Search results for: black bean protein hydrolysate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3235

Search results for: black bean protein hydrolysate

265 Effective Apixaban Clearance with Cytosorb Extracorporeal Hemoadsorption

Authors: Klazina T. Havinga, Hilde R. H. de Geus

Abstract:

Introduction: Pre-operative coagulation management of Apixaban prescribed patients, a new oral anticoagulant (a factor Xa inhibitor), is difficult, especially when chronic kidney disease (CKD) causes drug overdose. Apixaban is not dialyzable due to its high level of protein binding. An antidote, Andexanet α, is available but expensive and has an unfavorable short half-life. We report the successful extracorporeal removal of Apixaban prior to emergency surgery with the CytoSorb® Hemoadsorption device. Methods: A 89-year-old woman with CKD, with an Apixaban prescription for atrial fibrillation, was presented at the ER with traumatic rib fractures, a flail chest, and an unstable spinal fracture (T12) for which emergency surgery was indicated. However, due to very high Apixaban levels, this surgery had to be postponed. Based on the Apixaban-specific anti-factor Xa activity (AFXaA) measurements at admission and 10 hours later, complete clearance was expected after 48 hours. In order to enhance the Apixaban removal and reduce the time to operation, and therefore reduce pulmonary complications, CRRT with CytoSorb® cartridge was initiated. Apixaban-specific anti-factor Xa activity (AFXaA) was measured frequently as a substitute for Apixaban drug concentrations, pre- and post adsorber, in order to calculate the adsorber-related clearance. Results: The admission AFXaA concentration, as a substitute for Apixaban drug levels, was 218 ng/ml, which decreased to 157 ng/ml after ten hours. Due to sustained anticoagulation effects, surgery was again postponed. However, the AFXaA levels decreased quickly to sub-therapeutic levels after CRRT (Multifiltrate Pro, Fresenius Medical Care, Blood flow 200 ml/min, Dialysate Flow 4000 ml/h, Prescribed renal dose 51 ml-kg-h) with Cytosorb® connected in series into the circuit was initiated (within 5 hours). The adsorber-related (indirect) Apixaban clearance was calculated every half hour (Cl=Qe * (AFXaA pre- AFXaA post/ AFXaA pre) with Qe=plasma flow rate calculated with Ht=0.38 and system blood flow rate 200 ml-min): 100 ml/min, 72 ml/min and 57 ml/min. Although, as expected, the adsorber-related clearance decreased quickly due to saturation of the beads, still the reduction rate achieved resulted in a very rapid decrease in AFXaA levels. Surgery was ordered and possible within 5 hours after Cytosorb initiation. Conclusion: The CytoSorb® Hemoadsorption device enabled rapid correction of Apixaban associated anticoagulation.

Keywords: Apixaban, CytoSorb, emergency surgery, Hemoadsorption

Procedia PDF Downloads 116
264 Valorization of Seafood and Poultry By-Products as Gelatin Source and Quality Assessment

Authors: Elif Tugce Aksun Tumerkan, Umran Cansu, Gokhan Boran, Fatih Ozogul

Abstract:

Gelatin is a mixture of peptides obtained from collagen by partial thermal hydrolysis. It is an important and useful biopolymer that is used in the food, pharmacy, and photography products. Generally, gelatins are sourced from pig skin and bones, beef bone and hide, but within the last decade, using alternative gelatin resources has attracted some interest. In this study, functional properties of gelatin extracted from seafood and poultry by-products were evaluated. For this purpose, skins of skipjack tuna (Katsuwonus pelamis) and frog (Rana esculata) were used as seafood by-products and chicken skin as poultry by-product as raw material for gelatin extraction. Following the extraction of gelatin, all samples were lyophilized and stored in plastic bags at room temperature. For comparing gelatins obtained; chemical composition, common quality parameters including bloom value, gel strength, and viscosity in addition to some others like melting and gelling temperatures, hydroxyproline content, and colorimetric parameters were determined. The results showed that the highest protein content obtained in frog gelatin with 90.1% and the highest hydroxyproline content was in chicken gelatin with 7.6% value. Frog gelatin showed a significantly higher (P < 0.05) melting point (42.7°C) compared to that of fish (29.7°C) and chicken (29.7°C) gelatins. The bloom value of gelatin from frog skin was found higher (363 g) than chicken and fish gelatins (352 and 336 g, respectively) (P < 0.05). While fish gelatin had higher lightness (L*) value (92.64) compared to chicken and frog gelatins, redness/greenness (a*) value was significantly higher in frog skin gelatin. Based on the results obtained, it can be concluded that skins of different animals with high commercial value may be utilized as alternative sources to produce gelatin with high yield and desirable functional properties. Functional and quality analysis of gelatin from frog, chicken, and tuna skin showed by-product of poultry and seafood can be used as an alternative gelatine source to mammalian gelatine. The functional properties, including bloom strength, melting points, and viscosity of gelatin from frog skin were more admirable than that of the chicken and tuna skin. Among gelatin groups, significant characteristic differences such as gel strength and physicochemical properties were observed based on not only raw material but also the extraction method.

Keywords: chicken skin, fish skin, food industry, frog skin, gel strength

Procedia PDF Downloads 137
263 Efficacy of Yoga and Meditation Based Lifestyle Intervention on Inflammatory Markers in Patients with Rheumatoid Arthritis

Authors: Surabhi Gautam, Uma Kumar, Rima Dada

Abstract:

A sustained acute-phase response in Rheumatoid Arthritis (RA) is associated with increased joint damage and inflammation leading to progressive disability. It is induced continuously by consecutive stimuli of proinflammatory cytokines, following a wide range of pathophysiological reactions, leading to increased synthesis of acute phase proteins like C - reactive protein (CRP) and dysregulation in levels of immunomodulatory soluble Human Leukocyte Antigen-G (HLA-G) molecule. This study was designed to explore the effect of yoga and meditation based lifestyle intervention (YMLI) on inflammatory markers in RA patients. Blood samples of 50 patients were collected at baseline (day 0) and after 30 days of YMLI. Patients underwent a pretested YMLI under the supervision of a certified yoga instructor for 30 days including different Asanas (physical postures), Pranayama (breathing exercises), and Dhayna (meditation). Levels of CRP, IL-6, IL-17A, soluble HLA-G and erythrocyte sedimentation rate (ESR) were measured at day 0 and 30 interval. Parameters of disease activity, disability quotient, pain acuity and quality of life were also assessed by disease activity score (DAS28), health assessment questionnaire (HAQ), visual analogue scale (VAS), and World Health Organization Quality of Life (WHOQOL-BREF) respectively. There was reduction in mean levels of CRP (p < 0.05), IL-6 (interleukin-6) (p < 0.05), IL-17A (interleukin-17A) (p < 0.05) and ESR (p < 0.05) and elevation in soluble HLA-G (p < 0.05) at 30 days compared to baseline level (day 0). There was reduction seen in DAS28-ESR (p < 0.05), VAS (p < 0.05) and HAQ (p < 0.05) after 30 days with respect to the base line levels (day 0) and significant increase in WHOQOL-BREF scale (p < 0.05) in all 4 domains of physical health, psychological health, social relationships, and environmental health. The present study has demonstrated that yoga practices are associated with regression of inflammatory processes by reducing inflammatory parameters and regulating the levels of soluble HLA-G significantly in active RA patients. Short term YMLI has significantly improved pain perception, disability quotient, disease activity and quality of life. Thus this simple life style intervention can reduce disease severity and dose of drugs used in the treatment of RA.

Keywords: inflammation, quality of life, rheumatoid arthritis, yoga and meditation

Procedia PDF Downloads 137
262 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis

Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh

Abstract:

Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.

Keywords: cottonseed, glucantime, gossypol, leishmaniasis

Procedia PDF Downloads 30
261 Investigation of the Role of Lipoprotein a rs10455872 Gene Polymorphism in Childhood Obesity

Authors: Mustafa M. Donma, Ayşen Haksayar, Bahadır Batar, Buse Tepe, Birol Topçu, Orkide Donma

Abstract:

Childhood obesity is an ever-increasing health problem. The Association of obesity with severe chronic diseases such as diabetes and cardiovascular diseases makes the problem life-threatening. Aside from psychological, societal and metabolic factors, genetic polymorphisms have gained importance concerning etiology in recent years. The aim of this study was to evaluate the relationship between rs10455872 gene polymorphism in the Lipoprotein (a) locus and the development of childhood obesity. This was a prospective study carried out according to the Helsinki Declarations. The study protocol was approved by the Institutional Ethics Committee. This study was supported by Tekirdag Namik Kemal University Rectorate, Scientific Research Projects Coordination Unit. Project No: NKUBAP.02.TU.20.278. A total of 180 children (103 obese (OB) and 77 healthy), aged 6-18 years, without any acute or chronic disease, participated in the study. Two different groups were created: OB and healthy control. Each group was divided into two further groups depending on the nature of the polymorphism. Anthropometric measurements were taken during the detailed physical examination. Laboratory tests and TANITA measurements were performed. For the statistical evaluations, SPSS version 28.0 was used. A P-value smaller than 0.05 was the statistical significance degree. The distribution of lipoprotein (a) rs10455872 gene polymorphism did not differ between OB and healthy children. Children with AG genotype in both OB and control groups had lower body mass index (BMI), diagnostic obesity notation model assessment index (DONMA II), body fat ratio (BFR), C-reactive protein (CRP), and metabolic syndrome index (MetS index) values compared to children with normal AA genotype. In the OB group, serum iron, vitamin B12, hemoglobin, MCV, and MCH values were found to be higher in the AG genotype group than those of children with the normal AA genotype. A significant correlation was found between the MetS index and BFR among OB children with normal homozygous genotype. MetS index increased as BFR increased in this group. However, such a correlation was not observed in the OB group with heterozygous AG genotype. To the best of our knowledge, the association of lipoprotein (a) rs10455872 gene polymorphism with the etiology of childhood obesity has not been studied yet. Therefore, this study was the first report suggesting polymorphism with AG genotype as a good risk factor for obesity.

Keywords: child, gene polymorphism, lipoprotein (a), obesity, rs10455872

Procedia PDF Downloads 37
260 Environmental Impacts Assessment of Power Generation via Biomass Gasification Systems: Life Cycle Analysis (LCA) Approach for Tars Release

Authors: Grâce Chidikofan, François Pinta, A. Benoist, G. Volle, J. Valette

Abstract:

Statement of the Problem: biomass gasification systems may be relevant for decentralized power generation from recoverable agricultural and wood residues available in rural areas. In recent years, many systems have been implemented in all over the world as especially in Cambodgia, India. Although they have many positive effects, these systems can also affect the environment and human health. Indeed, during the process of biomass gasification, black wastewater containing tars are produced and generally discharged in the local environment either into the rivers or on soil. However, in most environmental assessment studies of biomass gasification systems, the impact of these releases are underestimated, due to the difficulty of identification of their chemical substances. This work deal with the analysis of the environmental impacts of tars from wood gasification in terms of human toxicity cancer effect, human toxicity non-cancer effect, and freshwater ecotoxicity. Methodology: A Life Cycle Assessment (LCA) approach was adopted. The inventory of tars chemicals substances was based on experimental data from a downdraft gasification system. The composition of six samples from two batches of raw materials: one batch made of tree wood species (oak+ plane tree +pine) at 25 % moisture content and the second batch made of oak at 11% moisture content. The tests were carried out for different gasifier load rates, respectively in the range 50-75% and 50-100%. To choose the environmental impacts assessment method, we compared the methods available in SIMAPRO tool (8.2.0) which are taking into account most of the chemical substances. The environmental impacts for 1kg of tars discharged were characterized by ILCD 2011+ method (V.1.08). Findings Experimental results revealed 38 important chemical substances in varying proportion from one test to another. Only 30 are characterized by ILCD 2011+ method, which is one of the best performing methods. The results show that wood species or moisture content have no significant impact on human toxicity noncancer effect (HTNCE) and freshwater ecotoxicity (FWE) for water release. For human toxicity cancer effect (HTCE), a small gap is observed between impact factors of the two batches, either 3.08E-7 CTUh/kg against 6.58E-7 CTUh/kg. On the other hand, it was found that the risk of negative effects is higher in case of tar release into water than on soil for all impact categories. Indeed, considering the set of samples, the average impact factor obtained for HTNCE varies respectively from 1.64 E-7 to 1.60E-8 CTUh/kg. For HTCE, the impact factor varies between 4.83E-07 CTUh/kg and 2.43E-08 CTUh/kg. The variability of those impact factors is relatively low for these two impact categories. Concerning FWE, the variability of impact factor is very high. It is 1.3E+03 CTUe/kg for tars release into water against 2.01E+01 CTUe/kg for tars release on soil. Statement concluding: The results of this study show that the environmental impacts of tars emission of biomass gasification systems can be consequent and it is important to investigate the ways to reduce them. For environmental research, these results represent an important step of a global environmental assessment of the studied systems. It could be used to better manage the wastewater containing tars to reduce as possible the impacts of numerous still running systems all over the world.

Keywords: biomass gasification, life cycle analysis, LCA, environmental impact, tars

Procedia PDF Downloads 253
259 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices

Authors: Ekta, G. K. Darbha

Abstract:

Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.

Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology

Procedia PDF Downloads 237
258 Study of Oxidative Processes in Blood Serum in Patients with Arterial Hypertension

Authors: Laura M. Hovsepyan, Gayane S. Ghazaryan, Hasmik V. Zanginyan

Abstract:

Hypertension (HD) is the most common cardiovascular pathology that causes disability and mortality in the working population. Most often, heart failure (HF), which is based on myocardial remodeling, leads to death in hypertension. Recently, endothelial dysfunction (EDF) or a violation of the functional state of the vascular endothelium has been assigned a significant role in the structural changes in the myocardium and the occurrence of heart failure in patients with hypertension. It has now been established that tissues affected by inflammation form increased amounts of superoxide radical and NO, which play a significant role in the development and pathogenesis of various pathologies. They mediate inflammation, modify proteins and damage nucleic acids. The aim of this work was to study the processes of oxidative modification of proteins (OMP) and the production of nitric oxide in hypertension. In the experimental work, the blood of 30 donors and 33 patients with hypertension was used. For the quantitative determination of OMP products, the based on the reaction of the interaction of oxidized amino acid residues of proteins and 2,4-dinitrophenylhydrazine (DNPH) with the formation of 2,4-dinitrophenylhydrazones, the amount of which was determined spectrophotometrically. The optical density of the formed carbonyl derivatives of dinitrophenylhydrazones was recorded at different wavelengths: 356 nm - aliphatic ketone dinitrophenylhydrazones (KDNPH) of neutral character; 370 nm - aliphatic aldehyde dinirophenylhydrazones (ADNPH) of neutral character; 430 nm - aliphatic KDNFG of the main character; 530 nm - basic aliphatic ADNPH. Nitric oxide was determined by photometry using Grace's solution. Adsorption was measured on a Thermo Scientific Evolution 201 SF at a wavelength of 546 nm. Thus, the results of the studies showed that in patients with arterial hypertension, an increased level of nitric oxide in the blood serum is observed, and there is also a tendency to an increase in the intensity of oxidative modification of proteins at a wavelength of 270 nm and 363 nm, which indicates a statistically significant increase in aliphatic aldehyde and ketone dinitrophenylhydrazones. The increase in the intensity of oxidative modification of blood plasma proteins in the studied patients, revealed by us, actually reflects the general direction of free radical processes and, in particular, the oxidation of proteins throughout the body. A decrease in the activity of the antioxidant system also leads to a violation of protein metabolism. The most important consequence of the oxidative modification of proteins is the inactivation of enzymes.

Keywords: hypertension (HD), oxidative modification of proteins (OMP), nitric oxide (NO), oxidative stress

Procedia PDF Downloads 70
257 Strategies for Drought Adpatation and Mitigation via Wastewater Management

Authors: Simrat Kaur, Fatema Diwan, Brad Reddersen

Abstract:

The unsustainable and injudicious use of natural renewable resources beyond the self-replenishment limits of our planet has proved catastrophic. Most of the Earth’s resources, including land, water, minerals, and biodiversity, have been overexploited. Owing to this, there is a steep rise in the global events of natural calamities of contrasting nature, such as torrential rains, storms, heat waves, rising sea levels, and megadroughts. These are all interconnected through common elements, namely oceanic currents and land’s the green cover. The deforestation fueled by the ‘economic elites’ or the global players have already cleared massive forests and ecological biomes in every region of the globe, including the Amazon. These were the natural carbon sinks prevailing and performing CO2 sequestration for millions of years. The forest biomes have been turned into mono cultivation farms to produce feedstock crops such as soybean, maize, and sugarcane; which are one of the biggest green house gas emitters. Such unsustainable agriculture practices only provide feedstock for livestock and food processing industries with huge carbon and water footprints. These are two main factors that have ‘cause and effect’ relationships in the context of climate change. In contrast to organic and sustainable farming, the mono-cultivation practices to produce food, fuel, and feedstock using chemicals devoid of the soil of its fertility, abstract surface, and ground waters beyond the limits of replenishment, emit green house gases, and destroy biodiversity. There are numerous cases across the planet where due to overuse; the levels of surface water reservoir such as the Lake Mead in Southwestern USA and ground water such as in Punjab, India, have deeply shrunk. Unlike the rain fed food production system on which the poor communities of the world relies; the blue water (surface and ground water) dependent mono-cropping for industrial and processed food create water deficit which put the burden on the domestic users. Excessive abstraction of both surface and ground waters for high water demanding feedstock (soybean, maize, sugarcane), cereal crops (wheat, rice), and cash crops (cotton) have a dual and synergistic impact on the global green house gas emissions and prevalence of megadroughts. Both these factors have elevated global temperatures, which caused cascading events such as soil water deficits, flash fires, and unprecedented burning of the woods, creating megafires in multiple continents, namely USA, South America, Europe, and Australia. Therefore, it is imperative to reduce the green and blue water footprints of agriculture and industrial sectors through recycling of black and gray waters. This paper explores various opportunities for successful implementation of wastewater management for drought preparedness in high risk communities.

Keywords: wastewater, drought, biodiversity, water footprint, nutrient recovery, algae

Procedia PDF Downloads 78
256 The Effect of SIAH1 on PINK1 Homeostasis in Parkinson Disease

Authors: Fatimah Abd Elghani, Raymonde Szargel, Vered Shani, Hazem Safory, Haya Hamza, Mor Savyon, Ruth Rott, Rina Bandopadhyay, Simone Engelender

Abstract:

Background: PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson’s disease. Down regulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential. Although PINK1 has a predicted mitochondrial import sequence, it’s cellular, and submitochondrial localization remains unclear, in part because it is rapidly degraded. In this work, we investigated the mechanisms involved in PINK1 degradation and how this may affect PINK1 stability and function, with implications for mitochondrial function in PD. In addition, pharmacological inhibition of proteasome activity was shown to lead to PINK1 accumulation, indicating that PINK1 degradation depends on the ubiquitin-proteasome system (UPS). Methods: Using co-immunoprecipitation assays, we identified E3 ubiquitin ligase SIAH1 as a PINK1-interacting protein in HEK293 cells as well as on rat brain tissues. In addition, we determined the effect of SIAH 1, SIAH2 and Parkin on PINK1 steady-state levels by Western blot analysis, and checked their possibility to ubiquitinate and mediate PINK1 degradation through the proteasome carried out in vivo ubiquitination experiments. Results: We have obtained results showing that SIAH-1 interacts with and ubiquitinates PINK1. The ubiquitination promoted by SIAH-1 leads to the proteasomal degradation of PINK1. We confirmed these findings by knocking down SIAH-1 and observing important accumulation of PINK1 in cells. Besides, we found that SIAH-1 decreases PINK1 steady-state levels but not the E3 ligase Parkin. We also investigated the interaction of SIAH-1 with PINK1 disease mutants and its ability to promote their ubiquitination and degradation. Although, no clear difference in the ability of SIAH-1 to promote the degradation of PINK1 disease mutants was observed. It is possible that dysfunction of proteasomal activity in the disease may lead to the accumulation and aggregation of ubiquitinated PINK1 in patients with PINK1 mutations, with possible implications to the pathogenesis of PD. Conclusions: Here, we demonstrated that SIAH-1 ubiquitinates and promotes the degradation of PINK1. In addition, SIAH-1 represents now a target that may help the improvement of mitophagy in PD. Further investigations needed to understand how mitophagy is regulated by PINK1-SIAH-1 axis to provide targets for future therapeutics.

Keywords: PD, Parkinson's disease, PINK1, PTEN-induced kinase1, SIAH, seven in absentia homolog, SN, substantia nigra

Procedia PDF Downloads 119
255 Improving the Bioprocess Phenotype of Chinese Hamster Ovary Cells Using CRISPR/Cas9 and Sponge Decoy Mediated MiRNA Knockdowns

Authors: Kevin Kellner, Nga Lao, Orla Coleman, Paula Meleady, Niall Barron

Abstract:

Chinese Hamster Ovary (CHO) cells are the prominent cell line used in biopharmaceutical production. To improve yields and find beneficial bioprocess phenotypes genetic engineering plays an essential role in recent research. The miR-23 cluster, specifically miR-24 and miR-27, was first identified as differentially expressed during hypothermic conditions suggesting a role in proliferation and productivity in CHO cells. In this study, we used sponge decoy technology to stably deplete the miRNA expression of the cluster. Furthermore, we implemented the CRISPR/Cas9 system to knockdown miRNA expression. Sponge constructs were designed for an imperfect binding of the miRNA target, protecting from RISC mediated cleavage. GuideRNAs for the CRISPR/Cas9 system were designed to target the seed region of the miRNA. The expression of mature miRNA and precursor were confirmed using RT-qPCR. For both approaches stable expressing mixed populations were generated and characterised in batch cultures. It was shown, that CRISPR/Cas9 can be implemented in CHO cells with achieving high knockdown efficacy of every single member of the cluster. Targeting of one miRNA member showed that its genomic paralog is successfully targeted as well. The stable depletion of miR-24 using CRISPR/Cas9 showed increased growth and specific productivity in a CHO-K1 mAb expressing cell line. This phenotype was further characterized using quantitative label-free LC-MS/MS showing 186 proteins differently expressed with 19 involved in proliferation and 26 involved in protein folding/translation. Targeting miR-27 in the same cell line showed increased viability in late stages of the culture compared to the control. To evaluate the phenotype in an industry relevant cell line; the miR-23 cluster, miR-24 and miR-27 were stably depleted in a Fc fusion CHO-S cell line which showed increased batch titers up to 1.5-fold. In this work, we highlighted that the stable depletion of the miR-23 cluster and its members can improve the bioprocess phenotype concerning growth and productivity in two different cell lines. Furthermore, we showed that using CRISPR/Cas9 is comparable to the traditional sponge decoy technology.

Keywords: Chinese Hamster ovary cells, CRISPR/Cas9, microRNAs, sponge decoy technology

Procedia PDF Downloads 171
254 The Importance of School Culture in Supporting Student Mental Health Following the COVID-19 Pandemic: Insights from a Qualitative Study

Authors: Rhiannon Barker, Gregory Hartwell, Matt Egan, Karen Lock

Abstract:

Background: Evidence suggests that mental health (MH) issues in children and young people (CYP) in the UK are on the rise. Of particular concern is data that indicates that the pandemic, together with the impact of school closures, have accentuated already pronounced inequalities; children from families on low incomes or from black and minority ethnic groups are reportedly more likely to have been adversely impacted. This study aimed to help identify specific support which may facilitate the building of a positive school climate and protect student mental health, particularly in the wake of school closures following the pandemic. It has important implications for integrated working between schools and statutory health services. Methods: The research comprised of three parts; scoping, case studies, and a stakeholder workshop to explore and consolidate results. The scoping phase included a literature review alongside interviews with a range of stakeholders from government, academia, and the third sector. Case studies were then conducted in two London state schools. Results: Our research identified how student MH was being impacted by a range of factors located at different system levels, both internal to the school and in the wider community. School climate, relating both to a shared system of beliefs and values, as well as broader factors including style of leadership, teaching, discipline, safety, and relationships -all played a role in the experience of school life and, consequently, the MH of both students and staff. Participants highlighted the importance of a whole school approach and ensuring that support for student MH was not separated from academic achievement, as well as the importance of identifying and applying universal measuring systems to establish levels of MH need. Our findings suggest that a school’s climate is influenced by the style and strength of its leadership, while this school climate - together with mechanisms put in place to respond to MH needs (both statutory and non-statutory) - plays a key role in supporting student MH. Implications: Schools in England have a responsibility to decide on the nature of MH support provided for their students, and there is no requirement for them to report centrally on the form this provision takes. The reality on the ground, as our study suggests, is that MH provision varies significantly between schools, particularly in relation to ‘lower’ levels of need which are not covered by statutory requirements. A valid concern may be that in the huge raft of possible options schools have to support CYP wellbeing, too much is left to chance. Work to support schools in rebuilding their cultures post-lockdowns must include the means to identify and promote appropriate tools and techniques to facilitate regular measurement of student MH. This will help establish both the scale of the problem and monitor the effectiveness of the response. A strong vision from a school’s leadership team that emphasises the importance of student wellbeing, running alongside (but not overshadowed by) academic attainment, should help shape a school climate to promote beneficial MH outcomes. The sector should also be provided with support to improve the consistency and efficacy of MH provision in schools across the country.

Keywords: mental health, schools, young people, whole-school culture

Procedia PDF Downloads 36
253 CRISPR-Mediated Genome Editing for Yield Enhancement in Tomato

Authors: Aswini M. S.

Abstract:

Tomato (Solanum lycopersicum L.) is one of the most significant vegetable crops in terms of its economic benefits. Both fresh and processed tomatoes are consumed. Tomatoes have a limited genetic base, which makes breeding extremely challenging. Plant breeding has become much simpler and more effective with genome editing tools of CRISPR and CRISPR-associated 9 protein (CRISPR/Cas9), which address the problems with traditional breeding, chemical/physical mutagenesis, and transgenics. With the use of CRISPR/Cas9, a number of tomato traits have been functionally distinguished and edited. These traits include plant architecture as well as flower characters (leaf, flower, male sterility, and parthenocarpy), fruit ripening, quality and nutrition (lycopene, carotenoid, GABA, TSS, and shelf-life), disease resistance (late blight, TYLCV, and powdery mildew), tolerance to abiotic stress (heat, drought, and salinity) and resistance to herbicides. This study explores the potential of CRISPR/Cas9 genome editing for enhancing yield in tomato plants. The study utilized the CRISPR/Cas9 genome editing technology to functionally edit various traits in tomatoes. The de novo domestication of elite features from wild cousins to cultivated tomatoes and vice versa has been demonstrated by the introgression of CRISPR/Cas9. The CycB (Lycopene beta someri) gene-mediated Cas9 editing increased the lycopene content in tomato. Also, Cas9-mediated editing of the AGL6 (Agamous-like 6) gene resulted in parthenocarpic fruit development under heat-stress conditions. The advent of CRISPR/Cas has rendered it possible to use digital resources for single guide RNA design and multiplexing, cloning (such as Golden Gate cloning, GoldenBraid, etc.), creating robust CRISPR/Cas constructs, and implementing effective transformation protocols like the Agrobacterium and DNA free protoplast method for Cas9-gRNAs ribonucleoproteins (RNPs) complex. Additionally, homologous recombination (HR)-based gene knock-in (HKI) via geminivirus replicon and base/prime editing (Target-AID technology) remains possible. Hence, CRISPR/Cas facilitates fast and efficient breeding in the improvement of tomatoes.

Keywords: CRISPR-Cas, biotic and abiotic stress, flower and fruit traits, genome editing, polygenic trait, tomato and trait introgression

Procedia PDF Downloads 47
252 Management of Nutrition Education in Spa Resorts in Poland

Authors: Joanna Wozniak-Holecka, Sylwia Jaruga-Sekowska

Abstract:

There are 45 statutory spa and treatment areas in Poland, and the demand for spa and treatment services increases year by year. Within each type of spa treatment facilities, nutritional education services are provided. During spa treatment, the patient learns the principles of rational nutrition and applied diet therapy. It should help him develop proper eating habits, which will also follow at home. However, the nutrition education system of spa resort patients should be considered as very imperfect and requiring a definite systemic correction. It has, at the same time, a wide human and infrastructure base, which guarantees to obtain positive reinforcement in the scope of undertaken activities and management. Unfortunately, this advantage is not fully used. The aim of the project was to assess the quality of implemented nutritional education and to assess the diet of patients in spa treatment entities from a nationwide perspective. The material for the study was data obtained as part of an in-depth interview conducted among nutrition department managers (25 interviews) and a survey addressed to patients (600 questionnaires) of a selected group of spa resorts from across the country about the implementation of nutritional education in institutions. Also, decade menus for the basic diet, easily digestible diet and diet with limitation of easily digestible carbohydrates (a total of 1,120 menus) were obtained for the study. Almost 2/3 of respondents (73.2%) were overweight or obese, but only 32.8% decided on an easily digestible or low-energy diet during the treatment. Most of the surveyed patients rated the nutrition in spa resorts as satisfactory. Classes on nutrition education were carried out mainly by a dietitian (65% of meetings), the other educators were doctors and nurses. The meetings (95%) were of a group nature and lasted only 30 minutes on average. The subjects of the classes concerned the principles of proper nutrition and composition of meals, a nutrition pyramid and a diet adapted to a given disease. The assessed menus did not meet the nutrition standards and, therefore, did not provide patients with the correct quality of nutrition. The norm of protein, fat, vitamin A, B12, phosphorus, iron and sodium was exceeded, while vitamin D, folic acid, magnesium and zinc were not enough than recommended. The study allowed to conclude that there is a large discrepancy between the recommendations presented during the nutrition education classes and the quality of diet implemented in the examined institutions. The project may contribute to the development of effective educational tools in nutrition, especially about a specific group of chronically ill patients.

Keywords: diet, management, nutritional education, spa resort

Procedia PDF Downloads 122
251 Entomopathogenic Bacteria as Biological Control Agents: Review Paper

Authors: Tadesse Kebede Dabsu

Abstract:

Insect pest is one the major limiting factor for sustainable food production. To overtake insect pest problem, since Second World War, producers have used excessive insecticide for insect pest management. However, in the era of 21st Century, the excessive use of insecticide caused insect resistant, insecticide bioaccumulation, insecticide hazard to environment, human health problem, and the like. Due to these problems, research efforts have been focused on the development of environmental free sustainable insect pest management method. To minimize all above mentioned risk utilizing of biological control such as entomopathogenicmicroorganism include bacteria, virus, fungus, and their productsare the best option for suppress insect population below certain density level. The objective of this review was to review the updated available studies and recent developments on the entomopathogenic bacteria (EPB) as biological control of insect pest and challenge of using them for control of insect pest. EPB’s mechanisms of insecticidal activities, type, taxonomy, and history are included in this paper body. EPB has been successfully used for the suppression of populations of insect pests. Controlling of harmful insect by entomopathogenic bacteria is an effective, low bioaccumulation in environment and food, very specific, reduce resistance risk in insect pest, economically and sustainable method of major insect pest management method. Identified and reported as potential major common type of entomopathogenic bacteria include Bacillus thuringiensis, Photorhabdus sp., Xenorhabdus spp.Walbachiaspp, Actinomycetesspp.etc. These bacteria being enter into insect body through natural opening or by vector release toxin protein inside of insect and disrupt the cell’s content cause natural mortality under natural condition. As per reported by different scientists, insect orders like Lepidoptera, Hemiptera, Hymenoptera, Coleoptera, and Dipterahave been successful controlled by entomopathogenic bacteria. As per coming across in different scientific research journals, much of the work was emphasised on Bacillus thuringiensisbsp. Therefore, for commercial production like Bacillus thuringiensi, detail research should be done on other bacteria species. The efficacy and practical application of EPB are restricted to some crops and greenhouse area, but their field application at farmers’ level very less. So still much work needs to be done to the practical application of the EPB at widely application. Their efficacy, pathogenicity, and host range test should be tested under environmental condition.

Keywords: insect pest, entomopathogenic bacteria, biological control, agent

Procedia PDF Downloads 116
250 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 215
249 Effects of Fatty Acid Salts and Spices on Dermatophagoides farinae

Authors: Yumeho Obata, Mariko Era, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Dermatophagoides farinae is major mite allergens in indoors. D. farinae is often swarm over powder products (e.g. wheat flour), because it feeds on starch or protein that are included in them. Eating powder products which are mixed D.farinae causes various allergic symptoms. Therefore, the creation of food additive agents with high safety and control of mite effect is required. Fatty acid salts and spices are known that have pesticidal activities. This study describes the effects of fatty acid salts and spices against Dermatophagoides farinae. Materials and Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. C12Cu and C12Zn were selected as other fatty acid salts. Cayenne pepper, habanero, Japanese pepper, mustard, jalapeno pepper, curry aroma and cinnamon were selected as spices. D. farina, have been cultured in laboratory. To rear the mites, double-soled dishes containing of sterilized food were put on the big plastic container (30.0 × 20.0 × 20.0cm) which had 100% ammonium nitrate solution in the bottom. Plastic container was placed on incubator at 25 °C and 64 % relative humidity (RH) under dark condition. Sterilized food composed of dried bonito flakes and dried yeast (Ebios), 1:1 by weight. The antiproliferative method, sample and medium culture were mixed in double-soled dish and kept at 25 °C and 64 % RH. Decrease rates were determined 1 week and 4 week after treatment under microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that the fatty acids potassium showed no antiproliferative effects against D. farinae. On the other hand, Japanese pepper, mustard, curry aroma and cinnamon were effective to decrease propagative rate (over 80 %) after treatment for 1 week against D. farina. Japanese pepper, curry aroma and cinnamon were effective to decrease propagative rate (approximately 100 %) after treatment for 4 weeks against D. farina. Especially, Japanese pepper and cinnamon showed the fasted and the most consecutive antiproliferative effects. These results indicate that Japanese pepper and cinnamon have high antiproliferative effects against D. farina and suggest spices will be used as a food additive agent.

Keywords: fatty acid salts, spices, antiproliferative effects, dermatophagoides farinae

Procedia PDF Downloads 208
248 Biochemical and Cellular Correlates of Essential Oil of Pistacia Integerrima against in vitro and Murine Models of Bronchial Asthma

Authors: R. L. Shirole, N. L. Shirole, R. B. Patil, M. N. Saraf

Abstract:

The present investigation aimed to elucidate the probable mechanism of antiasthmatic action of essential oil of Pistacia integerrima J.L. Stewart ex Brandis galls (EOPI). EOPI was investigated for its potential antiasthmatic action using in vitro antiallergic assays mast cell degranulation and soyabean lipoxidase enzyme activit, and spasmolytic action using isolated guinea pig ileum preparation. In vivo studies included lipopolysaccharide-induced bronchial inflammation in rats and airway hyperresponsiveness in ovalbumin in sensitized guinea pigs using spirometry. Data was analysed by GraphPad Prism 5.01 and results were expressed as means ± SEM. P < 0.05 was considered to be significant. EOPI inhibits 5-lipoxidase enzyme activity, DPPH scavenging activity and erythropoietin- induced angiogenesis. It showed dose dependent anti-allergic activity by inhibiting compound 48/80 induced mast cell degranulation. The finding that essential oil induced inhibition of transient contraction of acetylcholine in calcium free medium, and relaxation of S-(-)-Bay 8644-precontracted isolated guinea pig ileum jointly suggest that suggesting that the L-subtype Cav channel is involved in spasmolytic action of EOPI. Treatment with EOPI dose dependently (7.5, 15 and 30 mg/kg i.p.) inhibited lipopolysaccharide- induced increased in total cell count, neutrophil count, nitrate-nitrite, total protein, albumin levels in bronchoalveolar fluid and myeloperoxidase levels in lung homogenates. Mild diffused lesions involving focal interalveolar septal, intraluminal infiltration of neutrophils were observed in EOPI (7.5 &15 mg/kg) pretreated while no abnormality was detected in EOPI (30 mg/kg) and roflumilast (1mg/kg) pretreated rats. Roflumilast was used as standard. EOPI reduced the respiratory flow due to gasping in ovalbumin sensitized guinea pigs. The study demonstrates the effectiveness of EOPI in bronchial asthma possibly related to its ability to inhibit L-subtype Cav channel, mast cell stabilization, antioxidant, angiostatic and through inhibition of 5-lipoxygenase enzyme.

Keywords: asthma, lipopolysaccharide, spirometry, Pistacia integerrima J.L. Stewart ex Brandis, essential oil

Procedia PDF Downloads 264
247 The Composition and Activity of Germinated Broccoli Seeds and Their Extract

Authors: Boris Nemzer, Tania Reyes-Izquierdo, Zbigniew Pietrzkowski

Abstract:

Glucosinolate is a family of glucosides that can be found in a family of brassica vegetables. Upon the damage of the plant, glucosinolate breakdown by an internal enzyme myrosinase (thioglucosidase; EC 3.2.3.1) into isothiocyanates, such as sulforaphane. Sulforaphane is formed by glucoraphanin cleaving the sugar off by myrosinase and rearranged. Sulforaphane nitrile is formed in the same reaction as sulforaphane with the active of epithiospecifier protein (ESP). Most common food processing procedure would break the plant and mix the glucoraphanin and myrosinase together, and the formed sulforaphane would be further degraded. The purpose of this study is to understand the glucoraphanin/sulforaphane and the myrosinase activity of broccoli seeds germinated at a different time and technological processing conditions that keep the activity of the enzyme to form sulforaphane. Broccoli seeds were germinated in the house. Myrosinase activities were tested as the glucose content using glucose assay kit and measured UV-Vis spectrophotometer. Glucosinolates were measured by HPLC/DAD. Sulforaphane was measured using HPLC-DAD and GC/MS. The 6 hr germinated sprouts have a myrosinase activity 32.2 mg glucose/g, which is comparable with 12 and 24 hour germinated seeds and higher than dry seeds. The glucoraphanin content in 6 hour germinated sprouts is 13935 µg/g which is comparable to 24 hour germinated seeds and lower than the dry seeds. GC/MS results show that the amount of sulforaphane is higher than the amount of sulforaphane nitrile in seeds, 6 hour and 24 hour germinated seeds. The ratio of sulforaphane and sulforaphane nitrile is high in 6 hour germinated seeds, which indicates the inactivated ESP in the reaction. After evaluating the results, the short time germinated seeds can be used as the source of glucoraphanin and myrosinase supply to form potential higher sulforaphane content. Broccoli contains glucosinolates, glucoraphanin (4-methylsulfinylbutyl glucosinolate), which is an important metabolite with health-promoting effects. In the pilot clinical study, we observed the effects of a glucosinolates/glucoraphanin-rich extract from short time germinated broccoli seeds on blood adenosine triphosphate (ATP), reactive oxygen species (ROS) and lactate levels. A single dose of 50 mg of broccoli sprouts extract increased blood levels of ATP up to 61% (p=0.0092) during the first 2 hours after the ingestion. Interestingly, this effect was not associated with an increase in blood ROS or lactate. When compared to the placebo group, levels of lactate were reduced by 10% (p=0.006). These results indicate that broccoli germinated seed extract may positively affect the generation of ATP in humans. Due to the preliminary nature of this work and promising results, larger clinical trials are justified.

Keywords: broccoli glucosinolates, glucoraphanin, germinated seeds, myrosinase, adenosine triphosphate

Procedia PDF Downloads 272
246 Effects of Nanoencapsulated Echinacea purpurea Ethanol Extract on the Male Reproductive Function in Streptozotocin-Induced Diabetic Rats

Authors: Jia-Ling Ho, Xiu-Ru Zhang, Zwe-Ling Kong

Abstract:

Diabetes mellitus (DM) is a major health problem that affects patients’ life quality throughout the world due to its many complications. It characterized by chronic hyperglycemia with oxidative stress, which impaired male reproductive function. Fibroblast growth factor 21 (FGF21) is a metabolic regulator that is required for normal spermatogenesis and protects against diabetes-induced germ cell apoptosis. Echinacea purpurea ethanol extract (EE), which contain phenolic acid and isobutylamide, had been proven to have antidiabetic property. Silica-chitosan nanoparticles (Nano-CS) has drug delivery and controlled release properties. This study aims to investigate whether silica-chitosan nanoparticles encapsulated EE (Nano-EE) had more ameliorating male infertility by analyzing the effect of testicular FGF21. The Nano-EE was characterized before used to treatment the diabetic rat model. Male Sprague-Dawley (SD) rats were obtained and divided into seven groups. A group was no induced Streptozotocin (STZ), marked as normal group. Diabetic rats were induced into diabetes by STZ (33 mg/kg). A diabetic group was no treatment with sample (diabetic control group), and other groups were treatment by Nano-CS (465 mg/kg), Nano-EE (93, 279, 465 mg/kg), and metformin (Met) (200 mg/kg) used as reference drug for 7 weeks. Our results indicated that the average nanoparticle size and zeta potential of Nano-EE were 2630 nm and -21.3 mV, respectively. The encapsulation ratio of Nano-EE was about 70%. It also confirmed the antioxidative activity was unchanged by comparing the DPPH and ABTS scavenging of Nano-EE and EE. In vivo test, Nano-EE can improve the STZ induced hyperglycemia, insulin resistance, and plasma FGF21 levels. Nano-EE has increased sperm motility, mitochondria membrane potential (MMP), plasma testosterone level, and reduction of abnormal sperm, nitric oxide (NO), superoxide production as well as reactive oxygen species (ROS). In addition, in plasma antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD) was increased whereas pro-inflammatory cytokines TNF-α, and IL-1β were decreased. Further, in testis, protein content of FGF21, PGC-1α, and SIRT1 were improved. Nano-EE might improve diabetes-induced down-regulation of testicular FGF21 and SIRT1/PGC-1α signaling hence maintain spermatogenesis.

Keywords: diabetes mellitus, Echinacea purpurea, reproductive dysfunction, silica-chitosan nanoparticles

Procedia PDF Downloads 163
245 Influence of Species and Harvesting Height on Chemical Composition, Buffer Nitrogen Solubility and in vitro Ruminal Fermentation of Browse Tree Leaves

Authors: Thabiso M. Sebolai, Victor Mlambo, Solomon Tefera, Othusitse R. Madibela

Abstract:

In some tree species, sustained herbivory can induce changes in biosynthetic pathways resulting in overproduction of anti-nutritional secondary plant compounds. This inductive mechanism, which has not been demonstrated in semi-arid rangelands of South Africa, may result in browse leaves of lower nutritive value. In this study we investigate the interactive effect of browsing pressure and tree species on chemical composition, buffer nitrogen solubility index (NSI), in vitro ruminal dry matter degradability (IVDMD) and in vitro ruminal N degradability (IVND) of leaves. Leaves from Maytenus capitata, Olea africana, Coddia rudis, Carissa macrocarpa, Rhus refracta, Ziziphus mucronata, Boscia oliedes, Grewia robusta, Phyllanthus vessucosus and Ehretia rigida trees growing in a communal grazing area were harvested at two heights: browsable ( < 1.5 m) and non-browsable ( > 1.5 m), representing high and low browsing pressure, respectively. The type of animals utilizing the communal rangeland includes cattle at 1 livestock unit (450kg)/12 to 15 hectors and goats at 1 livestock unit/4 ha. Harvested leaves were dried, milled and analysed for proximate components, soluble phenolics, condensed tannins, minerals and in vitro ruminal fermentation. A significant plant species and harvesting height interaction effect (P < 0.05) was observed for total nitrogen (N) and soluble phenolics concentration. Tree species and harvesting height affected (P < 0.05) condensed tannin (CTs) content where samples harvested from the non-browsable height had higher (0.61 AU550 nm/200 mg) levels than those harvested at browsable height (0.55 AU550 nm/200 mg) while their interaction had no effects. Macro and micro-minerals were only influenced (P < 0.05) by browse species but not harvesting height. Species and harvesting height interacted (P < 0.05) to influence IVDMD and IVND of leaves at 12, 24 and 36 hours of incubation. The different browse leaves contained moderate to high protein, moderate level of phenolics and minerals, suggesting that they have the potential to provide supplementary nutrients for ruminants during the dry seasons.

Keywords: browse plants, chemical composition, harvesting heights, phenolics

Procedia PDF Downloads 111
244 Experimental Design in Extraction of Pseudomonas sp. Protease from Fermented Broth by Polyethylene Glycol/Citrate Aqueous Two-Phase System

Authors: Omar Pillaca-Pullo, Arturo Alejandro-Paredes, Carol Flores-Fernandez, Marijuly Sayuri Kina, Amparo Iris Zavaleta

Abstract:

Aqueous two-phase system (ATPS) is an interesting alternative for separating industrial enzymes due to it is easy to scale-up and low cost. Polyethylene glycol (PEG) mixed with potassium phosphate or magnesium sulfate is one of the most frequently polymer/salt ATPS used, but the consequences of its use is a high concentration of phosphates and sulfates in wastewater causing environmental issues. Citrate could replace these inorganic salts due to it is biodegradable and does not produce toxic compounds. On the other hand, statistical design of experiments is widely used for ATPS optimization and it allows to study the effects of the involved variables in the purification, and to estimate their significant effects on selected responses and interactions. The 24 factorial design with four central points (20 experiments) was employed to study the partition and purification of proteases produced by Pseudomonas sp. in PEG/citrate ATPS system. ATPS was prepared with different sodium citrate concentrations [14, 16 and 18% (w/w)], pH values (7, 8 and 9), PEG molecular weight (2,000; 4,000 and 6,000 g/mol) and PEG concentrations [18, 20 and 22 % (w/w)]. All system components were mixed with 15% (w/w) of the fermented broth and deionized water was added to a final weight of 12.5 g. Then, the systems were mixed and kept at room temperature until to reach two-phases separation. Volumes of the top and bottom phases were measured, and aliquots from both phases were collected for subsequent proteolytic activity and total protein determination. Influence of variables such as PEG molar mass (MPEG), PEG concentration (CPEG), citrate concentration (CSal) and pH were evaluated on the following responses: purification factor (PF), activity yield (Y), partition coefficient (K) and selectivity (S). STATISTICA program version 10 was used for the analysis. According to the obtained results, higher levels of CPEG and MPEG had a positive effect on extraction, while pH did not influence on the process. On the other hand, the CSal could be related with low values of Y because of the citrate ions have a negative effect on solubility and enzymatic structure. The optimum values of Y (66.4 %), PF (1.8), K (5.5) and S (4.3) were obtained at CSal (18%), MPEG (6,000 g/mol), CPEG (22%) and pH 9. These results indicated that the PEG/citrate system is accurate to purify these Pseudomonas sp. proteases from fermented broth as a first purification step.

Keywords: citrate, polyethylene glycol, protease, Pseudomonas sp

Procedia PDF Downloads 174
243 A Case Report on Anesthetic Considerations in a Neonate with Isolated Oesophageal Atresia with Radiological Fallacy

Authors: T. Rakhi, Thrivikram Shenoy

Abstract:

Esophageal atresia is a disorder of maldevelopment of esophagus with or without a connection to the trachea. Radiological reviews are needed in consultation with the pediatric surgeon and neonatologist and we report a rare case of esophageal atresia associated with atrial septal defect-patent ductus arteriosus complex. A 2-day old female baby born at term, weighing 3.010kg, admitted to the Neonatal Intensive Care Unit with respiratory distress and excessive oral secretions. On examination, continuous murmur and cyanosis were seen. Esophageal atresia was suspected, after a failed attempt to pass a nasogastric tube. Chest radiograph showed coiling of the nasogastric tube and absent gas shadow in the abdomen. Echocardiography confirmed Patent Ductus Arteriosus with Atrial Septal Defect not in failure and was diagnosed with esophageal atresia with suspected fistula posted for surgical repair. After preliminary management with oxygenation, suctioning in prone position and antibiotics, investigations revealed Hb 17gms serum biochemistry, coagulation profile and C-Reactive Protein Test normal. The baby was premedicated with 5mcg of fentanyl and 100 mcg of midazolam and a rapid awake laryngoscopy was done to rule out difficult airway followed by induction with o2 air, sevo and atracurium 2 mg. Placement of a 3.5 tube was uneventful at first attempt and after confirming bilateral air entry positioned in the lateral position for Right thoracotomy. A pulse oximeter, Echocardiogram, Non-invasive Blood Pressure, temperature and a precordial stethoscope in left axilla were essential monitors. During thoracotomy, both the ends of the esophagus and the fistula could not be located after thorough search suggesting an on table finding of type A esophageal atresia. The baby was repositioned for gastrostomy, and cervical esophagostomy ventilated overnight and extubated uneventful. Absent gas shadow was overlooked and the purpose of this presentation is to create an awareness between the neonatologist, pediatric surgeons and anesthesiologist regarding variation of typing of Tracheoesophageal fistula pre and intraoperatively. A need for imaging modalities warranted for a definitive diagnosis in the presence of a gasless stomach.

Keywords: anesthetic, atrial septal defects, esophageal atresia, patent ductus arteriosus, perioperative, chest x-ray

Procedia PDF Downloads 157
242 The Shared Breath Project: Inhabiting Each Other’s Words and Being

Authors: Beverly Redman

Abstract:

With the Theatre Season of 2020-2021 cancelled due to COVID-19 at Purdue University, Fort Wayne, IN, USA, faculty directors found themselves scrambling to create theatre production opportunities for their students in the Department of Theatre. Redman, Chair of the Department, found her community to be suffering from anxieties brought on by a confluence of issues: the global-scale Covid-19 Pandemic, the United States’ Black Lives Matter protests erupting in cities all across the country and the coming Presidential election, arguably the most important and most contentious in the country’s history. Redman wanted to give her students the opportunity to speak not only on these issues but also to be able to record who they were at this time in their personal lives, as well as in this broad socio-political context. She also wanted to invite them into an experience of feeling empathy, too, at a time when empathy in this world seems to be sorely lacking. Returning to a mode of Devising Theatre she had used with community groups in the past, in which storytelling and re-enactment of participants’ life events combined with oral history documentation practices, Redman planned The Shared Breath Project. The process involved three months of workshops, in which participants alternated between theatre exercises and oral history collection and documentation activities as a way of generating original material for a theatre production. The goal of the first half of the project was for each participant to produce a solo piece in the form of a monologue after many generations of potential material born out of gammes, improvisations, interviews and the like. Along the way, many film and audio clips recorded the process of each person’s written documentation—documentation prepared by the subject him or herself but also by others in the group assigned to listen, watch and record. Then, in the second half of the project—and only once each participant had taken their own contributions from raw improvisatory self-presentations and through the stages of composition and performative polish, participants then exchanged their pieces. The second half of the project involved taking on each other’s words, mannerisms, gestures, melodic and rhythmic speech patterns and inhabiting them through the rehearsal process as their own, thus the title, The Shared Breath Project. Here, in stage two the acting challenges evolved to be those of capturing the other and becoming the other through accurate mimicry that embraces Denis Diderot’s concept of the Paradox of Acting, in that the actor is both seeming and being simultaneous. This paper shares the carefully documented process of making the live-streamed theatre production that resulted from these workshops, writing processes and rehearsals, and forming, The Shared Breath Project, which ultimately took the students’ Realist, life-based pieces and edited them into a single unified theatre production. The paper also utilizes research on the Paradox of Acting, putting a Post-Structuralist spin on Diderot’s theory. Here, the paper suggests the limitations of inhabiting the other by allowing that the other is always already a thing impenetrable but nevertheless worthy of unceasing empathetic, striving and delving in an epoch in which slow, careful attention to our fellows is in short supply.

Keywords: otherness, paradox of acting, oral history theatre, devised theatre, political theatre, community-based theatre, peoples’ theatre

Procedia PDF Downloads 161
241 Direct and Residual Effects of Boron and Zinc on Growth and Nutrient Status of Rice and Wheat Crop

Authors: M. Saleem, M. Shahnawaz, A. W. Gandahi, S. M. Bhatti

Abstract:

The micronutrients boron and zinc deficiencies are extensive in the areas of rice-wheat cropping system. Optimum levels of these nutrients in soil are necessary for healthy crop growth. Since rice and wheat are major staple food of worlds’ populace, the higher yields and nutrition status of these crops has direct effect on the health of human being and economy of the country. A field study was conducted to observe the direct and residual effect of two selected micronutrients boron (B) and zinc (Zn)) on rice and wheat crop growth and its grain nutrient status. Each plot received either B or Zn at the rates of 0, 1, 2, 3 and 4 kg B ha⁻¹, and 5, 10, 15 and 20 kg Zn ha⁻¹, combined B and Zn application at 1 kg B and 5 kg Zn ha⁻¹, 2 kg B and 10 kg Zn ha⁻¹. Colemanite ore were used as source of B and zinc sulfate for Zn. The second season wheat crop was planted in the same plots after the interval period of 30 days and during this time gap soil was fallow. Boron and Zn application significantly enhanced the plant height, number of tillers, Grains panicle⁻¹ seed index fewer empty grains panicle⁻¹ and yield of rice crop at all defined levels as compared to control. The highest yield (10.00 tons/ha) was recorded at 2 Kg B, 10 Kg Zn ha⁻¹ rates. Boron and Zn concentration in grain and straw significantly increased. The application of B also improved the nutrition status of rice as B, protein and total carbohydrates content of grain augmented. The analysis of soil samples collected after harvest of rice crop showed that the B and Zn content in post-harvest soil samples was high in colemanite and zinc sulfate applied plots. The residual B and Zn were also effectual for the second season wheat crop, as the growth parameters plant height, number of tillers, earhead length, weight 1000 grains, B and Zn content of grain significantly improved. The highest wheat grain yield (4.23 tons/ha) was recorded at the residual rates of 2 kg B and 10 kg Zn ha⁻¹ than the other treatments. This study showed that one application of B and Zn can increase crop yields for at least two consecutive seasons and the mineral colemanite can confidently be used as source of B for rice crop because very small quantities of these nutrients are consumed by first season crop and remaining amount was present in soil which were used by second season wheat crop for healthy growth. Consequently, there is no need to apply these micronutrients to the following crop when it is applied on the previous one.

Keywords: residual boron, zinc, rice, wheat

Procedia PDF Downloads 126
240 Effect of Dietary Organic Zinc Supplementation on Immunocompetance and Reproductive Performance in Rats

Authors: D. Nagalakshmi, S. Parashuramulu K. Sadasiva Rao, G. Aruna, L. Vikram

Abstract:

The zinc (Zn) is the second most abundant trace element in mammals and birds, forming structural component of over 300 enzymes, playing an important role in anti-oxidant defense, immune response and reproduction. Organic trace minerals are more readily absorbed from the digestive tract and more biologically available compared with its inorganic salt. Thus, the present study was undertaken on 60 adult female Sprague Dawley rats (275±2.04 g) for experimental duration of 12 weeks to investigate the effect of dietary Zn supplementation from various organic sources on immunity, reproduction, oxidative defense mechanism and blood biochemical profile. The rats were randomly allotted to 30 replicates (2 per replicate) which were in turn randomly allotted to 5 dietary treatments varying in Zn source i.e., one inorganic source (Zn carbonate) and 4 organic sources (Zn-proteinate, Zn-propionate, Zn-amino acid complex and Zn-methionine) so as to supply NRC recommended Zn concentration (12 ppm Zn). Supplementation of organic Zn had no effect on various haematological and serum biochemical constituents compared to inorganic Zn fed rats. The TBARS and protein carbonyls concentration in liver indicative of oxidative stress was comparable between various organic and inorganic groups. The glutathione reductase activity in haemolysate (P<0.05) and reduced glutathione concentration in liver (P<0.01) was higher when fed organic Zn and RBC catalase activity was higher (P<0.01) on Zn methionine compared to other organic sources tested and the inorganic source. The humoral immune response assessed as antibody titres against sheep RBC was higher (P<0.05) when fed organic sources of zinc compared to inorganic source. The cell mediated immune response expressed as delayed type hypersensitivity reaction was higher (P<0.05) in rats fed Zn propionate with no effect of other organic Zn sources. The serum progesterone concentration was higher (P<0.05) in rats fed organic Zn sources compared to inorganic zinc. The data on ovarian folliculogenesis indicated that organic Zn supplementation increased (P<0.05) the number of graafian follicles and corpus luteum with no effect on primary, secondary and tertiary follicle number. The study indicated that rats fed organic sources of Zn had higher antioxidant enzyme activities, immune response and serum progesterone concentration with higher number of mature follicles. Though the effect of feeding various organic sources were comparable, rats fed zinc methionine had higher antioxidant activity and cell mediated immune response was higher in rats on Zn propionate.

Keywords: organic zinc, immune, rats, reproductive

Procedia PDF Downloads 265
239 Pomegranates Attenuates Cognitive and Behavioural Deficts and reduces inflammation in a Transgenic Mice Model of Alzheimer's Disease

Authors: M. M. Essa, S. Subash, M. Akbar, S. Al-Adawi, A. Al-Asmi, G. J. Guillemein

Abstract:

Objective: Transgenic (tg) mice which contain an amyloid precursor protein (APP) gene mutation, develop extracellular amyloid beta (Aβ) deposition in the brain, and severe memory and behavioural deficits with age. These mice serve as an important animal model for testing the efficacy of novel drug candidates for the treatment and management of symptoms of Alzheimer's disease (AD). Several reports have suggested that oxidative stress is the underlying cause of Aβ neurotoxicity in AD. Pomegranates contain very high levels of antioxidants and several medicinal properties that may be useful for improving the quality of life in AD patients. In this study, we investigated the effect of dietary supplementation of Omani pomegranate extract on the memory, anxiety and learning skills along with inflammation in an AD mouse model containing the double Swedish APP mutation (APPsw/Tg2576). Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 4% pomegranate. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in Tg and wild-type mice at the age of 4-5 months and 18-19 months using the Morris water maze test, rota rod test, elevated plus maze test, and open field test. Further, inflammatory parameters also analysed. Results: APPsw/Tg2576 mice that were fed a standard chow diet without pomegranates showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination along with increased inflammation compared to the wild type mice on the same diet, at the age of 18-19 months In contrast, APPsw/Tg2576 mice that were fed a diet containing 4% pomegranates showed a significant improvements in memory, learning, locomotor function, and anxiety with reduced inflammatory markers compared to APPsw/Tg2576 mice fed the standard chow diet. Conclusion: Our results suggest that dietary supplementation with pomegranates may slow the progression of cognitive and behavioural impairments in AD. The exact mechanism is still unclear and further extensive research needed.

Keywords: Alzheimer's disease, pomegranates, oman, cognitive decline, memory loss, anxiety, inflammation

Procedia PDF Downloads 509
238 Lung Tissue Damage under Diesel Exhaust Exposure: Modification of Proteins, Cells and Functions in Just 14 Days

Authors: Ieva Bruzauskaite, Jovile Raudoniute, Karina Poliakovaite, Danguole Zabulyte, Daiva Bironaite, Ruta Aldonyte

Abstract:

Introduction: Air pollution is a growing global problem which has been shown to be responsible for various adverse health outcomes. Immunotoxicity, such as dysregulated inflammation, has been proposed as one of the main mechanisms in air pollution-associated diseases. Chronic obstructive pulmonary disease (COPD) is among major morbidity and mortality causes worldwide and is characterized by persistent airflow limitation caused by the small airways disease (obstructive bronchiolitis) and irreversible parenchymal destruction (emphysema). Exact pathways explaining the air pollution induced and mediated disease states are still not clear. However, modern societies understand dangers of polluted air, seek to mitigate such effects and are in need for reliable biomarkers of air pollution. We hypothesise that post-translational modifications of structural proteins, e.g. citrullination, might be a good candidate biomarker. Thus, we have designed this study, where mice were exposed to diesel exhaust and the ongoing protein modifications and inflammation in lungs and other tissues were assessed. Materials And Methods: To assess the effects of diesel exhaust a in vivo study was designed. Mice (n=10) were subjected to everyday 2-hour exposure to diesel exhaust for 14 days. Control mice were treated the same way without diesel exhaust. The effects within lung and other tissues were assessed by immunohistochemistry of formalin-fixed and paraffin-embedded tissues. Levels of inflammation and citrullination related markers were investigated. Levels of parenchymal damage were also measured. Results: In vivo study corroborates our own data from in vitro and reveals diesel exhaust initiated inflammatory shift and modulation of lung peptidyl arginine deiminase 4 (PAD4), citrullination associated enzyme, levels. In addition, high levels of citrulline were observed in exposed lung tissue sections co-localising with increased parenchymal destruction. Conclusions: Subacute exposure to diesel exhaust renders mice lungs inflammatory and modifies certain structural proteins. Such structural changes of proteins may pave a pathways to lost/gain function of affected molecules and also propagate autoimmune processes within the lung and systemically.

Keywords: air pollution, citrullination, in vivo, lungs

Procedia PDF Downloads 120
237 Impact of an Eight-Week High-Intensity Interval Training with Sodium Nitrite Supplementation on TNF-α, MURF1, and PI3K in Type 2 Diabetic Rats

Authors: Samane Eftekhari Ranjbar

Abstract:

Diabetes mellitus, a metabolic disorder characterized by elevated blood glucose levels, ranks among the leading causes of adult mortality. This study investigates the impact of an eight-week high-intensity interval training (HIIT) program combined with sodium nitrite supplementation on TNF- α, MURF1, and PI3K in a type 2 diabetes rodent model. Elevated TNF-α levels have been associated with insulin resistance, while MURF1 and PI3K play roles in muscle atrophy and insulin signaling pathways, respectively. In this experimental study, 15 eight-week-old rats from the Sara Laboratory Center in Tabriz were assigned to one of five groups: healthy control, diabetic control, diabetic with sodium nitrite supplementation, diabetic with eight weeks of intermittent exercise, and diabetic with eight weeks of interval training plus sodium nitrite supplementation. The HIIT protocol was designed to span eight weeks, with five weekly sessions at specified intensities and durations. Sodium nitrite, known for its vasodilatory and cytoprotective properties, was administered via injection. The findings revealed that the HIIT program and sodium nitrite supplementation influenced the examined biomarkers. ANOVA test outcomes indicated statistically significant differences in TNF- α (P=0.001), MURF1 (P=0.001), and PI3K (P=0.001) concentrations among the various groups. The healthy control group exhibited substantially decreased TNF- α, and MURF1 levels, as well as elevated PI3K levels compared to the diabetic control group. The exercise group, in conjunction with sodium nitrite supplementation, demonstrated a significant rise in PI3K levels (P=0.001) and a decline in TNF- α levels (P=0.018) relative to the diabetic control group. These results suggest that the combined intervention may help improve insulin sensitivity and reduce inflammation. However, MURF1 levels, which are related to muscle atrophy, showed no significant difference (P=0.24). In conclusion, in type 2 diabetic rats, an eight-week high-intensity interval training program with sodium nitrite supplementation does not affect MURF1 levels but does influence PI3K and TNF- α levels. This combination may hold potential for improving insulin sensitivity and reducing inflammation in type 2 diabetes patients, warranting further investigation and potential translation to human clinical trials.

Keywords: high-intensity interval training, sodium nitrate supplementation, type 2 diabetes, tumor necrosis factor-alpha, phosphatidylinositol-3-kinase, muscle RING-finger protein-1

Procedia PDF Downloads 55
236 Potential Impacts of Maternal Nutrition and Selection for Residual Feed Intake on Metabolism and Fertility Parameters in Angus Bulls

Authors: Aidin Foroutan, David S. Wishart, Leluo L. Guan, Carolyn Fitzsimmons

Abstract:

Maximizing efficiency and growth potential of beef cattle requires not only genetic selection (i.e. residual feed intake (RFI)) but also adequate nutrition throughout all stages of growth and development. Nutrient restriction during gestation has been shown to negatively affect post-natal growth and development as well as fertility of the offspring. This, when combined with RFI may affect progeny traits. This study aims to investigate the impact of selection for divergent genetic potential for RFI and maternal nutrition during early- to mid-gestation, on bull calf traits such as fertility and muscle development using multiple ‘omics’ approaches. Comparisons were made between High-diet vs. Low-diet and between High-RFI vs. Low-RFI animals. An epigenetics experiment on semen samples identified 891 biomarkers associated with growth and development. A gene expression study on Longissimus thoracis muscle, semimembranosus muscle, liver, and testis identified 4 genes associated with muscle development and immunity of which Myocyte enhancer factor 2A [MEF2A; induces myogenesis and control muscle differentiation] was the only differentially expressed gene identified in all four tissues. An initial metabolomics experiment on serum samples using nuclear magnetic resonance (NMR) identified 4 metabolite biomarkers related to energy and protein metabolism. Once all the biomarkers are identified, bioinformatics approaches will be used to create a database covering all the ‘omics’ data collected from this project. This database will be broadened by adding other information obtained from relevant literature reviews. Association analyses with these data sets will be performed to reveal key biological pathways affected by RFI and maternal nutrition. Through these association studies between the genome and metabolome, it is expected that candidate biomarker genes and metabolites for feed efficiency, fertility, and/or muscle development are identified. If these gene/metabolite biomarkers are validated in a larger animal population, they could potentially be used in breeding programs to select superior animals. It is also expected that this work will lead to the development of an online tool that could be used to predict future traits of interest in an animal given its measurable ‘omics’ traits.

Keywords: biomarker, maternal nutrition, omics, residual feed intake

Procedia PDF Downloads 167