Search results for: architecture complexity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3217

Search results for: architecture complexity

247 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification

Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas

Abstract:

Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.

Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles

Procedia PDF Downloads 212
246 A Player's Perspective of University Elite Netball Programmes in South Africa

Authors: Wim Hollander, Petrus Louis Nolte

Abstract:

University sport in South Africa is not isolated from the complexity of globalization and professionalization of sport, as it forms an integral part of the sports development environment in South Africa. In order to align their sports programs with global and professional requirements, several universities opted to develop elite sports programs; recruit specialized personnel such as coaches, administrators, and athletes; provide expert coaching; scientific and medical services; sports testing; fitness, technical and tactical expertise; sport psychological and rehabilitation support; academic guidance and career assistance; and student-athlete accommodation. In addition, universities provide administrative support and high-quality physical resources (training facilities) for the benefit of the overall South African sport system. Although it is not compulsory for universities to develop elite sports programs to prepare their teams for competitions, elite competitions such as the annual Varsity Sport, University Sport South Africa (USSA) and local club competitions and leagues within international university competitions where universities not only compete but also deliver players for representative national netball teams. The aim of this study is, therefore, to describe the perceptions of players of the university elite netball programs they were participating in. This study adopted a descriptive design with a quantitative approach, utilizing a self-structured questionnaire as a research technique. As this research formed part of a national research project for NSA with a population of 172 national and provincial netball players, a sample of 92 university netball players from the population was selected. Content validity of the self-structured questionnaire was secured through a test-retest process, with construct validity through a member of the Statistical Consultation Services (STATCON) of the University of Johannesburg that provided feedback on the structural format of the questionnaire. Reliability was measured utilizing Cronbach Alpha on p < 0.005 level of significance. A reliability score of 0.87 was measured. The research was approved by the Board of Netball South Africa and ethical conduct implemented according to the processes and procedures approved by the Ethics Committees of the Faculty of Health Sciences, the University of Johannesburg with clearance number REC-01-30-2019. From the results, it is evident that university elite netball programs are professional, especially with regards to the employment of knowledgeable and competent coaches and technical officials such as team managers and sport sciences staff. These professionals have access to elite training facilities, support staff, and relatively large groups of elite players, all elements of an elite program that could enhance the national federation’s (Netball South Africa) system. Universities could serve the dual purpose of serving as university netball clubs, as well as providing elite training services and facilities as performance hubs for national players.

Keywords: elite sport programmes, university netball, player experiences, varsity sport netball

Procedia PDF Downloads 145
245 Quantitative Comparisons of Different Approaches for Rotor Identification

Authors: Elizabeth M. Annoni, Elena G. Tolkacheva

Abstract:

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.

Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors

Procedia PDF Downloads 304
244 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images

Authors: Eiman Kattan, Hong Wei

Abstract:

In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.

Keywords: CNNs, hyperparamters, remote sensing, land cover, land use

Procedia PDF Downloads 147
243 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 42
242 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 140
241 Implementation of a Multidisciplinary Weekly Safety Briefing in a Tertiary Paediatric Cardiothoracic Transplant Unit

Authors: Lauren Dhugga, Meena Parameswaran, David Blundell, Abbas Khushnood

Abstract:

Context: A multidisciplinary weekly safety briefing was implemented at the Paediatric Cardiothoracic Unit at the Freeman Hospital in Newcastle-upon-Tyne. It is a tertiary referral centre with a quarternary cardiac paediatric intensive care unit and provides complexed care including heart and lung transplants, mechanical support and advanced heart failure assessment. Aim: The aim of this briefing is to provide a structured platform of communication, in an effort to improve efficiency, safety, and patient care. Problem: The paediatric cardiothoracic unit is made up of a vast multidisciplinary team including doctors, intensivists, anaesthetists, surgeons, specialist nurses, echocardiogram technicians, physiotherapists, psychologists, dentists, and dietitians. It provides care for children with congenital and acquired cardiac disease and is one of only two units in the UK to offer paediatric heart transplant. The complexity of cases means that there can be many teams involved in providing care to each patient, and frequent movement of children between ward, high dependency, and intensive care areas. Currently, there is no structured forum for communicating important information across the department, for example, staffing shortages, prescribing errors and significant events. Strategy: An initial survey questioning the need for better communication found 90% of respondents agreed that they could think of an incident that had occurred due to ineffective communication, and 85% felt that incident could have been avoided had there been a better form of communication. Lastly, 80% of respondents felt that a weekly 60 second safety briefing would be beneficial to improve communication within our multidisciplinary team. Based on those promising results, a weekly 60 second safety briefing was implemented to be conducted on a Monday morning. The safety briefing covered four key areas (SAFE): staffing, awareness, fix and events. This was to highlight any staffing gaps, any incident reports to be learned from, any issues that required fixing and any events including teachings for the week ahead. The teams were encouraged to email suggestions or issues to be raised for the week or to approach in person with information to add. The safety briefing was implemented using change theory. Effect: The safety briefing has been trialled over 6 weeks and has received a good buy in from staff across specialties. The aim is to embed this safety briefing into a weekly meeting using the PDSA cycle. There will be a second survey in one month to assess the efficacy of the safety briefing and to continue to improve the delivery of information. The project will be presented at the next clinical governance briefing to attract wider feedback and input from across the trust. Lessons: The briefing displays promise as a tool to improve vigilance and communication in a busy multi-disciplinary unit. We have learned about how to implement quality improvement and about the culture of our hospital - how hierarchy influences change. We demonstrate how to implement change through a grassroots process, using a junior led briefing to improve the efficiency, safety, and communication in the workplace.

Keywords: briefing, communication, safety, team

Procedia PDF Downloads 115
240 Scalable UI Test Automation for Large-scale Web Applications

Authors: Kuniaki Kudo, Raviraj Solanki, Kaushal Patel, Yash Virani

Abstract:

This research mainly concerns optimizing UI test automation for large-scale web applications. The test target application is the HHAexchange homecare management WEB application that seamlessly connects providers, state Medicaid programs, managed care organizations (MCOs), and caregivers through one platform with large-scale functionalities. This study focuses on user interface automation testing for the WEB application. The quality assurance team must execute many manual users interface test cases in the development process to confirm no regression bugs. The team automated 346 test cases; the UI automation test execution time was over 17 hours. The business requirement was reducing the execution time to release high-quality products quickly, and the quality assurance automation team modernized the test automation framework to optimize the execution time. The base of the WEB UI automation test environment is Selenium, and the test code is written in Python. Adopting a compilation language to write test code leads to an inefficient flow when introducing scalability into a traditional test automation environment. In order to efficiently introduce scalability into Test Automation, a scripting language was adopted. The scalability implementation is mainly implemented with AWS's serverless technology, an elastic container service. The definition of scalability here is the ability to automatically set up computers to test automation and increase or decrease the number of computers running those tests. This means the scalable mechanism can help test cases run parallelly. Then test execution time is dramatically decreased. Also, introducing scalable test automation is for more than just reducing test execution time. There is a possibility that some challenging bugs are detected by introducing scalable test automation, such as race conditions, Etc. since test cases can be executed at same timing. If API and Unit tests are implemented, the test strategies can be adopted more efficiently for this scalability testing. However, in WEB applications, as a practical matter, API and Unit testing cannot cover 100% functional testing since they do not reach front-end codes. This study applied a scalable UI automation testing strategy to the large-scale homecare management system. It confirmed the optimization of the test case execution time and the detection of a challenging bug. This study first describes the detailed architecture of the scalable test automation environment, then describes the actual performance reduction time and an example of challenging issue detection.

Keywords: aws, elastic container service, scalability, serverless, ui automation test

Procedia PDF Downloads 68
239 The Influence of Salt Body of J. Ech Cheid on the Maturity History of the Cenomanian: Turonian Source Rock

Authors: Mohamed Malek Khenissi, Mohamed Montassar Ben Slama, Anis Belhaj Mohamed, Moncef Saidi

Abstract:

Northern Tunisia is well known by its different and complex structural and geological zones that have been the result of a geodynamic history that extends from the early Mesozoic era to the actual period. One of these zones is the salt province, where the Halokinesis process is manifested by a number of NE/SW salt structures such as Jebel Ech-Cheid which represents masses of materials characterized by a high plasticity and low density. The salt masses extrusions that have been developed due to an extension that started from the late Triassic to late Cretaceous. The evolution of salt bodies within sedimentary basins have not only contributed to modify the architecture of the basin, but it also has certain geochemical effects which touch mainly source rocks that surround it. It has been demonstrated that the presence of salt structures within sedimentary basins can influence its temperature distribution and thermal history. Moreover, it has been creating heat flux anomalies that may affect the maturity of organic matter and the timing of hydrocarbon generation. Field samples of the Bahloul source rock (Cenomanan-Tunonian) were collected from different sights from all around Ech Cheid salt structure and evaluated using Rock-eval pyrolysis and GC/MS techniques in order to assess the degree of maturity evolution and the heat flux anomalies in the different zones analyze. The Total organic Carbon (TOC) values range between 1 to 9% and the (Tmax) ranges between 424 and 445°C, also the distribution of the source rock biomarkers both saturated and aromatic changes in a regular fashions with increasing maturity and this are shown in the chromatography results such as Ts/(Ts+Tm) ratios, 22S/(22S+22R) values for C31 homohopanes, ββ/(ββ+αα)20R and 20S/(20S+20R) ratios for C29 steranes which gives a consistent maturity indications and assessment of the field samples. These analyses are carried to interpret the maturity evolution and the heat flux around Ech Cheid salt structure through the geological history. These analyses also aim to demonstrate that the salt structure can have a direct effect on the geothermal gradient of the basin and on the maturity of the Bahloul Formation source rock. The organic matter has reached different stages of thermal maturity, but delineate a general increasing maturity trend. Our study confirms that the J. Ech Cheid salt body have on the first hand: a huge influence on the local distribution of anoxic depocentre at least within Cenomanian-Turonian time. In the second hand, the thermal anomaly near the salt mass has affected the maturity of Bahloul Formation.

Keywords: Bahloul formation, depocentre, GC/MS, rock-eval

Procedia PDF Downloads 219
238 The Walkway Project: An Exploration of Informal Public Space Upgrading in Gugulethu, Cape Town

Authors: Kathryn Ewing

Abstract:

Safe and accessible public spaces are vital elements of our South African cities. Public spaces hold the potential to act as important, vibrant places for learning, exchange, and practice. Public walkways, however, are some of the most neglected and extremely dangerous public spaces experienced in the local neighborhood of Gugulethu in Cape Town. Walkways feel insignificant, being recognized as informal and undetermined or retain complex fragments of formal erven. They are generally out of sight connecting minor streets and informal settlements. Community residents refer to the walkways as unsafe and dirty spaces. Local authorities allocate minimal to no municipal budgets nor maintenance plans resulting in a lack of basic services, particularly lighting and green infrastructure. ‘The Walkway Project’ presents a series of urban stories collected from co-design workshops, emotional mapping exercises, and fieldwork, including urban walks and urban talks. The narrative interprets the socio-spatial practice and complexity of informal public space in Gugulethu, Cape Town. The Walkway Project research, interrelated to the Master of Urban Design teaching and design-research studio, has a strong focus on participatory and engaged learning and action research methodology within a deliberate pedagogy. A consolidated urban design implementation plan exposes the impact and challenges of waste and water, opening the debate on relevant local solutions for resilience and safety in Cape Town. A small and neglected passage connecting two streets, commonly referred to as iThemba Walkway, is presented as a case study to show-case strategic urban design intervention strategies for urban upgrading. The iThemba walkway is a community-driven project that demonstrates active and responsible co-design and participatory development opportunities. In March 2021, when visited on an urban walk, the public space was covered by rubble and solid waste. By April 2021, the community cleaned the walkway and created an accessible passage for the school children to pass. Numerous co-design workshops have taken place over the past year. The walkway has emerged as a public space upgrading project facilitated, motivated, and implemented by multiple local partners and residents. Social maps from urban walks and talks illustrate the transformation of iThemba Walkway into an inclusive, safe, resilient, and sustainable urban space, linked to Sustainable Development Goal number 11, sustainable cities and communities. The outcomes of the upgrading project facilitate a deeper understanding of co-design methods, urban upgrading processes, and monitoring of public space and informal urbanism.

Keywords: informal, public space, resilience, safety, upgrade, walkways

Procedia PDF Downloads 68
237 Review of Concepts and Tools Applied to Assess Risks Associated with Food Imports

Authors: A. Falenski, A. Kaesbohrer, M. Filter

Abstract:

Introduction: Risk assessments can be performed in various ways and in different degrees of complexity. In order to assess risks associated with imported foods additional information needs to be taken into account compared to a risk assessment on regional products. The present review is an overview on currently available best practise approaches and data sources used for food import risk assessments (IRAs). Methods: A literature review has been performed. PubMed was searched for articles about food IRAs published in the years 2004 to 2014 (English and German texts only, search string “(English [la] OR German [la]) (2004:2014 [dp]) import [ti] risk”). Titles and abstracts were screened for import risks in the context of IRAs. The finally selected publications were analysed according to a predefined questionnaire extracting the following information: risk assessment guidelines followed, modelling methods used, data and software applied, existence of an analysis of uncertainty and variability. IRAs cited in these publications were also included in the analysis. Results: The PubMed search resulted in 49 publications, 17 of which contained information about import risks and risk assessments. Within these 19 cross references were identified to be of interest for the present study. These included original articles, reviews and guidelines. At least one of the guidelines of the World Organisation for Animal Health (OIE) and the Codex Alimentarius Commission were referenced in any of the IRAs, either for import of animals or for imports concerning foods, respectively. Interestingly, also a combination of both was used to assess the risk associated with the import of live animals serving as the source of food. Methods ranged from full quantitative IRAs using probabilistic models and dose-response models to qualitative IRA in which decision trees or severity tables were set up using parameter estimations based on expert opinions. Calculations were done using @Risk, R or Excel. Most heterogeneous was the type of data used, ranging from general information on imported goods (food, live animals) to pathogen prevalence in the country of origin. These data were either publicly available in databases or lists (e.g., OIE WAHID and Handystatus II, FAOSTAT, Eurostat, TRACES), accessible on a national level (e.g., herd information) or only open to a small group of people (flight passenger import data at national airport customs office). In the IRAs, an uncertainty analysis has been mentioned in some cases, but calculations have been performed only in a few cases. Conclusion: The current state-of-the-art in the assessment of risks of imported foods is characterized by a great heterogeneity in relation to general methodology and data used. Often information is gathered on a case-by-case basis and reformatted by hand in order to perform the IRA. This analysis therefore illustrates the need for a flexible, modular framework supporting the connection of existing data sources with data analysis and modelling tools. Such an infrastructure could pave the way to IRA workflows applicable ad-hoc, e.g. in case of a crisis situation.

Keywords: import risk assessment, review, tools, food import

Procedia PDF Downloads 287
236 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry

Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker

Abstract:

Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.

Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control

Procedia PDF Downloads 148
235 Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms

Authors: Pola Goldberg Oppenheimer, Stephan Hofmann, Sumeet Mahajan

Abstract:

Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms.

Keywords: carbon nanotubes (CNTs), EHD patterning, SERS, vertically aligned carbon nanotube forests (VACNTF)

Procedia PDF Downloads 303
234 Participatory Action Research with Social Workers: The World Café Method to Share Critical Reflections and Possible Solutions on Working Practices in Migration Contexts

Authors: Ilaria Coppola, Davide Lacqua, Nadia Ranìa

Abstract:

Over the past two decades, migration has gained central importance in the global landscape. Europe hosts the largest number of migrants, totaling 92.9 million people, approximately 37.4 million of whom are regular residents within the European Union's borders. Reception services and different modes of management have received increasing attention precisely because of the complexity of the phenomenon, which necessarily impacts the wider community. Indeed, opening a reception center in an area entails major challenges for that context, for the community that inhabits it, and for the people who use that service. Questioning the strategies needed to offer a functional reception service means listening to the different actors involved who daily face the difficulties involved in working in the field. Recognizing the importance of the professional figures who work closely with migrant people, each with their own specific experiences has led researchers to study and analyze the different types of reception centers and their management. This has led to the development of intervention models and best practices in various countries. However, research from this perspective is still limited, especially in Italy. From this theoretical framework, this study aims to bring out an innovative qualitative tool, such as the world café, the work experiences of 29 social workers working in shelters in the Italian context. Most of the participants were female and lived in the Northwest regions of Italy. Through this tool, the aim was to bring out and share reflections on the critical issues encountered in working in reception centers, with a view to identifying possible solutions for better management of services. The World café represents a tool used in participatory action research that promotes dialogue among participants through the sharing of reflections and ideas. In fact, from critical reflections, participants are invited to identify and share possible solutions to provide a more functional service with benefits to the entire community. Therefore, this research, through the innovative technique of the World café, aims to promote critical thinking processes that can help participants find solutions that can be introduced into their work contexts or proposed to decision-makers. Specifically, the findings shed light on several issues, including complex bureaucratic procedures, insufficient project planning, and inefficiencies in the services provided to migrants. These concerns collectively contribute to what participants perceive as a disorganized and uncoordinated system. In addition, the study explores potential solutions that promote more efficient networking practices, coordinated project management, and a more positive approach to cultural diversity. The main results obtained will be discussed with a focus on critical reflections and possible solutions identified.

Keywords: participatory action research, world café method, reception services, migration contexts, social workers, Italy

Procedia PDF Downloads 35
233 The Establishment of Primary Care Networks (England, UK) Throughout the COVID-19 Pandemic: A Qualitative Exploration of Workforce Perceptions

Authors: Jessica Raven Gates, Gemma Wilson-Menzfeld, Professor Alison Steven

Abstract:

In 2019, the Primary Care system in the UK National Health Service (NHS) was subject to reform and restructuring. Primary Care Networks (PCNs) were established, which aligned with a trend towards integrated care both within the NHS and internationally. The introduction of PCNs brought groups of GP practices in a locality together, to operate as a network, build on existing services and collaborate at a larger scale. PCNs were expected to bring a range of benefits to patients and address some of the workforce pressures in the NHS, through an expanded and collaborative workforce. The early establishment of PCNs was disrupted by the emerging COVID-19 pandemic. This study, set in the context of the pandemic, aimed to explore experiences of the PCN workforce, and their perceptions of the establishment of PCNs. Specific objectives focussed on examining factors perceived as enabling or hindering the success of a PCN, the impact on day-to-day work, the approach to implementing change, and the influence of the COVID-19 pandemic upon PCN development. This study is part of a three-phase PhD project that utilized qualitative approaches and was underpinned by social constructionist philosophy. Phase 1: a systematic narrative review explored the provision of preventative healthcare services in UK primary settings and examined facilitators and barriers to delivery as experienced by the workforce. Phase 2: informed by the findings of phase 1, semi-structured interviews were conducted with fifteen participants (PCN workforce). Phase 3: follow-up interviews were conducted with original participants to examine any changes to their experiences and perceptions of PCNs. Three main themes span across phases 2 and 3 and were generated through a Framework Analysis approach: 1) working together at scale, 2) network infrastructure, and 3) PCN leadership. Findings suggest that through efforts to work together at scale and collaborate as a network, participants have broadly accepted the concept of PCNs. However, the workforce has been hampered by system design and system complexity. Operating against such barriers has led to a negative psychological impact on some PCN leaders and others in the PCN workforce. While the pandemic undeniably increased pressure on healthcare systems around the world, it also acted as a disruptor, offering a glimpse into how collaboration in primary care can work well. Through the integration of findings from all phases, a new theoretical model has been developed, which conceptualises the findings from this Ph.D. study and demonstrates how the workforce has experienced change associated with the establishment of PCNs. The model includes a contextual component of the COVID-19 pandemic and has been informed by concepts from Complex Adaptive Systems theory. This model is the original contribution to knowledge of the PhD project, alongside recommendations for practice, policy and future research. This study is significant in the realm of health services research, and while the setting for this study is the UK NHS, the findings will be of interest to an international audience as the research provides insight into how the healthcare workforce may experience imposed policy and service changes.

Keywords: health services research, qualitative research, NHS workforce, primary care

Procedia PDF Downloads 37
232 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges

Authors: Dianelys Vega, Carlos Magluta, Ney Roitman

Abstract:

The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.

Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction

Procedia PDF Downloads 103
231 The New Waterfront: Examining the Impact of Planning on Waterfront Regeneration in Da Nang

Authors: Ngoc Thao Linh Dang

Abstract:

Urban waterfront redevelopment is a global phenomenon, and thousands of schemes are being carried out in large metropoles, medium-sized cities, and even small towns all over the world. This opportunity brings the city back to the river and rediscovers waterfront revitalization as a unique opportunity for cities to reconnect with their unique historical and cultural image. The redevelopment can encourage economic investments, serve as a social platform for public interactions, and allow dwellers to express their rights to the city. Many coastal cities have effectively transformed the perception of their waterfront area through years of redevelopment initiatives, having been neglected for over a century. However, this process has never been easy due to the particular complexity of the space: local culture, history, and market-led development. Moreover, municipal governments work out the balance of diverse stakeholder interests, especially when repurposing high-profile and redundant spaces that form the core of urban economic investment while also accommodating the present and future generations in sustainable environments. Urban critics consistently grapple with the effectiveness of the planning process on the new waterfront, where public spaces are criticized for presenting a lack of opportunities for actual public participation due to privatization and authoritarian governance while no longer doing what they are ‘meant to’: all arise in reaction to the perceived failure of these places to meet expectations. The planning culture and the decision-making context determine the level of public involvement in the planning process; however, in the context of competing market forces and commercial interests dominating cities’ planning agendas, planning for public space in urban waterfronts tends to be for economic gain rather than supporting residents' social needs. These newly pleasing settings satisfied the cluster of middle-class individuals, new communities living along the waterfront, and tourists. A trend of public participatory exclusion is primarily determined by the nature of the planning being undertaken and the decision-making context in which it is embedded. Starting from this context, the research investigates the influence of planning on waterfront regeneration and the role of participation in this process. The research aims to look specifically at the characteristics of the planning process of the waterfront in Da Nang and its impact on the regeneration of the place to regain the city’s historical value and enhance local cultural identity and images. Vietnam runs a top-down planning system where municipal governments have control or power over what happens in their city following the approved planning from the national government. The community has never been excluded from development; however, their participation is still marginalized. In order to ensure social equality, a proposed approach called "bottom-up" should be considered and implemented alongside the traditional "top-down" process and provide a balance of perspectives, as it allows for the voices of the most underprivileged social group involved in a planning project to be heard, rather than ignored. The research provides new insights into the influence of the planning process on the waterfront regeneration in the context of Da Nang.

Keywords: planning process, public participation, top-down planning, waterfront regeneration

Procedia PDF Downloads 41
230 Positive Incentives to Reduce Private Car Use: A Theory-Based Critical Analysis

Authors: Rafael Alexandre Dos Reis

Abstract:

Research has shown a substantial increase in the participation of Conventionally Fuelled Vehicles (CFVs) in the urban transport modal split. The reasons for this unsustainable reality are multiple, from economic interventions to individual behaviour. The development and delivery of positive incentives for the adoption of more environmental-friendly modes of transport is an emerging strategy to help in tackling the problem of excessive use of conventionally fuelled vehicles. The efficiency of this approach, like other information-based schemes, can benefit from the knowledge of their potential impacts in theoretical constructs of multiple behaviour change theories. The goal of this research is to critically analyse theories of behaviour that are relevant to transport research and the impacts of positive incentives on the theoretical determinants of behaviour, strengthening the current body of evidence about the benefits of this approach. The main method to investigate this will involve a literature review on two main topics: the current theories of behaviour that have empirical support in transport research and the past or ongoing positive incentives programs that had an impact on car use reduction. The reviewed programs of positive incentives were the following: The TravelSmart®; Spitsmijden®; Incentives for Singapore Commuters® (INSINC); COMMUTEGREENER®; MOVESMARTER®; STREETLIFE®; SUPERHUB®; SUNSET® and the EMPOWER® project. The theories analysed were the heory of Planned Behaviour (TPB); The Norm Activation Theory (NAM); Social Learning Theory (SLT); The Theory of Interpersonal Behaviour (TIB); The Goal-Setting Theory (GST) and The Value-Belief-Norm Theory (VBN). After the revisions of the theoretical constructs of each of the theories and their influence on car use, it can be concluded that positive incentives schemes impact on behaviour change in the following manners: -Changing individual’s attitudes through informational incentives; -Increasing feelings of moral obligations to reduce the use of CFVs; -Increase the perceived social pressure to engage in more sustainable mobility behaviours through the use of comparison mechanisms in social media, for example; -Increase the perceived control of behaviour through informational incentives and training incentives; -Increasing personal norms with reinforcing information; -Providing tools for self-monitoring and self-evaluation; -Providing real experiences in alternative modes to the car; -Making the observation of others’ car use reduction possible; -Informing about consequences of behaviour and emphasizing the individual’s responsibility with society and the environment; -Increasing the perception of the consequences of car use to an individual’s valued objects; -Increasing the perceived ability to reduce threats to environment; -Help establishing goals to reduce car use; - iving personalized feedback on the goal; -Increase feelings of commitment to the goal; -Reducing the perceived complexity of the use of alternatives to the car. It is notable that the emerging technique of delivering positive incentives are systematically connected to causal determinants of travel behaviour. The preliminary results of the reviewed programs evidence how positive incentives might strengthen these determinants and help in the process of behaviour change.

Keywords: positive incentives, private car use reduction, sustainable behaviour, voluntary travel behaviour change

Procedia PDF Downloads 314
229 Revisionist Powers Seeking for Status within the System by Adopting a Compresence of Cooperative and Competitive Strategies

Authors: Mirele Plenishti

Abstract:

Revisionist powers are sometimes associated to revolutionary and status quo powers, this because along the line representing the level of satisfaction–dissatisfaction with the system, revisionist powers are located in between status quo and revolutionary powers. In particular, the case of revisionist powers seeking for social status adjustments (while having status quo intentions) can, in the first option, be refuted due to the disbelief that dissatisfaction could coexist with status quo intentions – this entailing the possibility to trigger a spiral effect by over-counter-reacting. In the second option, revisionist powers can be underestimated as a real threat, this entailing a potential inadequate reaction. The necessity to well manage international change entails the need to understand better how revisionist powers seek for changes in status, within the system. The complexity of this case is heightened by the propensity of both IR scholars and practitioners to infer states' aims and intentions – towards the system – by looking at their behaviours. This has resulted in the tendency to consider cooperative international behaviours as symptomatic of status quo intentions, and vice versa: status quo intentions as manifested through positive/cooperative behaviours. Similarly, assertive/competitive international behaviours are considered as symptomatic (and vice versa, as manifestations) of revolutionary intentions. Therefore, within complex and composite foreign policies, scholars who disbelieve the existence of revisionist powers with status quo intentions, tend to highlight the negative/competitive elements; while more optimist scholars tend to focus on conforming/cooperative behaviours. Both perspectives, while understanding relevant components of the complex international interaction, still miss a composite overview. In order to closely investigate the strategies adopted by (status quo aiming) revisionist states, and by drawing on sociological studies on peer relations, focused on children's behaviour, one could expect that the compresence of both positive (compliant/cooperative) and negative (competitive/assertive) behaviours, is deliberate, and functional to seeking social status adjustments. Indeed, at the end of 90s, peer relation studies focused on children's behaviour, discerned between the concept of social acceptance (that refers to the degree of social preference assigned to the child– how much is s/he liked) and popularity (which refers to the social status assigned to the child within the group). By building on this distinction, it was possible to identify a link relating social acceptance to prosocial (compliant/cooperative) behaviours and strategies, and popularity to both prosocial and antisocial (aggressive/assertive) behaviours and strategies. Since then, antisocial behaviours ceased to be considered as a proof of social maladjustment and were finally identified as socially recognized strategies adopted in function of the achievement of popularity. Drawing on these results, one can hypothesize that also international status seekers perform both positive (conforming/compliant/cooperative) and negative (assertive/aggressive/competitive) behaviours. Therefore, the link between aims and behaviours loses its strength, since cooperative and competitive behaviours are both means for status seeking strategies that aim at status quo intentions. By carrying out a historical investigation of Italy's foreign policy during fascism, the intent is to closely look at this compresence of behaviours, in order to better qualify its components and their relations.

Keywords: compresence of cooperative and competitive behaviours and strategies, revisionist powers, status quo intentions, status seeking

Procedia PDF Downloads 299
228 Inequality and Poverty Assessment on Affordable Housing in Austria: A Comprehensive Perspective on SDG 1 and SDG 10 (UniNEtZ Project)

Authors: M. Bukowski, K. Kreissl

Abstract:

Social and environmental pressures in our times bear threats that often cross-border in scale, such as climate change, poverty-driven migration, demographic change as well as socio-economic developments. One of the hot topics is prevailing in many societies across Europe and worldwide, concerns 'affordable housing' and poverty-driven international and domestic migration (including displacements through gentrification processes), focusing here on the urban and regional context. The right to adequate housing and shelter is one of the recognized in the Universal Declaration of Human rights and International Covenant on Economic, Social and Cultural Rights, and as such considered as a human right of the second generation. The decreasing supply of affordable housing, especially in urban areas, has reached dimensions that have led to an increasing 'housing crisis'. This crisis, which has even reached middle-income homes, has an even more devastating impact on low income and poor households raising poverty levels. Therefore, the understanding of the connection between housing and poverty is vital to integrate and support the different stakeholders in order to tackle poverty. When it comes to issues of inequalities and poverty within the SDG framework, multi-faceted stakeholders with different claims, distribution of resources and interactions with other development goals (spill-over and trade-offs) account for a highly complex context. To contribute to a sustainable and fair society and hence to support the UN Sustainable Development Goals, the University of Salzburg participates in the Austrian-wide universities' network 'UniNEtZ'. Our joint target is to develop an options report for the Austrian Government regarding the seventeen SDGs, so far hosted by 18 Austrian universities. In this vein, the University of Salzburg; i.e., the Centre for Ethics and Poverty Research, the departments of Geography and Geology and the Department of Sociology and Political Science are focusing on the SDG 1 (No Poverty) and SDG 10 (Reduced Inequalities). Our target and research focus is to assess and evaluate the status of SDG 1 and 10 in Austria, to find possible solutions and to support stakeholders' integration. We aim at generating and deducing appropriate options as scientific support, from interdisciplinary research studies to 'Sustainability Developing Goals and their Targets' in action. For this reason, and to deal with the complexity of the Agenda 2030, we have developed a special Model for Inequalities and Poverty Assessment (IPAM). Through the example of 'affordable housing' we provide insight into the situation focusing on sustainable outcomes, including ethical and justice perceptions. The IPAM has proven to be a helpful tool in detecting the different imponderables on the Agenda 2030, assessing the situation, showing gaps and options for ethical SDG actions combining different SDG targets. Supported by expert and expert group interviews, this assessment allows different stakeholders to overview a complex and dynamic SDG challenge (here housing) which is necessary to be involved in an action finding process.

Keywords: affordable housing, inequality, poverty, sustainable development goals

Procedia PDF Downloads 82
227 Framework Proposal on How to Use Game-Based Learning, Collaboration and Design Challenges to Teach Mechatronics

Authors: Michael Wendland

Abstract:

This paper presents a framework to teach a methodical design approach by the help of using a mixture of game-based learning, design challenges and competitions as forms of direct assessment. In today’s world, developing products is more complex than ever. Conflicting goals of product cost and quality with limited time as well as post-pandemic part shortages increase the difficulty. Common design approaches for mechatronic products mitigate some of these effects by helping the users with their methodical framework. Due to the inherent complexity of these products, the number of involved resources and the comprehensive design processes, students very rarely have enough time or motivation to experience a complete approach in one semester course. But, for students to be successful in the industrial world, it is crucial to know these methodical frameworks and to gain first-hand experience. Therefore, it is necessary to teach these design approaches in a real-world setting and keep the motivation high as well as learning to manage upcoming problems. This is achieved by using a game-based approach and a set of design challenges that are given to the students. In order to mimic industrial collaboration, they work in teams of up to six participants and are given the main development target to design a remote-controlled robot that can manipulate a specified object. By setting this clear goal without a given solution path, a constricted time-frame and limited maximal cost, the students are subjected to similar boundary conditions as in the real world. They must follow the methodical approach steps by specifying requirements, conceptualizing their ideas, drafting, designing, manufacturing and building a prototype using rapid prototyping. At the end of the course, the prototypes will be entered into a contest against the other teams. The complete design process is accompanied by theoretical input via lectures which is immediately transferred by the students to their own design problem in practical sessions. To increase motivation in these sessions, a playful learning approach has been chosen, i.e. designing the first concepts is supported by using lego construction kits. After each challenge, mandatory online quizzes help to deepen the acquired knowledge of the students and badges are awarded to those who complete a quiz, resulting in higher motivation and a level-up on a fictional leaderboard. The final contest is held in presence and involves all teams with their functional prototypes that now need to contest against each other. Prices for the best mechanical design, the most innovative approach and for the winner of the robotic contest are awarded. Each robot design gets evaluated with regards to the specified requirements and partial grades are derived from the results. This paper concludes with a critical review of the proposed framework, the game-based approach for the designed prototypes, the reality of the boundary conditions, the problems that occurred during the design and manufacturing process, the experiences and feedback of the students and the effectiveness of their collaboration as well as a discussion of the potential transfer to other educational areas.

Keywords: design challenges, game-based learning, playful learning, methodical framework, mechatronics, student assessment, constructive alignment

Procedia PDF Downloads 49
226 Biomaterials Solutions to Medical Problems: A Technical Review

Authors: Ashish Thakur

Abstract:

This technical paper was written in view of focusing the biomaterials and its various applications in modern industries. Author tires to elaborate not only the medical, infect plenty of application in other industries. The scope of the research area covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. Biomaterials are invariably in contact with living tissues. Thus, interactions between the surface of a synthetic material and biological environment must be well understood. This paper reviews the benefits and challenges associated with surface modification of the metals in biomedical applications. The paper also elaborates how the surface characteristics of metallic biomaterials, such as surface chemistry, topography, surface charge, and wettability, influence the protein adsorption and subsequent cell behavior in terms of adhesion, proliferation, and differentiation at the biomaterial–tissue interface. The chapter also highlights various techniques required for surface modification and coating of metallic biomaterials, including physicochemical and biochemical surface treatments and calcium phosphate and oxide coatings. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. In addition to this, chapter introduces nanomedicine and the use of both natural and synthetic polymeric biomaterials, focuses on specific current polymeric nanomedicine applications and research, and concludes with the challenges of nanomedicine research. Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. Polymeric nanomaterial-based therapeutics plays a key role in the field of medicine in treatment areas such as drug delivery, tissue engineering, cancer, diabetes, and neurodegenerative diseases. Advantages in the use of polymers over other materials for nanomedicine include increased functionality, design flexibility, improved processability, and, in some cases, biocompatibility.

Keywords: nanomedicine, tissue, infections, biomaterials

Procedia PDF Downloads 240
225 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer

Authors: Binder Hans

Abstract:

Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.

Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas

Procedia PDF Downloads 122
224 Analog Railway Signal Object Controller Development

Authors: Ercan Kızılay, Mustafa Demi̇rel, Selçuk Coşkun

Abstract:

Railway signaling systems consist of vital products that regulate railway traffic and provide safe route arrangements and maneuvers of trains. SIL 4 signal lamps are produced by many manufacturers today. There is a need for systems that enable these signal lamps to be controlled by commands from the interlocking. These systems should act as fail-safe and give error indications to the interlocking system when an unexpected situation occurs for the safe operation of railway systems from the RAMS perspective. In the past, driving and proving the lamp in relay-based systems was typically done via signaling relays. Today, the proving of lamps is done by comparing the current values read over the return circuit, the lower and upper threshold values. The purpose is an analog electronic object controller with the possibility of easy integration with vital systems and the signal lamp itself. During the study, the EN50126 standard approach was considered, and the concept, definition, risk analysis, requirements, architecture, design, and prototyping were performed throughout this study. FMEA (Failure Modes and Effects Analysis) and FTA (Fault Tree) Analysis) have been used for safety analysis in accordance with EN 50129. Concerning these analyzes, the 1oo2D reactive fail-safe hardware design of a controller has been researched. Electromagnetic compatibility (EMC) effects on the functional safety of equipment, insulation coordination, and over-voltage protection were discussed during hardware design according to EN 50124 and EN 50122 standards. As vital equipment for railway signaling, railway signal object controllers should be developed according to EN 50126 and EN 50129 standards which identify the steps and requirements of the development in accordance with the SIL 4(Safety Integrity Level) target. In conclusion of this study, an analog railway signal object controller, which takes command from the interlocking system, is processed in driver cards. Driver cards arrange the voltage level according to desired visibility by means of semiconductors. Additionally, prover cards evaluate the current upper and lower thresholds. Evaluated values are processed via logic gates which are composed as 1oo2D by means of analog electronic technologies. This logic evaluates the voltage level of the lamp and mitigates the risks of undue dimming.

Keywords: object controller, railway electronic, analog electronic, safety, railway signal

Procedia PDF Downloads 66
223 Sustainable Technology and the Production of Housing

Authors: S. Arias

Abstract:

New housing developments and the technological changes that this implies, adapt the styles of living of its residents, as well as new family structures and forms of work due to the particular needs of a specific group of people which involves different techniques of dealing with, organize, equip and use a particular territory. Currently, own their own space is increasingly important and the cities are faced with the challenge of providing the opportunity for such demands, as well as energy, water and waste removal necessary in the process of construction and occupation of new human settlements. Until the day of today, not has failed to give full response to these demands and needs, resulting in cities that grow without control, badly used land, avenues and congested streets. Buildings and dwellings have an important impact on the environment and on the health of the people, therefore environmental quality associated with the comfort of humans to the sustainable development of natural resources. Applied to architecture, this concept involves the incorporation of new technologies in all the constructive process of a dwelling, changing customs of developers and users, what must be a greater effort in planning energy savings and thus reducing the emissions Greenhouse Gases (GHG) depending on the geographical location where it is planned to develop. Since the techniques of occupation of the territory are not the same everywhere, must take into account that these depend on the geographical, social, political, economic and climatic-environmental circumstances of place, which in modified according to the degree of development reached. In the analysis that must be undertaken to check the degree of sustainability of the place, it is necessary to make estimates of the energy used in artificial air conditioning and lighting. In the same way is required to diagnose the availability and distribution of the water resources used for hygiene and for the cooling of artificially air-conditioned spaces, as well as the waste resulting from these technological processes. Based on the results obtained through the different stages of the analysis, it is possible to perform an energy audit in the process of proposing recommendations of sustainability in architectural spaces in search of energy saving, rational use of water and natural resources optimization. The above can be carried out through the development of a sustainable building code in develop technical recommendations to the regional characteristics of each study site. These codes would seek to build bases to promote a building regulations applicable to new human settlements looking for is generated at the same time quality, protection and safety in them. This building regulation must be consistent with other regulations both national and municipal and State, such as the laws of human settlements, urban development and zoning regulations.

Keywords: building regulations, housing, sustainability, technology

Procedia PDF Downloads 329
222 Drivetrain Comparison and Selection Approach for Armored Wheeled Hybrid Vehicles

Authors: Çağrı Bekir Baysal, Göktuğ Burak Çalık

Abstract:

Armored vehicles may have different traction layouts as a result of terrain capabilities and mobility needs. Two main categories of layouts can be separated as wheeled and tracked. Tracked vehicles have superior off-road capabilities but what they gain on terrain performance they lose on mobility front. Wheeled vehicles on the other hand do not have as good terrain capabilities as tracked vehicles but they have superior mobility capabilities such as top speed, range and agility with respect to tracked vehicles. Conventional armored vehicles employ a diesel ICE as main power source. In these vehicles ICE is mechanically connected to the powertrain. This determines the ICE rpm as a result of speed and torque requested by the driver. ICE efficiency changes drastically with torque and speed required and conventional vehicles suffer in terms of fuel consumption because of this. Hybrid electric vehicles employ at least one electric motor in order to improve fuel efficiency. There are different types of hybrid vehicles but main types are Series Hybrid, Parallel Hybrid and Series-Parallel Hybrid. These vehicles introduce an electric motor for traction and also can have a generator electric motor for range extending purposes. Having an electric motor as the traction power source brings the flexibility of either using the ICE as an alternative traction source while it is in efficient range or completely separating the ICE from traction and using it solely considering efficiency. Hybrid configurations have additional advantages for armored vehicles in addition to fuel efficiency. Heat signature, silent operation and prolonged stationary missions can be possible with the help of the high-power battery pack that will be present in the vehicle for hybrid drivetrain. Because of the reasons explained, hybrid armored vehicles are becoming a target area for military and also for vehicle suppliers. In order to have a better idea and starting point when starting a hybrid armored vehicle design, hybrid drivetrain configuration has to be selected after performing a trade-off study. This study has to include vehicle mobility simulations, integration level, vehicle level and performance level criteria. In this study different hybrid traction configurations possible for an 8x8 vehicle is compared using above mentioned criteria set. In order to compare hybrid traction configurations ease of application, cost, weight advantage, reliability, maintainability, redundancy and performance criteria have been used. Performance criteria points have been defined with the help of vehicle simulations and tests. Results of these simulations and tests also help determining required tractive power for an armored vehicle including conditions like trench and obstacle crossing, gradient climb. With the method explained in this study, each configuration is assigned a point for each criterion. This way, correct configuration can be selected objectively for every application. Also, key aspects of armored vehicles, mine protection and ballistic protection will be considered for hybrid configurations. Results are expected to vary for different types of vehicles but it is observed that having longitudinal differential locking capability improves mobility and having high motor count increases complexity in general.

Keywords: armored vehicles, electric drivetrain, electric mobility, hybrid vehicles

Procedia PDF Downloads 62
221 Key Findings on Rapid Syntax Screening Test for Children

Authors: Shyamani Hettiarachchi, Thilini Lokubalasuriya, Shakeela Saleem, Dinusha Nonis, Isuru Dharmaratne, Lakshika Udugama

Abstract:

Introduction: Late identification of language difficulties in children could result in long-term negative consequences for communication, literacy and self-esteem. This highlights the need for early identification and intervention for speech, language and communication difficulties. Speech and language therapy is a relatively new profession in Sri Lanka and at present, there are no formal standardized screening tools to assess language skills in Sinhala-speaking children. The development and validation of a short, accurate screening tool to enable the identification of children with syntactic difficulties in Sinhala is a current need. Aims: 1) To develop test items for a Sinhala Syntactic Structures (S3 Short Form) test on children aged between 3;0 to 5;0 years 2) To validate the test of Sinhala Syntactic Structures (S3 Short Form) on children aged between 3; 0 to 5; 0 years Methods: The Sinhala Syntactic Structures (S3 Short Form) was devised based on the Renfrew Action Picture Test. As Sinhala contains post-positions in contrast to English, the principles of the Renfrew Action Picture Test were followed to gain an information score and a grammar score but the test devised reflected the linguistic-specificity and complexity of Sinhala and the pictures were in keeping with the culture of the country. This included the dative case marker ‘to give something to her’ (/ejɑ:ʈə/ meaning ‘to her’), the instrumental case marker ‘to get something from’ (/ejɑ:gən/ meaning ‘from him’ or /gɑhən/ meaning ‘from the tree’), possessive noun (/ɑmmɑge:/ meaning ‘mother’s’ or /gɑhe:/ meaning ‘of the tree’ or /male:/ meaning ‘of the flower’) and plural markers (/bɑllɑ:/ bɑllo:/ meaning ‘dog/dogs’, /mɑlə/mɑl/ meaning ‘flower/flowers’, /gɑsə/gɑs/ meaning ‘tree/trees’ and /wɑlɑ:kulə/wɑlɑ:kulu/ meaning ‘cloud/clouds’). The picture targets included socio-culturally appropriate scenes of the Sri Lankan New Year celebration, elephant procession and the Buddhist ‘Wesak’ ceremony. The test was piloted with a group of 60 participants and necessary changes made. In phase 1, the test was administered to 100 Sinhala-speaking children aged between 3; 0 and 5; 0 years in one district. In this presentation on phase 2, the test was administered to another 100 Sinhala-speaking children aged between 3; 0 to 5; 0 in three districts. In phase 2, the selection of the test items was assessed via measures of content validity, test-retest reliability and inter-rater reliability. The age of acquisition of each syntactic structure was determined using content and grammar scores which were statistically analysed using t-tests and one-way ANOVAs. Results: High percentage agreement was found on test-retest reliability on content validity and Pearson correlation measures and on inter-rater reliability. As predicted, there was a statistically significant influence of age on the production of syntactic structures at p<0.05. Conclusions: As the target test items included generated the information and the syntactic structures expected, the test could be used as a quick syntactic screening tool with preschool children.

Keywords: Sinhala, screening, syntax, language

Procedia PDF Downloads 321
220 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 73
219 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 126
218 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network

Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu

Abstract:

Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.

Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning

Procedia PDF Downloads 100