Search results for: streaming analytics
186 Disaster Response Training Simulator Based on Augmented Reality, Virtual Reality, and MPEG-DASH
Authors: Sunho Seo, Younghwan Shin, Jong-Hong Park, Sooeun Song, Junsung Kim, Jusik Yun, Yongkyun Kim, Jong-Moon Chung
Abstract:
In order to effectively cope with large and complex disasters, disaster response training is needed. Recently, disaster response training led by the ROK (Republic of Korea) government is being implemented through a 4 year R&D project, which has several similar functions as the HSEEP (Homeland Security Exercise and Evaluation Program) of the United States, but also has several different features as well. Due to the unpredictiveness and diversity of disasters, existing training methods have many limitations in providing experience in the efficient use of disaster incident response and recovery resources. Always, the challenge is to be as efficient and effective as possible using the limited human and material/physical resources available based on the given time and environmental circumstances. To enable repeated training under diverse scenarios, an AR (Augmented Reality) and VR (Virtual Reality) combined simulator is under development. Unlike existing disaster response training, simulator based training (that allows remote login simultaneous multi-user training) enables freedom from limitations in time and space constraints, and can be repeatedly trained with different combinations of functions and disaster situations. There are related systems such as ADMS (Advanced Disaster Management Simulator) developed by ETC simulation and HLS2 (Homeland Security Simulation System) developed by ELBIT system. However, the ROK government needs a simulator custom made to the country's environment and disaster types, and also combines the latest information and communication technologies, which include AR, VR, and MPEG-DASH (Moving Picture Experts Group - Dynamic Adaptive Streaming over HTTP) technology. In this paper, a new disaster response training simulator is proposed to overcome the limitation of existing training systems, and adapted to actual disaster situations in the ROK, where several technical features are described.Keywords: augmented reality, emergency response training simulator, MPEG-DASH, virtual reality
Procedia PDF Downloads 303185 A quantitative Analysis of Impact of Potential Variables on the Energy Performance of Old and New Buildings in China
Authors: Yao Meng, Mahroo Eftekhari, Dennis Loveday
Abstract:
Currently, there are two types of heating systems in Chinese residential buildings, with respect to the controllability of the heating system, one is an old heating system without any possibility of controlling room temperature and another is a new heating system that provides temperature control of individual rooms. This paper is aiming to evaluate the impact of potential variables on the energy performance of old and new buildings respectively in China, and to explore how the use of individual room temperature control would change occupants’ heating behaviour and thermal comfort in Chinese residential buildings and its impact on the building energy performance. In the study, two types of residential buildings have been chosen, the new building install personal control on the heating system, together with ‘pay for what you use’ tariffs. The old building comprised uncontrolled heating with payment based on floor area. The studies were carried out in each building, with a longitudinal monitoring of indoor air temperature, outdoor air temperature, window position. The occupants’ behaviour and thermal sensation were evaluated by questionnaires. Finally, use the simulated analytic method to identify the impact of influence variables on energy use for both types of buildings.Keywords: residential buildings, China, design parameters, energy efficiency, simulation analytics method
Procedia PDF Downloads 552184 Measuring Audit Quality Using Text Analysis: An Empirical Study of Indian Companies
Authors: Leesa Mohanty, Ashok Banerjee
Abstract:
Better audit quality signifies the financial statements of the auditee firm reflect true and fair view of their actual state of affairs, which reduces information asymmetry between management and shareholders, as a result, helps protect interests of shareholders. This study examines the impact of joint audit on audit quality. It is motivated by the ongoing debate where The Institute of Chartered Accountants of India (ICAI), the regulatory body governing auditors, has advocated the finance ministry and the Reserve Bank of India (RBI) for the mandatory use of joint audit in private banks to enhance the quality of audit. Earlier, the Government of India had rejected the plea by ICAI for mandatory joint audits in large companies stating it is not a viable option for promoting domestic firms. We introduce a new measure of audit quality. Drawing from the domain of text analytics, we use relevant phrases in audit reports to gauge audit quality and demonstrate that joint audit improves audit quality. We also, for robustness, use prevalent proxy for audit quality (Big N Auditor, ratio of audit fees to total fees) and find negative effect of joint audit on audit quality. We, therefore highlight that different proxy for audit quality show opposite effect of joint audit.Keywords: audit fees, audit quality, Big N. Auditor, joint audit
Procedia PDF Downloads 358183 Training AI to Be Empathetic and Determining the Psychotype of a Person During a Conversation with a Chatbot
Authors: Aliya Grig, Konstantin Sokolov, Igor Shatalin
Abstract:
The report describes the methodology for collecting data and building an ML model for determining the personality psychotype using profiling and personality traits methods based on several short messages of a user communicating on an arbitrary topic with a chitchat bot. In the course of the experiments, the minimum amount of text was revealed to confidently determine aspects of personality. Model accuracy - 85%. Users' language of communication is English. AI for a personalized communication with a user based on his mood, personality, and current emotional state. Features investigated during the research: personalized communication; providing empathy; adaptation to a user; predictive analytics. In the report, we describe the processes that captures both structured and unstructured data pertaining to a user in large quantities and diverse forms. This data is then effectively processed through ML tools to construct a knowledge graph and draw inferences regarding users of text messages in a comprehensive manner. Specifically, the system analyzes users' behavioral patterns and predicts future scenarios based on this analysis. As a result of the experiments, we provide for further research on training AI models to be empathetic, creating personalized communication for a userKeywords: AI, empathetic, chatbot, AI models
Procedia PDF Downloads 94182 Using Scrum in an Online Smart Classroom Environment: A Case Study
Authors: Ye Wei, Sitalakshmi Venkatraman, Fahri Benli, Fiona Wahr
Abstract:
The present digital world poses many challenges to various stakeholders in the education sector. In particular, lecturers of higher education (HE) are faced with the problem of ensuring that students are able to achieve the required learning outcomes despite rapid changes taking place worldwide. Different strategies are adopted to retain student engagement and commitment in classrooms to address the differences in learning habits, preferences, and styles of the digital generation of students recently. Further, the onset of the coronavirus disease (COVID-19) pandemic has resulted in online teaching being mandatory. These changes have compounded the problems in the learning engagement and short attention span of HE students. New agile methodologies that have been successfully employed to manage projects in different fields are gaining prominence in the education domain. In this paper, we present the application of Scrum as an agile methodology to enhance student learning and engagement in an online smart classroom environment. We demonstrate the use of our proposed approach using a case study to teach key topics in information technology that require students to gain technical and business-related data analytics skills.Keywords: agile methodology, Scrum, online learning, smart classroom environment, student engagement, active learning
Procedia PDF Downloads 163181 Dynamic Software Product Lines for Customer Centric Context Aware Business Process Management
Authors: Bochra Khiari, Lamia Labed
Abstract:
In the new digital marketplace, organizations are striving for a proactive position by leveraging the great potential of disruptive technologies to seize the full opportunity of the digital revolution in order to reshape their customer value propositions. New technologies such as big data analytics, which provide prediction of future events based on real-time information, are being integrated into BPM which urges the need for additional core values like capabilities for dynamic adaptation, autonomic behavior, runtime reconfiguration and post-deployment activities to manage unforeseen scenarios at runtime in a situated and changeable context. Dynamic Software Product Lines (DSPL) is an emerging paradigm that supports these runtime variability mechanisms. However, few works exploiting DSPLs principles and techniques in the BPM domain have been proposed so far. In this paper, we propose a conceptual approach DynPL4CBPM, which integrates DSPLs concepts along with the entire related dynamic properties, to the whole BPM lifecycle in order to dynamically adapt business processes according to different context conditions in an individual environment.Keywords: adaptive processes, context aware business process management, customer centric business process management, dynamic software product lines
Procedia PDF Downloads 161180 Framework to Quantify Customer Experience
Authors: Anant Sharma, Ashwin Rajan
Abstract:
Customer experience is measured today based on defining a set of metrics and KPIs, setting up thresholds and defining triggers across those thresholds. While this is an effective way of measuring against a Key Performance Indicator ( referred to as KPI in the rest of the paper ), this approach cannot capture the various nuances that make up the overall customer experience. Customers consume a product or service at various levels, which is not reflected in metrics like Customer Satisfaction or Net Promoter Score, but also across other measurements like recurring revenue, frequency of service usage, e-learning and depth of usage. Here we explore an alternative method of measuring customer experience by flipping the traditional views. Rather than rolling customers up to a metric, we roll up metrics to hierarchies and then measure customer experience. This method allows any team to quantify customer experience across multiple touchpoints in a customer’s journey. We make use of various data sources which contain information for metrics like CXSAT, NPS, Renewals, and depths of service usage collected across a customer lifecycle. This data can be mined systematically to get linkages between different data points like geographies, business groups, products and time. Additional views can be generated by blending synthetic contexts into the data to show trends and top/bottom types of reports. We have created a framework that allows us to measure customer experience using the above logic.Keywords: analytics, customers experience, BI, business operations, KPIs, metrics
Procedia PDF Downloads 75179 Eco-Drive Predictive Analytics
Authors: Sharif Muddsair, Eisels Martin, Giesbrecht Eugenie
Abstract:
With development of society increase the demand for the movement of people also increases gradually. The various modes of the transport in different extent which expat impacts, which depends on mainly technical-operating conditions. The up-to-date telematics systems provide the transport industry a revolutionary. Appropriate use of these systems can help to substantially improve the efficiency. Vehicle monitoring and fleet tracking are among services used for improving efficiency and effectiveness of utility vehicle. There are many telematics systems which may contribute to eco-driving. Generally, they can be grouped according to their role in driving cycle. • Before driving - eco-route selection, • While driving – Advanced driver assistance, • After driving – remote analysis. Our point of interest is regulated in third point [after driving – remote analysis]. TS [Telematics-system] make it possible to record driving patterns in real time and analysis the data later on, So that driver- classification-specific hints [fast driver, slow driver, aggressive driver…)] are given to imitate eco-friendly driving style. Together with growing number of vehicle and development of information technology, telematics become an ‘active’ research subject in IT and the car industry. Telematics has gone a long way from providing navigation solution/assisting the driver to become an integral part of the vehicle. Today’s telematics ensure safety, comfort and become convenience of the driver.Keywords: internet of things, iot, connected vehicle, cv, ts, telematics services, ml, machine learning
Procedia PDF Downloads 307178 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection
Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen
Abstract:
Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology
Procedia PDF Downloads 117177 Analyzing Migration Patterns Using Public Disorder Event Data
Authors: Marie E. Docken
Abstract:
At some point in the lifecycle of a country, patterns of political and social unrest of varying degrees are observed. Events involving public disorder or civil disobedience may produce effects that range a wide spectrum of varying outcomes, depending on the level of unrest. Many previous studies, primarily theoretical in nature, have attempted to measure public disorder in answering why or how it occurs in society by examining causal factors or underlying issues in the social or political position of a population. The main objective in doing so is to understand how these activities evolve or seek some predictive capability for the events. In contrast, this research involves the fusion of analytics and social studies to provide more knowledge of the public disorder and civil disobedience intensity in populations. With a greater understanding of the magnitude of these events, it is believed that we may learn how they relate to extreme actions such as mass migration or violence. Upon establishing a model for measuring civil unrest based upon empirical data, a case study on various Latin American countries is performed. Interpretations of historical events are combined with analytical results to provide insights regarding the magnitude and effect of social and political activism.Keywords: public disorder, civil disobedience, Latin America, metrics, data analysis
Procedia PDF Downloads 147176 Effect of Social Media on Online Buyer Behavior
Authors: Zebider Asire Munyelet, Yibeltal Chanie Manie
Abstract:
In the modern digital landscape, the increase of social media platforms has become identical to the evolution of online consumer behavior. This study investigates the complicated relationship between social media and the purchasing decisions of online buyers. Through an extensive review of existing literature and empirical research, the aim is to comprehensively analyze the multidimensional impact that social media exerts on the various stages of the online buyer's journey. The investigation encompasses the exploration of how social media platforms serve as influential channels for information dissemination, product discovery, and consumer engagement. Additionally, the study investigates the psychological aspects underlying the role of social media in shaping buyer preferences, perceptions, and trust in online transactions. The methodologies employed include both quantitative and qualitative analyses, incorporating surveys, interviews, and data analytics to derive meaningful insights. Statistical models are applied to distinguish patterns in online buyer behavior concerning product awareness, brand loyalty, and decision-making processes. The expected outcomes of this research contribute not only to the academic understanding of the dynamic interplay between social media and online buyer behavior but also offer practical implications for marketers, e-commerce platforms, and policymakers.Keywords: social platforms, buyer behavior, consumer behavior, digital era
Procedia PDF Downloads 80175 BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future
Authors: Mazharuddin Syed Ahmed
Abstract:
This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users.Keywords: building information modelling, circular economy integration, digital twin, predictive analytics
Procedia PDF Downloads 44174 Factors of Social Media Platforms on Consumer Behavior
Authors: Zebider Asire Munyelet, Yibeltal Chanie Manie
Abstract:
In the modern digital landscape, the increase of social media platforms has become identical to the evolution of online consumer behavior. This study investigates the complicated relationship between social media and the purchasing decisions of online buyers. Through an extensive review of existing literature and empirical research, the aim is to comprehensively analyze the multidimensional impact that social media exerts on the various stages of the online buyer's journey. The investigation encompasses the exploration of how social media platforms serve as influential channels for information dissemination, product discovery, and consumer engagement. Additionally, the study investigates into the psychological aspects underlying the role of social media in shaping buyer preferences, perceptions, and trust in online transactions. The methodologies employed include both quantitative and qualitative analyses, incorporating surveys, interviews, and data analytics to derive meaningful insights. Statistical models are applied to distinguish patterns in online buyer behavior concerning product awareness, brand loyalty, and decision-making processes. The expected outcomes of this research contribute not only to the academic understanding of the dynamic interplay between social media and online buyer behavior but also offer practical implications for marketers, e-commerce platforms, and policymakers.Keywords: consumer Behavior, social media, online purchasing, online transaction
Procedia PDF Downloads 78173 Predictive Analytics of Student Performance Determinants
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.Keywords: student performance, supervised machine learning, classification, cross-validation, prediction
Procedia PDF Downloads 128172 Government Big Data Ecosystem: A Systematic Literature Review
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review
Procedia PDF Downloads 231171 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm
Authors: Moti Zwilling, Srečko Natek
Abstract:
This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.Keywords: dating sites, social networks, machine learning, decision trees, data mining
Procedia PDF Downloads 295170 Using Diagnostic Assessment as a Learning and Teaching Approach to Identify Learning Gaps at a Polytechnic
Authors: Vijayan Narayananayar
Abstract:
Identifying learning gaps is crucial in ensuring learners have the necessary knowledge and skills to succeed. The Learning and Teaching (L&T) approach requires tutors to identify gaps in knowledge and improvise learning activities to close them. One approach to identifying learning gaps is through diagnostic assessment, which uses well-structured questions and answer options. The paper focuses on the use of diagnostic assessment as a learning and teaching approach in a foundational module at a polytechnic. The study used diagnostic assessment over two semesters, including the COVID and post-COVID semesters, to identify gaps in learning. The design of the diagnostic activity, pedagogical intervention, and survey responses completed by learners were analyzed. Results showed that diagnostic assessment can be an effective tool for identifying learning gaps and designing interventions to address them. Additionally, the use of diagnostic assessment provides an opportunity for tutors to engage with learners on a one-to-one basis, tailoring teaching to individual needs. The paper also discusses the design of diagnostic questions and answer options, including characteristics that need to be considered in achieving the target of identifying learning gaps. The implications of using diagnostic assessment as a learning and teaching approach include bridging the gap between theory and practice, and ensuring learners are equipped with skills necessary for their future careers. This paper can be useful in helping educators and practitioners to incorporate diagnostic assessment into their L&T approach.Keywords: assessment, learning & teaching, diagnostic assessment, analytics
Procedia PDF Downloads 114169 A Relational View for Financial Metrics in Logistics Service Providers
Authors: Paulo Sergio Altman Ferreira
Abstract:
Relationship development plays an essential role in every logistics company. Logistics companies are service-based businesses essentially performing the flow of materials, housing, and inventory management for a wide range of customers. The service encounter between the logistics provider’s personnel and the customers may form a connection that will demonstrate a strong impact, not only to the customers' overall satisfaction but may also provide the perception of individualized services. Logistics services must drive value. It also shows a close influence on the quality and costs of client-centered services. If we describe logistics value creation as the function of quality perception of the client divided by service costs, there is a requirement to better outline and explain the measures and analytics for logistics costs and relationship performance. This critical shift to understand logistics services is a relevant contribution to capture how relationship value can be quantified. This might involve changing our current perspective on logistics providers beyond uniquely measuring the services in terms of activities, personnel levels, and financial/costs ratios. This paper argues that measuring value creation accomplishments of logistics services needs to consider the relational improvements for the wider range of logistics companies. Accurate logistics value requires a description of the financial impact of the relational perspective of the service.Keywords: logistics services providers, financial metrics, relationship management, value creation
Procedia PDF Downloads 150168 CanVis: Towards a Web Platform for Cancer Progression Tree Analysis
Authors: Michael Aupetit, Mahmoud Al-ismail, Khaled Mohamed
Abstract:
Cancer is a major public health problem all over the world. Breast cancer has the highest incidence rate over all cancers for women in Qatar making its study a top priority of the country. Human cancer is a dynamic disease that develops over an extended period through the accumulation of a series of genetic alterations. A Darwinian process drives the tumor cells toward higher malignancy growing the branches of a progression tree in the space of genes expression. Although it is not possible to track these genetic alterations dynamically for one patient, it is possible to reconstruct the progression tree from the aggregation of thousands of tumor cells’ genetic profiles from thousands of different patients at different stages of the disease. Analyzing the progression tree is a way to detect pivotal molecular events that drive the malignant evolution and to provide a guide for the development of cancer diagnostics, prognostics and targeted therapeutics. In this work we present the development of a Visual Analytic web platform CanVis enabling users to upload gene-expression data and analyze their progression tree. The server computes the progression tree based on state-of-the-art techniques and allows an interactive visual exploration of this tree and the gene-expression data along its branching structure helping to discover potential driver genes.Keywords: breast cancer, progression tree, visual analytics, web platform
Procedia PDF Downloads 419167 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates
Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras
Abstract:
Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.Keywords: blockchain, degree verification, higher education certificates, Hyperledger Iroha
Procedia PDF Downloads 142166 The Impact of AI on Higher Education
Authors: Georges Bou Ghantous
Abstract:
This literature review examines the transformative impact of Artificial Intelligence (AI) on higher education, highlighting both the potential benefits and challenges associated with its adoption. The review reveals that AI significantly enhances personalized learning by tailoring educational experiences to individual student needs, thereby boosting engagement and learning outcomes. Automated grading systems streamline assessment processes, allowing educators to focus on improving instructional quality and student interaction. AI's data-driven insights provide valuable analytics, helping educators identify trends in at-risk students and refine teaching strategies. Moreover, AI promotes enhanced instructional innovation through the adoption of advanced teaching methods and technologies, enriching the educational environment. Administrative efficiency is also improved as AI automates routine tasks, freeing up time for educators to engage in research and curriculum development. However, the review also addresses the challenges that accompany AI integration, such as data privacy concerns, algorithmic bias, dependency on technology, reduced human interaction, and ethical dilemmas. This balanced exploration underscores the need for careful consideration of both the advantages and potential hurdles in the implementation of AI in higher education.Keywords: administrative efficiency, data-driven insights, data privacy, ethical dilemmas, higher education, personalized learning
Procedia PDF Downloads 28165 Twitter Sentiment Analysis during the Lockdown on New-Zealand
Authors: Smah Almotiri
Abstract:
One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS
Procedia PDF Downloads 192164 Design and Evaluation of Production Performance Dashboard for Achieving Oil and Gas Production Target
Authors: Ivan Ramos Sampe Immanuel, Linung Kresno Adikusumo, Liston Sitanggang
Abstract:
Achieving the production targets of oil and gas in an upstream oil and gas company represents a complex undertaking necessitating collaborative engagement from a multidisciplinary team. In addition to conducting exploration activities and executing well intervention programs, an upstream oil and gas enterprise must assess the feasibility of attaining predetermined production goals. The monitoring of production performance serves as a critical activity to ensure organizational progress towards the established oil and gas performance targets. Subsequently, decisions within the upstream oil and gas management team are informed by the received information pertaining to the respective production performance. To augment the decision-making process, the implementation of a production performance dashboard emerges as a viable solution, providing an integrated and centralized tool. The deployment of a production performance dashboard manifests as an instrumental mechanism fostering a user-friendly interface for monitoring production performance, while concurrently preserving the intrinsic characteristics of granular data. The integration of diverse data sources into a unified production performance dashboard establishes a singular veritable source, thereby enhancing the organization's capacity to uphold a consolidated and authoritative foundation for its business requisites. Additionally, the heightened accessibility of the production performance dashboard to business users constitutes a compelling substantiation of its consequential impact on facilitating the monitoring of organizational targets.Keywords: production, performance, dashboard, data analytics
Procedia PDF Downloads 72163 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being
Procedia PDF Downloads 71162 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand
Authors: Gaurav Kumar Sinha
Abstract:
The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning
Procedia PDF Downloads 36161 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation
Authors: Abdal-Hafeez Alhussein
Abstract:
Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.Keywords: artificial intelligence, information technology, automation, scalability
Procedia PDF Downloads 19160 Enhancing Audience Engagement: Informal Music Learning During Classical Concerts
Authors: Linda Dusman, Linda Baker
Abstract:
The Bearman Study of Audience Engagement examined the potential for real-time music education during online symphony orchestra concerts. It follows on the promising results of a preliminary study of STEAM (Science, Technology, Engineering, Arts, and Mathematics) education during live concerts, funded by the National Science Foundation with the Baltimore Symphony Orchestra. For the Bearman Study, audience groups were recruited to attend two previously recorded concerts of the National Orchestral Institute (NOI) in 2020 or the Utah Symphony in 2021. They used a smartphone app called EnCue to present real-time program notes about the music being performed. Short notes along with visual information (photos and score fragments) were designed to provide historical, cultural, biographical, and theoretical information at specific moments in the music where that information would be most pertinent, generally spaced 2-3 minutes apart to avoid distraction. The music performed included Dvorak Symphony No. 8 and Mahler Symphony No. 5 at NOI, and Mendelssohn Scottish Symphony and Richard Strauss Metamorphosen with the Utah Symphony, all standard repertoire for symphony orchestras. During each phase of the study (2020 and 2021), participants were randomly assigned to use the app to view program notes during the first concert or to use the app during the second concert. A total of 139 participants (67 in 2020 and 72 in 2021) completed three online questionnaires, one before attending the first concert, one immediately after the concert, and the third immediately after the second concert. Questionnaires assessed demographic background, expertise in music, engagement during the concert, learning of content about the composers and the symphonies, and interest in the future use of the app. In both phases of the study, participants demonstrated that they learned content presented on the app, evidenced by the fact that their multiple-choice test scores were significantly higher when they used the app than when they did not. In addition, most participants indicated that using the app enriched their experience of the concert. Overall, they were very positive about their experience using the app for real-time learning and they expressed interest in using it in the future at both live and streaming concerts. Results confirmed that informal real-time learning during concerts is possible and can generate enhanced engagement and interest in classical music.Keywords: audience engagement, informal education, music technology, real-time learning
Procedia PDF Downloads 203159 Powering Connections: Synergizing Sales and Marketing for Electronics Engineering with Web Development.
Authors: Muhammad Awais Kiani, Abdul Basit Kiani, Maryam Kiani
Abstract:
Synergizing Sales and Marketing for Electronics Engineering with Web Development, explores the dynamic relationship between sales, marketing, and web development within the electronics engineering industry. This study is important for the power of digital platforms to connect with customers. Which increases brand visibility and drives sales. It highlights the need for collaboration between sales and marketing teams, as well as the integration of web development strategies to create seamless user experiences and effective lead generation. Furthermore, It also emphasizes the role of data analytics and customer insights in optimizing sales and marketing efforts in the ever-evolving landscape of electronics engineering. Sales and marketing play a crucial role in driving business growth, and in today's digital landscape, web development has become an integral part of these strategies. Web development enables businesses to create visually appealing and user-friendly websites that effectively showcase their products or services. It allows for the integration of e-commerce functionalities, enabling seamless online transactions. Furthermore, web development helps businesses optimize their online presence through search engine optimization (SEO) techniques, social media integration, and content management systems. This abstract highlights the symbiotic relationship between sales marketing in the electronics industry and web development, emphasizing the importance of a strong online presence in achieving business success.Keywords: electronics industry, web development, sales, marketing
Procedia PDF Downloads 118158 Particle Deflection in a PDMS Microchannel Caused by a Plane Travelling Surface Acoustic Wave
Authors: Florian Keipert, Hagen Schmitd
Abstract:
The size selective separation of different species in a microfluidic system is an actual task in biological or medical research. Former works dealt with the utilisation of the acoustic radiation force (ARF) caused by a plane travelling Surface Acoustic Wave (tSAW). In literature the ARF is described by a dimensionless parameter κ, depending on the wavelength and the particle diameter. To our knowledge research was done for values 0.2 < κ < 5.8 showing that the ARF is dominating the acoustic streaming force (ASF) for κ > 1.2. As a consequence the particle separation is limited by κ. In addition the dependence on the electrical power level was examined but only for κ > 1 pointing out an increased particle deflection for higher electrical power levels. Nevertheless a detailed study on the ASF and ARF especially for κ < 1 is still missing. In our setup we used a tSAW with a wavelength λ = 90 µm and 3 µm PS particles corresponding to κ = 0.3. Herewith the influence of the applied electrical power level on the particle deflection in a polydimethylsiloxan micro channel was investigated. Our results show an increased particle deflection for an increased electrical power level, which coincides with the reported results for κ > 1. Therefore particle separation is in contrast to literature also possible for lower κ values. Thereby the experimental setup can be generally simplified by a coordinated electrical power level for the specific particle size. Furthermore this raises the question of whether this particle deflection is caused only by the ARF as adopted so far or by the ASF or the sum of both forces. To investigate this fact a 0% - 24% saline solution was used and thus the mismatch between the compressibility of the PS particle and the working fluid could be changed. Therefore it is possible to change the relative strength between ARF and ASF and consequently the particle deflection. We observed a decreasing in the particle deflection for an increased NaCl content up to a 12% saline solution and subsequently an increasing of the particle deflection. Our observation could be explained by the acoustic contrast factor Φ, which depends on the compressibility mismatch. The compressibility of water is increased by the NaCl and the range of a 0% - 24% saline solution covers the PS particle compressibility. Hence the particle deflection reaches a minimum value for the accordance between compressibility of PS particle and saline solution. This minimum value can be estimated as the particle deflection only caused by the ASF. Knowing the particle deflection due to the ASF the particle deflection caused by the ARF can be calculated and thus finally the relation between both forces. Concluding, the particle deflection and therefore the size selective particle separation generated by a tSAW can be achieved for values κ < 1, simplifying actual setups by adjusting the electrical power level. Beyond we studied for the first time the relative strength between ARF and ASF to characterise the particle deflection in a microchannel.Keywords: ARF, ASF, particle separation, saline solution, tSAW
Procedia PDF Downloads 260157 Leveraging Artificial Intelligence to Analyze the Interplay between Social Vulnerability Index and Mobility Dynamics in Pandemics
Authors: Joshua Harrell, Gideon Osei Bonsu, Susan Garza, Clarence Conner, Da’Neisha Harris, Emma Bukoswki, Zohreh Safari
Abstract:
The Social Vulnerability Index (SVI) stands as a pivotal tool for gauging community resilience amidst diverse stressors, including pandemics like COVID-19. This paper synthesizes recent research and underscores the significance of SVI in elucidating the differential impacts of crises on communities. Drawing on studies by Fox et al. (2023) and Mah et al. (2023), we delve into the application of SVI alongside emerging data sources to uncover nuanced insights into community vulnerability. Specifically, we explore the utilization of SVI in conjunction with mobility data from platforms like SafeGraph to probe the intricate relationship between social vulnerability and mobility dynamics during the COVID-19 pandemic. By leveraging 16 community variables derived from the American Community Survey, including socioeconomic status and demographic characteristics, SVI offers actionable intelligence for guiding targeted interventions and resource allocation. Building upon recent advancements, this paper contributes to the discourse on harnessing AI techniques to mitigate health disparities and fortify public health resilience in the face of pandemics and other crises.Keywords: social vulnerability index, mobility dynamics, data analytics, health equity, pandemic preparedness, targeted interventions, data integration
Procedia PDF Downloads 65