. All the subjects were applied with KT Tape & Rigid Tape on their affected ankle with 3 days of interval for each intervention. The subjects were tested with their barefoot (without tape) first to act as a baseline before proceeding with KT Tape, and then with Rigid Tape. Result: There were no significant difference on force distribution at forefoot and back-foot for both tapes while standing. However the mean data shows that Rigid Tape has the highest force distribution at back-foot rather than forefoot when compared with KT Tape that had more force distribution at forefoot while standing. Regarding muscle activation (Peroneus Longus), results showed significant difference between Rigid Tape and KT Tape (p= 0.048). However, there was no significant difference on Tibialis Anterior muscle activation between both tapes while standing. Conclusion: The results indicated that Peroneus longus muscle was more active when applied Rigid Tape rather than KT Tape in ankle instability patients while standing.Keywords: ankle instability, kinematic, muscle activation, force distribution, Rigid Tape, KT tape
Procedia PDF Downloads 4181104 Influences of Slope Inclination on the Storage Capacity and Stability of Municipal Solid Waste Landfills
Authors: Feten Chihi, Gabriella Varga
Abstract:
The world's most prevalent waste management strategy is landfills. However, it grew more difficult due to a lack of acceptable waste sites. In order to develop larger landfills and extend their lifespan, the purpose of this article is to expand the capacity of the construction by varying the slope's inclination and to examine its effect on the safety factor. The capacity change with tilt is mathematically determined. Using a new probabilistic calculation method that takes into account the heterogeneity of waste layers, the safety factor for various slope angles is examined. To assess the effect of slope variation on the overall safety of landfills, over a hundred computations were performed for each angle. It has been shown that capacity increases significantly with increasing inclination. Passing from 1:3 to 2:3 slope angles and from 1:3 to 1:2 slope angles, the volume of garbage that can be deposited increases by 40 percent and 25 percent, respectively, of the initial volume. The results of the safety factor indicate that slopes of 1:3 and 1:2 are safe when the standard method (homogenous waste) is used for computation. Using the new approaches, a slope with an inclination of 2:3 can be deemed safe, despite the fact that the calculation does not account for the safety-enhancing effect of daily cover layers. Based on the study reported in this paper, the malty layered nonhomogeneous calculating technique better characterizes the safety factor. As it more closely resembles the actual state of landfills, the employed technique allows for more flexibility in design parameters. This work represents a substantial advance in limiting both safe and economical landfills.Keywords: landfill, municipal solid waste, slope inclination, capacity, safety factor
Procedia PDF Downloads 1871103 Atmospheric Dispersion Modeling for a Hypothetical Accidental Release from the 3 MW TRIGA Research Reactor of Bangladesh
Authors: G. R. Khan, Sadia Mahjabin, A. S. Mollah, M. R. Mawla
Abstract:
Atmospheric dispersion modeling is significant for any nuclear facilities in the country to predict the impact of radiological doses on environment as well as human health. That is why to ensure safety of workers and population at plant site; Atmospheric dispersion modeling and radiation dose calculations were carried out for a hypothetical accidental release of airborne radionuclide from the 3 MW TRIGA research reactor of Savar, Bangladesh. It is designed with reactor core which consists of 100 fuel elements(1.82245 cm in diameter and 38.1 cm in length), arranged in an annular corefor steady-state and square wave power level of 3 MW (thermal) and for pulsing with maximum power level of 860MWth.The fuel is in the form of a uniform mixture of 20% uranium and 80% zirconium hydride. Total effective doses (TEDs) to the public at various downwind distances were evaluated with a health physics computer code “HotSpot” developed by Lawrence Livermore National Laboratory, USA. The doses were estimated at different Pasquill stability classes (categories A-F) with site-specific averaged meteorological conditions. The meteorological data, such as, average wind speed, frequency distribution of wind direction, etc. have also been analyzed based on the data collected near the reactor site. The results of effective doses obtained remain within the recommended maximum effective dose.Keywords: accidental release, dispersion modeling, total effective dose, TRIGA
Procedia PDF Downloads 1381102 Replica-Exchange Metadynamics Simulations of G-Quadruplex DNA Structures Under Substitution of K+ by Na+ Ions
Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria
Abstract:
The DNA G-quadruplex is a four-stranded DNA structure conformed by stacked planes of four base paired guanines (G-quartet). The guanine rich DNA sequences are present in many sites of genomic DNA and can potentially lead to the formation of G-quadruplexes, especially at the 3'-terminus of the human telomeric DNA with many TTAGGG repeats. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to regulate oncogene expression making the G-quadruplex an attractive target for anticancer therapy. Clearly, the G-quadruplex structured in the telomeric DNA is of fundamental importance for rational drug design. In this context, we investigate two G-quadruplex structures, the first follows from the sequence TTAGGG(TTAGGG)3TT (HUT1), and the second from AAAGGG(TTAGGG)3AA (HUT2), both in a K+ solution. We determine the free energy surfaces of the HUT1 and HUT2 structures and investigate their conformations using replica-exchange metadynamics simulations. The carbonyl-carbonyl distances belonging to different guanines residues are selected as the main collective variables to determine the free energy surfaces. The surfaces exhibit two main local minima, compatible with experiments on the conformational transformations of HUT1 and HUT2 under substitution of the K+ ions by the Na+ ions. The conformational transitions are not observed in short MD simulations without the use of the metadynamics approach. The results of this work should be of help to understand the formation and stability of human telomeric G-quadruplex in environments including the presence of K+ and Na+ ions.Keywords: g-quadruplex, metadynamics, molecular dynamics, replica-exchange
Procedia PDF Downloads 3491101 High Toughening Effects of Polybenzoxazine Filled with Ultrafine Fully Vulcanized Powder Natural Rubber Grafted with Varied Monomers
Authors: A. Pattulee, I. Lawan, N. Boonnao, R. Gholami, P. Rimdusit, S. Rimdusit
Abstract:
Varied types and content of ultrafine vulcanized powdered natural rubbers (UFPNR) as toughening fillers of polybenzoxazine composite are investigated in this work. Four types of UFPNR were prepared by graft polymerization of acrylonitrile monomer (AN), styrene monomer (ST), styrene-acrylonitrile copolymer (ST/AN), and styrene-methyl methacrylate copolymer (ST/MMA) onto deproteinized natural rubber (DPNR). The solid UFPNR powders with different types of grafting were finally obtained by electron beam vulcanization and a spray-drying technique. Additionally, effects of various UFPNR contents (0, 5, 10, 15, 20, and 25 wt%) on toughness of polybenzoxazine composites were studied. It was observed that the UFPNR grafted with the styrene-methyl methacrylate copolymer (UFPNR-g-(PS-co-PMMA)) exhibited the most effective toughening agent for polybenzoxazine, whereas the rubber powder content of 25 wt% was found to be the optimal filler loading in enhancing the toughness of the resulting composite. The experimental results revealed an increase of 86% in toughness and 56% in impact strength at the above UFPNR-g- (PS-co-PMMA powdered rubber content. Interestingly, the utilization of the UFPNR-g-(PS-co-PMMA as toughening agent was found to increase thermal stability (degradation temperature at 5wt.% (Td5) and glass transition temperature (Tg) of the composite i.e. an increase of 8°C and 6 °C has been observed for the Td5 and Tg, respectively.Keywords: natural rubber, ultrafine fully vulcanized powder rubber, polybenzoxazine, polymer composite, toughening
Procedia PDF Downloads 101100 Seismic Considerations in Case Study of Kindergartens Building Design: Ensuring Safety and Structural Integrity
Authors: Al-Naqdi Ibtehal Abdulmonem
Abstract:
Kindergarten buildings are essential for early childhood education, providing a secure environment for children's development. However, they are susceptible to seismic forces, which can endanger occupants during earthquakes. This article emphasizes the importance of conducting thorough seismic analysis and implementing proper structural design to protect the well-being of children, staff, and visitors. By prioritizing structural integrity and considering functional requirements, engineers can mitigate risks associated with seismic events. The use of specialized software like ETABS is crucial for designing earthquake-resistant kindergartens. An analysis using ETABS software compared the structural performance of two single-story kindergartens in Iraq's Ministry of Education, designed with and without seismic considerations. The analysis aimed to assess the impact of seismic design on structural integrity and safety. The kindergarten was designed with seismic considerations, including moment frames. In contrast, the same kindergarten was analyzed without seismic effects, revealing a lack of structural elements to resist lateral forces, rendering it vulnerable to structural failure during an earthquake. Maximum major shear increased over 4 times and over 5 times for bending moment in both kindergartens designed with seismic considerations induced by lateral loads and seismic forces. This component of shear force is vital for designing elements to resist lateral loads and ensure structural stability.Keywords: seismic analysis, structural design, lateral loads, earthquake resistance, major shear, ETABS
Procedia PDF Downloads 721099 Electrical Properties of Nanocomposite Fibres Based On Cellulose and Graphene Nanoplatelets Prepared Using Ionic Liquids
Authors: Shaya Mahmoudian, Mohammad Reza Sazegar, Nazanin Afshari
Abstract:
Graphene, a single layer of carbon atoms in a hexagonal lattice, has recently attracted great attention due to its unique mechanical, thermal and electrical properties. The high aspect ratio and unique surface features of graphene resulted in significant improvements of the nano composites properties. In this study, nano composite fibres made of cellulose and graphene nano platelets were wet spun from solution by using ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) as solvent. The effect of graphene loading on the thermal and electrical properties of the nanocomposite fibres was investigated. The nano composite fibres characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. XRD analysis revealed a cellulose II crystalline structure for regenerated cellulose and the nano composite fibres. SEM images showed a homogenous morphology and round cross section for the nano composite fibres along with well dispersion of graphene nano platelets in regenerated cellulose matrix. The incorporation of graphene into cellulose matrix generated electrical conductivity. At 6 wt. % of graphene, the electrical conductivity was 4.7 × 10-4 S/cm. The nano composite fibres also showed considerable improvements in thermal stability and char yield compared to pure regenerated cellulose fibres. This work provides a facile and environmentally friendly method of preparing nano composite fibres based on cellulose and graphene nano platelets that can find several applications in cellulose-based carbon fibres, conductive fibres, apparel, etc.Keywords: nanocomposite, graphene nanoplatelets, regenerated cellulose, electrical properties
Procedia PDF Downloads 3521098 Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial
Authors: Bhavana V. Mohite, Satish V. Patil
Abstract:
Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected.Keywords: agitated culture, biopolymer, gluconoacetobacter hansenii, nanocomposite
Procedia PDF Downloads 3021097 Antibacterial Hydrogels for Wound Care
Authors: Saba Atefyekta
Abstract:
Aim: Control of bacterial bioburden in wounds is an important step for minimizing the risk of wound infection. An antimicrobial hydrogel wound dressing is developed out of soft polymeric hydrogels that contain antimicrobial peptides (AMPs). Such wound dressings can bind and kill all types of bacteria, even the resistance types at the wound site. Methods: AMPs are permanently bonded onto a soft nanostructured polymer via covalent attachment and physical entanglement. This improves stability, rapid antibacterial activity, and, most importantly, prevents the leaching of AMPs. Major Findings: Antimicrobial analysis of antimicrobial hydrogels using in-vitro wound models confirmed >99% killing efficiency against multiple bacterial trains, including MRSA, MDR, E. Coli. Furthermore, the hydrogel retained its antibacterial activity for up to 4 days when exposed to human serum. Tests confirmed no release of AMPs, and it was proven non-toxic to mammalian cells. An in-vivo study on human intact skin showed a significant reduction of bacteria for part of the subject’s skin treated with antibacterial hydrogels. A similar result was detected through a qualitative study in veterinary trials on different types of surgery wounds in cats, dogs, and horses. Conclusions: Antimicrobial hydrogels wound dressings developed by permanent attachment of AMPs can effectively and rapidly kill bacteria in contact. Such antibacterial hydrogel wound dressings are non-toxic and do not release any substances into the wound.Keywords: antibacterial wound dressing, antimicrobial peptides, post-surgical wounds, infection
Procedia PDF Downloads 821096 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys
Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes
Abstract:
This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.Keywords: precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments
Procedia PDF Downloads 1571095 Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion
Authors: Ömer Tamer, Davut Avcı, Yusuf Atalay
Abstract:
Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms.Keywords: DFT, picolinate, IR, Raman, nonlinear optic
Procedia PDF Downloads 5001094 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation
Authors: E. A. Krasikov
Abstract:
Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.Keywords: degradation, radiation, steel, wave-like kinetics
Procedia PDF Downloads 3051093 A Sensor Placement Methodology for Chemical Plants
Authors: Omid Ataei Nia, Karim Salahshoor
Abstract:
In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter
Procedia PDF Downloads 1611092 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI
Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova
Abstract:
The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance
Procedia PDF Downloads 4331091 Rapid Separation of Biomolecules and Neutral Analytes with a Cationic Stationary Phase by Capillary Electrochromatography
Authors: A. Aslihan Gokaltun, Ali Tuncel
Abstract:
The unique properties of capillary electrochromatography (CEC) such as high performance, high selectivity, low consumption of both reagents and analytes ensure this technique an attractive one for the separation of biomolecules including nucleosides and nucleotides, peptides, proteins, carbohydrates. Monoliths have become a well-established separation media for CEC in the format that can be compared to a single large 'particle' that does not include interparticular voids. Convective flow through the pores of monolith significantly accelerates the rate of mass transfer and enables a substantial increase in the speed of the separation. In this work, we propose a new approach for the preparation of cationic monolithic stationary phase for capillary electrochromatography. Instead of utilizing a charge bearing monomer during polymerization, the desired charge-bearing group is generated on the capillary monolith after polymerization by using the reactive moiety of the monolithic support via one-pot, simple reaction. Optimized monolithic column compensates the disadvantages of frequently used reversed phases, which are difficult for separation of polar solutes. Rapid separation and high column efficiencies are achieved for the separation of neutral analytes, nucleic acid bases and nucleosides in reversed phase mode. Capillary monolith showed satisfactory hydrodynamic permeability and mechanical stability with relative standard deviation (RSD) values below 2 %. A new promising, reactive support that has a 'ligand selection flexibility' due to its reactive functionality represent a new family of separation media for CEC.Keywords: biomolecules, capillary electrochromatography, cationic monolith, neutral analytes
Procedia PDF Downloads 213