Search results for: support vector data description
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30371

Search results for: support vector data description

30101 Investigation and Monitoring Method of Vector Density in Kaohsiung City

Authors: Chiu-Wen Chang, I-Yun Chang, Wei-Ting Chen, Hui-Ping Ho, Chao-Ying Pan, Joh-Jong Huang

Abstract:

Dengue is a ‘community disease’ or ‘environmental disease’, as long as the environment exist suitable container (including natural and artificial) for mosquito breeding, once the virus invade will lead to the dengue epidemic. Surveillance of vector density is critical to effective infectious disease control and play an important role in monitoring the dynamics of mosquitoes in community, such as mosquito species, density, distribution area. The objective of this study was to examine the relationship in vector density survey (Breteau index, Adult index, House index, Container index, and Larvae index) form 2014 to 2016 in Kaohsiung City and evaluate the effects of introducing the Breeding Elimination and Appraisal Team (hereinafter referred to as BEAT) as an intervention measure on eliminating dengue vector breeding site started from May 2016. BEAT were performed on people who were suspected of contracting dengue fever, a surrounding area measuring 50 meters by 50 meters was demarcated as the emergency prevention and treatment zone. BEAT would perform weekly vector mosquito inspections and vector mosquito inspections in regions with a high Gravitrap index and assign a risk assessment index to each region. These indices as well as the prevention and treatment results were immediately reported to epidemic prevention-related units every week. The results indicated that, vector indices from 2014 to 2016 showed no statistically significant differences in the Breteau index, adult index, and house index (p > 0.05) but statistically significant differences in the container index and larvae index (p <0.05). After executing the integrated elimination work, container index and larvae index are statistically significant different from 2014 to 2016 in the (p < 0.05). A post hoc test indicated that the container index of 2014 (M = 12.793) was significantly higher than that of 2016 (M = 7.631), and that the larvae index of 2015 (M = 34.065) was significantly lower than that of 2014 (M = 66.867). The results revealed that effective vector density surveillance could highlight the focus breeding site and then implement the immediate control action (BEAT), which successfully decreased the vector density and the risk of dengue epidemic.

Keywords: Breteau index, dengue control, monitoring method, vector density

Procedia PDF Downloads 198
30100 Social Support and Depressive Symptoms in Participants of a University of the Third Age: Evidences From a Cross-Sectional Study in Brazil

Authors: Ana Luiza Blanco, Juliana Cordeiro Carvalho, Tábatta Renata Pereira Brito, Ariene Angelini dos Santos Orlandi, Ligiana Pires Corona, Daniella Pires Nunes

Abstract:

Depressive symptoms are recurrent in older adults and affect the quality of life and well-being of individuals. One of the strategies to reduce depression is social support, but studies are still needed to determine which types of social support are most effective in moderating this effect in certain populations. The objective was to identify the relationship between social support and depressive symptoms in participants of a University of the Third Age. This is a cross-sectional study. Participants were 82 individuals (≥ 50 years) who responded to the Geriatric Depression Scale - GDS and the Medical Outcomes Study - MOS. Data collection was carried out from November 2020 to May 2021. The Chi-Square and Mann Whitney tests were used, at a significance level of 5% for data analysis. Among the participants, 83.4% were female, 57.3% were age between 60 to 69 years, 83.1% studied 12 year or more and 48.1% receive from 4 to 10 minimum wages. The prevalence of depressive symptoms was 12.2%. The type of support with the highest median score was affective (100 points) and the lowest, or emotional (87.5 points). The results showed that participants without depressive symptoms had higher median scores for informational support when compared to those with depressive symptoms (p=0.029). The other types of social support were not statistically significant. The findings suggested that informational support is related to depressive symptoms in older adults. Promote informational support and educational actions in Universities of the Third Age may be an important strategy for preventing depressive symptoms and improve the quality of life of this population.

Keywords: aged, depressive symptoms, social support, university of the third age

Procedia PDF Downloads 122
30099 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 339
30098 Perception of the Frequency and Importance of Peer Social Support by Students with Special Educational Needs in Inclusive Education

Authors: Lucia Hrebeňárová, Jarmila Žolnová, Veronika Palková

Abstract:

Inclusive education of students with special educational needs has been on the increase in the Slovak Republic, facing many challenges. Preparedness of teachers for inclusive education is one of the most frequent issues; teachers lack skills when it comes to the use of effective instruction depending on the individual needs of students, improvement of classroom management and social skills, and support of inclusion within the classroom. Social support is crucial for the school success of students within inclusive settings. The aim of the paper is to analyse perception of the frequency and importance of peer social support by students with special educational needs in inclusive education. The data collection tool used was the Child and Adolescent Social Support Scale (CASSS). The research sample consisted of 953 fourth grade students – 141 students with special educational needs educated in an inclusive setting and 812 students of the standard population. No significant differences were found between the students with special educational needs and the students without special educational needs in an inclusive setting when it comes to the perception of frequency and importance of social support of schoolmates and friends. However, the perception of frequency and importance of a friend’s social support was higher than the perception of frequency and importance of a classmate’s social support in both groups of students.

Keywords: inclusive education, peer social support, peer, student with special eEducational needs

Procedia PDF Downloads 422
30097 Breast Cancer Detection Using Machine Learning Algorithms

Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra

Abstract:

In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.

Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer

Procedia PDF Downloads 52
30096 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 273
30095 An Automated R-Peak Detection Method Using Common Vector Approach

Authors: Ali Kirkbas

Abstract:

R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.

Keywords: ECG, R-peak classification, common vector approach, machine learning

Procedia PDF Downloads 64
30094 Graph-Oriented Summary for Optimized Resource Description Framework Graphs Streams Processing

Authors: Amadou Fall Dia, Maurras Ulbricht Togbe, Aliou Boly, Zakia Kazi Aoul, Elisabeth Metais

Abstract:

Existing RDF (Resource Description Framework) Stream Processing (RSP) systems allow continuous processing of RDF data issued from different application domains such as weather station measuring phenomena, geolocation, IoT applications, drinking water distribution management, and so on. However, processing window phase often expires before finishing the entire session and RSP systems immediately delete data streams after each processed window. Such mechanism does not allow optimized exploitation of the RDF data streams as the most relevant and pertinent information of the data is often not used in a due time and almost impossible to be exploited for further analyzes. It should be better to keep the most informative part of data within streams while minimizing the memory storage space. In this work, we propose an RDF graph summarization system based on an explicit and implicit expressed needs through three main approaches: (1) an approach for user queries (SPARQL) in order to extract their needs and group them into a more global query, (2) an extension of the closeness centrality measure issued from Social Network Analysis (SNA) to determine the most informative parts of the graph and (3) an RDF graph summarization technique combining extracted user query needs and the extended centrality measure. Experiments and evaluations show efficient results in terms of memory space storage and the most expected approximate query results on summarized graphs compared to the source ones.

Keywords: centrality measures, RDF graphs summary, RDF graphs stream, SPARQL query

Procedia PDF Downloads 203
30093 Surgical Applied Anatomy: Alive and Kicking

Authors: Jake Hindmarch, Edward Farley, Norman Eizenberg, Mark Midwinter

Abstract:

There is a need to bring the anatomical knowledge of medical students up to the standards required by surgical specialties. Contention exists amongst anatomists, clinicians, and surgeons about the standard of anatomical knowledge medical students need. The aim of this study was to explore the standards which the Royal Australasian College of Surgeons are applying knowledge of anatomy. Furthermore, to align medical school teaching to what the surgical profession requires from graduates.: The 2018 volume of the ANZ Journal of Surgery was narrowed down to 254 articles by applying the search term “Anatomy”. The main topic was then extracted from each paper. The content of the paper was assessed for ‘novel description’ or ‘application’ of anatomical knowledge’ and classified accordingly. The majority of papers with an anatomical focus was from the general surgery specialty, which focused on surgical techniques, outcomes and management. Vascular surgery had the highest percentage of papers with a novel description and application of anatomy. Cardiothoracic and paediatric surgery had no papers with a novel description of anatomy. Finally, a novel application of anatomy was the main focus of each speciality. Firstly, a high proportion of novel applications and descriptions of anatomy are in general surgery. Secondly, vascular surgery had the largest proportion of novel application and description of anatomy, namely due to the rise of therapeutic imaging and endovascular techniques. Finally, all disciplines demonstrated a trend towards having a higher proportion of novel application of anatomical knowledge

Keywords: anatomical knowledge, anatomy, surgery, novel anatomy

Procedia PDF Downloads 118
30092 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 135
30091 Evolution of Reported Bluetongue Outbreaks inAlgeria: Epidemiological Situation

Authors: Amel Benatallah, Michel Marie, Faical Ghozlane

Abstract:

Bluetongue (BT) is a major concern of veterinary services and a real threat to the sheep population. Epidemiological situation of blue tongue has revealed that in 2000, the serotype 2 (BTV2) was isolated and identified. The vector of BTV has affected 10 provinces out of 48 provinces in the country. As a result, 28 outbreaks were reported with 191 cases including 29 deaths. In 2006, the vector of the FCO has still hit Algeria, but this time with another serotype, the BTV 1. The latter was responsible for the resurgence of the disease in 11 provinces (29 outbreaks with 265 reported cases and 36 deaths).The same serotype (BTV1) was isolated and identified in 2008 in two provinces (2 outbreaks with 15 cases revealing 5 deaths) , in 2009 in 5 provinces (19 outbreaks with 78 reported cases and 20 deaths). In addition, 2010 and 2011 saw the resurgence of the same serotype (BTV1) respectively in 9 (46 outbreaks with 131 cases including and 25 deaths) and 7 provinces (16 outbreaks with 63 reported cases and 6 deaths). Serological and entomological surveys were conducted in Algeria during the period from 2000 to 2007 in order to identify the different BTV strains of existing FCO in Algeria in addition to vector Culicoides Imicola and to study the ecology of this vector to limit its movement in the country.

Keywords: blue tongue, serotype, vectors, culicoides imicola, BTV, FCO

Procedia PDF Downloads 340
30090 Assessing the Macroeconomic Effects of Fiscal Policy Changes in Egypt: A Bayesian Structural Vector Autoregression Approach

Authors: Walaa Diab, Baher Atlam, Nadia El Nimer

Abstract:

Egypt faces many obvious economic challenges, and it is so clear that a real economic transformation is needed to address those problems, especially after the recent decisions of floating the Egyptian pound and the gradual subsidy cuts that are trying to meet the needed conditions to get the IMF support of (a £12bn loan) for its economic reform program. Following the post-2008 revival of the interest in the fiscal policy and its vital role in speeding up or slowing down the economic growth. Here comes the value of this paper as it seeks to analyze the macroeconomic effects of fiscal policy in Egypt by applying A Bayesian SVAR Approach. The study uses the Bayesian method because it includes the prior information and no relevant information is omitted and so it is well suited for rational, evidence-based decision-making. Since the study aims to define the effects of fiscal policy shocks in Egypt to help the decision-makers in determining the proper means to correct the structural problems in the Egyptian economy, it has to study the period of 1990s economic reform, but unfortunately; the available data is on an annual frequency. Thus, it uses annual time series to study the period 1991: 2005 And quarterly data over the period 2006–2016. It uses a set of six main variables includes government expenditure and net tax revenues as fiscal policy arms affecting real GDP, unemployment, inflation and the interest rate. The study also tries to assess the 'crowding out' effects by considering the effects of government spending and government revenue shocks on the composition of GDP, namely, on private consumption and private investment. Last but not least the study provides its policy implications regarding the needed role of fiscal policy in Egypt in the upcoming economic reform building on the results it concludes from the previous reform program.

Keywords: fiscal policy, government spending, structural vector autoregression, taxation

Procedia PDF Downloads 278
30089 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 538
30088 Comparison of Proportional-Integral (P-I) and Integral-Propotional (I-P) Controllers for Speed Control in Vector Controlled Permanent Magnet Synchronous Motor Drive

Authors: V. Srikanth, K. Balasubramanian, Rajath R. Bhat, A. S. Arjun, Nandhu Venugopal, Ananthu Unnikrishnan

Abstract:

Indirect vector control is known to produce high performance in Permanent Magnet Synchronous Motor (PMSM) drives by decoupling flux and torque producing current components of stator current. The most commonly used controller or the vector control of AC motor is Proportional-Integral (P-I) controller. However, the P-I controller has some disadvantages such as high starting overshoot, sensitivity to controller gains and slower response to sudden disturbance. Therefore, the Integral-Proportional controller for PMSM drives to overcome the disadvantages of the P-I controller. Simulations results are presented and analyzed for both controllers and it is observed that Integral-Proportional (I-P) controllers give better responses than the traditional P-I controllers.

Keywords: PMSM, FOC, PI controller, IP controller

Procedia PDF Downloads 360
30087 Government Final Consumption Expenditure and Household Consumption Expenditure NPISHS in Nigeria

Authors: Usman A. Usman

Abstract:

Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp (financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.

Keywords: government final consumption expenditure, household consumption expenditure, vector error correction model, cointegration

Procedia PDF Downloads 52
30086 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer

Authors: Surita Maini, Sanjay Dhanka

Abstract:

Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.

Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning

Procedia PDF Downloads 67
30085 Role of Social Support in Drug Cessation among Male Addicts in the West of Iran

Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh, Fazel Zinat Motlagh

Abstract:

Social support is an important benchmark of health for people in avoidance conditions. The main goal of this study was to determine the three kinds of social support (family, friend and other significant) to drug cessation among male addicts, in Kermanshah, the west of Iran. This cross-sectional study was conducted among 132 addicts, randomly selected to participate voluntarily in the study. Data were collected from conduct interviews based on standard questionnaire and analyzed by using SPSS-18 at 95% significance level. The majority of addicts were young (Mean: 30.4 years), and with little education. Opium (36.4%), Crack (21.2%), and Methamphetamine (12.9%) were the predominant drugs. Inabilities to reject the offer and having addict friends are the most often reasons for drug usage. Almost, 18.9% reported history of drug injection. 43.2% of the participants already did drug cessation at least once. Logistic regression showed the family support (OR = 1.110), age (OR = 1.106) and drug use initiation age (OR = 0.918) was predicting drug cessation. Our result showed; family support is a more important effect among types of social support in drug cessation. It seems that providing educational program to addict’s families for more support of patients at drug cessation can be beneficial.

Keywords: drug cessation, family support, drug use, initiation age

Procedia PDF Downloads 550
30084 Applying a SWOT Analysis to Inform the Educational Provision of Learners with Autism Spectrum Disorders

Authors: Claire Sciberras

Abstract:

Introduction: Autism Spectrum Disorder (ASD) has become recognized as being the most common childhood neurological condition. Indeed, numerous studies demonstrate an increase in the prevalence rate of children diagnosed with ASD. Concurrent with these findings, the European Agency for Special Needs and Inclusive Education reported a similar escalating tendency in prevalence also in Malta. Such an increase within the educational context in Malta has led the European Agency to call for increased support within educational settings in Malta. However, although research has addressed the positive impact of mainstream education on learners with ASD, empirical studies vis-à-vis the internal and external strengths and weaknesses present within the support provided in mainstream settings in Malta is distinctly limited. In light of the aforementioned argument, Malta would benefit from research which focuses on analysing the strengths, weaknesses, opportunities, and threats (SWOTs) which are present within the support provision of learners with ASD in mainstream primary schools. Such SWOT analysis is crucial as lack of appropriate opportunities might jeopardize the educational and social experiences of persons with ASD throughout their schooling. Methodology: A mixed methodological approach would be well suited to examine the provision of support of learners with ASD as the combination of qualitative and quantitative approaches allows researchers to collect a comprehensive range of data and validate their results. Hence, it is intended that questionnaires will be distributed to all the stakeholders involved so as to acquire a broader perspective to be collected from a wider group who provide support to students with ASD across schools in Malta. Moreover, the use of a qualitative approach in the form of interviews with a sample group will be implemented. Such an approach will be considered as it would potentially allow the researcher to gather an in-depth perspective vis-à-vis to the nature of the services which are currently provided to learners with ASD. The intentions of the study: Through the analysis of the data collected vis-à-vis to the SWOTs within the provision of support of learners with ASD it is intended that; i) a description in regards to the educational provision for learners with ASD within mainstream primary schools in Malta in light of the experiences and perceptions of the stakeholders involved will be acquired; ii) an analysis of the SWOTs which exist within the services for learners with ASD in primary state schools in Malta is carried out and iii) based on the SWOT analysis, recommendations that can lead to improvements in practice in the field of ASD in Malta and beyond will be provided. Conclusion: Due to the heterogeneity of individuals with ASD which spans across several deficits related to the social communication and interaction domain and also across areas linked to restricted, repetitive behavioural patterns, educational settings need to alter their standards according to the needs of their students. Thus, the standards established by schools throughout prior phases do not remain applicable forever, and therefore these need to be reviewed periodically in accordance with the diversities and the necessities of their learners.

Keywords: autism spectrum disorders, mainstream educational settings, provision of support, SWOT analysis

Procedia PDF Downloads 191
30083 Savinglife®: An Educational Technology for Basic and Advanced Cardiovascular Life Support

Authors: Naz Najma, Grace T. M. Dal Sasso, Maria de Lourdes de Souza

Abstract:

The development of information and communication technologies and the accessibility of mobile devices has increased the possibilities of the teaching and learning process anywhere and anytime. Mobile and web application allows the production of constructive teaching and learning models in various educational settings, showing the potential for active learning in nursing. The objective of this study was to present the development of an educational technology (Savinglife®, an app) for learning cardiopulmonary resuscitation and advanced cardiovascular life support training. Savinglife® is a technological production, based on the concept of virtual learning and problem-based learning approach. The study was developed from January 2016 to November 2016, using five phases (analyze, design, develop, implement, evaluate) of the instructional systems development process. The technology presented 10 scenarios and 12 simulations, covering different aspects of basic and advanced cardiac life support. The contents can be accessed in a non-linear way leaving the students free to build their knowledge based on their previous experience. Each scenario is presented through interactive tools such as scenario description, assessment, diagnose, intervention and reevaluation. Animated ECG rhythms, text documents, images and videos are provided to support procedural and active learning considering real life situation. Accessible equally on small to large devices with or without an internet connection, Savinglife® offers a dynamic, interactive and flexible tool, placing students at the center of the learning process. Savinglife® can contribute to the student’s learning in the assessment and management of basic and advanced cardiac life support in a safe and ethical way.

Keywords: problem-based learning, cardiopulmonary resuscitation, nursing education, advanced cardiac life support, educational technology

Procedia PDF Downloads 304
30082 The Connection between Social Support, Caregiver Burden, and Life Satisfaction of the Parents Whose Children Have Congenital Heart Disease

Authors: A. Uludağ, F. G. Tufekci, N. Ceviz

Abstract:

Aim: The research has been carried out in order to evaluate caregiver burden, life satisfaction and received social support level of the parents whose children have congenital heart disease; to examine the relationship between the social supports received by them and caregiver burden and life satisfaction. Material and Method: The research which is descriptive and which is searching a relationship has been carried out between the dates June 7, 2012- June 30, 2014, in Erzurum Ataturk University Research and Application Hospital, Department of Pediatrics and Children Cardiology Polyclinic. In the research, it was collaborated with the parents (N = 157) who accepted to participate in, of children who were between the ages of 3 months- 12 years. While gathering the data, a questionnaire, Zarit Caregiver Burden, Life Satisfaction and Social Support Scales have been used. The statistics of the data acquired has been produced by using percentage distribution, mean, and variance and correlation analysis. Ethical principles are followed in the research. Results: In the research, caregiver burden, life satisfaction and social support level received from family (p < 0.05), have been determined higher in the parents whose children have serious congenital heart disease than that of parents whose children have slight disease and social support received from friends has been found lower. It has been determined that there is a strong relation (p < 0.001) through negative direction between both social support levels and caregiver burden of parents; and that there is a strong relation (p < 0.001) through positive direction between both support levels and life satisfaction. Conclusion: That Social Support is in a strong relation with Caregiver Burden through a negative direction and a strong relation with Life Satisfaction through positive direction in parents of all the children who have congenital heart disease requires social support systems to be reinforced. Parents can be led or guided so as to prompt social support systems more.

Keywords: congenital heart disease, child, parents, caregiver burden, life satisfaction, social support

Procedia PDF Downloads 299
30081 Government Final Consumption Expenditure Financial Deepening and Household Consumption Expenditure NPISHs in Nigeria

Authors: Usman A. Usman

Abstract:

Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.

Keywords: household, government expenditures, vector error correction model, johansen test

Procedia PDF Downloads 61
30080 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning

Procedia PDF Downloads 403
30079 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis

Authors: Amir Hajian, Sepehr Damavandinejadmonfared

Abstract:

In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.

Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)

Procedia PDF Downloads 365
30078 Hydrogeological Study of the Different Aquifers in the Area of Biskra

Authors: A. Sengouga, Y. Imessaoudene, A. Semar, B. Mouhouche, M. Kadir

Abstract:

Biskra or Zibans, is located in a structural transition zone between the chain of the Saharan Atlas Mountains and the Sahara. It is an arid region where the superficial water resource is the mild, hence the importance of the lithological description and the evaluation of aquifers rock’s volumes, which are highly dependent on the mobilized water contained in the various reservoirs (Quaternary, Mio-Pliocene, Eocene and Continental intercalary). Through a data synthesis which is particularly based on stratigraphic logs of drilling, the description of aquifers heterogeneity and the determining of the spatial variability of aquifer appearance became possible, by using geostatistical analysis, which allowed the representation of the aquifer thicknesses mapping and their space variation. The different thematic maps realized focus on drilling position, the substratum shape and finally the aquifers thicknesses of the region. It is found that the high density of water points especially these of drilling points are superposed on the hydrologic reservoirs with significant thicknesses.

Keywords: log stratigraphic ArcGIS 10, geometry of aquifers, rocks reservoir volume, Biskra

Procedia PDF Downloads 460
30077 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor

Authors: Jadisha Cornejo, Helio Pedrini

Abstract:

Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.

Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks

Procedia PDF Downloads 182
30076 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods

Authors: A. Senthil Kumar, V. Murali Bhaskaran

Abstract:

In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.

Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)

Procedia PDF Downloads 286
30075 Crop Recommendation System Using Machine Learning

Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar

Abstract:

With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.

Keywords: crop recommendation, precision agriculture, crop, machine learning

Procedia PDF Downloads 14
30074 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 34
30073 Overview of a Quantum Model for Decision Support in a Sensor Network

Authors: Shahram Payandeh

Abstract:

This paper presents an overview of a model which can be used as a part of a decision support system when fusing information from multiple sensing environment. Data fusion has been widely studied in the past few decades and numerous frameworks have been proposed to facilitate decision making process under uncertainties. Multi-sensor data fusion technology plays an increasingly significant role during people tracking and activity recognition. This paper presents an overview of a quantum model as a part of a decision-making process in the context of multi-sensor data fusion. The paper presents basic definitions and relationships associating the decision-making process and quantum model formulation in the presence of uncertainties.

Keywords: quantum model, sensor space, sensor network, decision support

Procedia PDF Downloads 227
30072 Statistical Description of Counterpoise Effective Length Based on Regressive Formulas

Authors: Petar Sarajcev, Josip Vasilj, Damir Jakus

Abstract:

This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.

Keywords: counterpoise, grounding conductor, effective length, lightning, Monte Carlo method, statistical distribution

Procedia PDF Downloads 426