Search results for: sodium aerosols
732 Activation of Mitophagy and Autophagy in Familial Forms of Parkinson's Disease, as a Potential Strategy for Cell Protection
Authors: Nafisa Komilova, Plamena Angelova, Andrey Abramov, Ulugbek Mirkhodjaev
Abstract:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder which is induced by the loss of dopaminergic neurons in the midbrain. The mechanism of neurodegeneration is associated with the aggregation of misfolded proteins, oxidative stress, and mitochondrial disfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of cytosol can activate mitophagy and autophagy, and here we used sodium pyruvate and sodium lactate in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-syn triplication, A53T) to induce changes in intracellular pH. We have found that both lactate and pyruvate in millimolar concentrations can induce short-time acidification of cytosol in these cells. It induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, the application of lactate to acute brain slices of control and Pink1 knockout mice also induced a reduction of pH in neurons and astrocytes that increase the level of mitophagy. Thus, acidification of cytosol by compounds which play important role in cell metabolism also can activate mitophagy and autophagy and protect cells in the familial form of PD.Keywords: Parkinson's disease, mutations, mitophagy, autophagy
Procedia PDF Downloads 197731 Contribution to the Hydrogeochemical Investigations on the Wajid Aquifer System, Southwestern Part of Saudi Arabia
Authors: Mohamed Ahmed, Ezat Korany, Abdelaziz Al Basam, Osama Kasem
Abstract:
The arid climate, low rate of precipitations and population reflect the increasing of groundwater uses as the main source of water in Saudi Arabia. The Wajid Aquifer System represents a regional groundwater aquifer system along the edge of the crystalline Arabian Shield near the southwestern tip of the Arabian Peninsula. The aquifer extends across the border of Saudi Arabia and Yemen from the Asir –Yemen Highlands to the Rub al Khali Depression and possibly to the Gulf coast (at the southwestern tip). The present work is representing a hydrogeochemical investigation on the Wajid Aquifer System. The studied area is being classified into three zones. The 1st zone is West of Wadi Ad Dawasir (Northern part of the studied area), the 2nd is Najran-Asir Zone (southern part of the studied area), and the 3rd zone is the intermediate -central zone (occupying the central area between the last two zones). The groundwater samples were collected and chemically analyzed for physicochemical properties such as pH, electrical conductivity, total hardness (TH), alkalinity (pH), total dissolved solids (TDS), major ions (Ca2+, Mg2+, Na+, K+, HCO3-, SO42- and Cl-), and trace elements. Some parameters such as sodium adsorption ratio (SAR), soluble sodium percentage (Na%), potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio, hydrochemical coefficients, hydrochemical formula, ion dominance, salt combinations and water types were also calculated in order to evaluate the quality of the groundwater resources in the selected areas for different purposes. The distribution of the chemical constituents and their interrelationships are illustrated by different hydrochemical graphs. Groundwater depths and the depth to water were measured to study the effect of discharge on both the water level and the salinity of the studied groundwater wells. A detailed comparison between the three studied zones according to the variations shown by the chemical and field investigations are discussed in detailed within the work.Keywords: Najran-Asir, Wadi Ad Dawasir, Wajid Aquifer System, effect of discharge
Procedia PDF Downloads 132730 Methanolic Extract of the Exudates of Aloe Otallensis and Its Effect on Leishmania Donovani Parasite
Authors: Zerihun Tesfaye Nigusse
Abstract:
Objective: This study evaluates the antileishmanial activity of the methanolic extract of Aloe otallensis (A. otallensis) on the promastigote stage of Leishmaniadonovani (L. donovani) as compared to standard drugs and to screen its phytochemical constituents. Methods: Phytochemical screening was done by using the method mentioned by Evans and Trease on methanolic extract of the exudates of Aloe otallensis leaves. The extract was also evaluated for in vitro antileishmanial activity against L. donavani, which is found in the Parasitology Unit of Black Lion Hospital. The result was compared to standard drugs of sodium stibogluconate, milfostin and paramomycin. Results: The extract has good antileishmanial activity with an IC50 of 0.123 0 μg/mL on L. donovani (AM 563). The experimental data showed that relatively, it had better activity than paramomycin and milfostin but less activity than sodium stibogluconate. The data analyses were done by GraphPad Prism version 5 software after it was read by an ELISA reader at the wavelength of 650 nm. The phytochemical screening of the exudates of A. otallensis showed the presence of phenol, alkaloid and saponin. Conclusions: The methanol extract of the exudates of A.otallensishas a good anti- leishmaniasis activity and this may be attributed to phenol, alkaloid and saponin present in the plant. But it needs further analysis for the conformation of which constituent presents in high concentration to know which one has the strongest effect.Keywords: anti leshimaniasis, aloe otallensis, leshimania ethiopica, IC50
Procedia PDF Downloads 40729 Evaluation of Surface Water and Groundwater Quality in Parts of Umunneochi Southeast, Nigeria
Authors: Joshua Chima Chizoba, Wisdom Izuchukwu Uzoma, Elizabeth Ifeyiwa Okoyeh
Abstract:
Water cannot be optimally used and sustained unless the quality is periodically assessed. The study area Umunneochi and environs are located in south eastern part of Nigeria. It stretches geographically from latitudes 50501N to 60000N and longitudes 70201E to 70301. The major geologic formations in the area include the Asu River group, Nkporo Shale, and Ajali Sandstone. The aim of this study is to evaluate the hydrochemical characteristics of surface and ground water sources in parts of Umunneochi and environs in order to establish portability of the water sources for drinking, domestic and irrigation purposes. A total of 15 samples were collected randomly from streams, springs and wells. The samples were analyzed for physicochemical parameters and heavy metals using handheld digital kits, photometer, titration method and Atomic Absorption Spectrophotometer (AAS) following acceptable standards. The obtained analytical data were interpreted, and results were compared with World Health Organization (WHO) standard. The concentration of pH, SO42-and Cl- range from 5.81 mg/l – 6.07 mg/l, 41.93 mg/l – 142.95 mg/l and 20.00 mg/l – 111 mg/l respectively, while Pb and Zn revealed a relative low mean concentration of 0.14 mg/l and 0.40 mg/l, which are all within (WHO) permissible limits except pH. About 27% of the samples are moderately hard. This is attributed to the mining activities in the areas. The abundance of cations and anions in the area are in the order of K+>Na+>Mg2+>Ca2+ and SO4->Cl->HCO3->NO3-, respectively. Chloride, bicarbonate, and nitrate are all within the permissible limits. 13.33% of the total samples contain Sulphate above the standard permissible limits. The values of calculated Water Quality Index (WQI) are less than 50 indicating excellent water. The predominant water-type in the study area is Na-Cl water type and mixed Ca-Mg-Cl water type based on the sample plots on the Piper diagram. The Sodium Absorption Ratio (SAR) calculations showed excellent water for consumption and also good water for irrigation purpose with low sodium and alkalinity ratio respectively. Government water projects are recommended in the area for sustainable domestic and agricultural water supply to ease the stress of water supply problems.Keywords: groundwater, hydrochemical, physichochemical, water-type, sodium adsorption ratio
Procedia PDF Downloads 130728 Studies on Interaction between Anionic Polymer Sodium Carboxymethylcellulose with Cationic Gemini Surfactants
Authors: M. Kamil, Rahber Husain Khan
Abstract:
In the present study, the Interaction of anionic polymer, sodium carboxymethylcellulose (NaCMC), with cationic gemini surfactants 2,2[(oxybis(ethane-1,2-diyl))bis(oxy)]bis(N-hexadecyl1-N,N-[di(E2)/tri(E3)]methyl1-2-oxoethanaminium)chloride (16-E2-16 and 16-E3-16) and conventional surfactant (CTAC) in aqueous solutions have been studied by surface tension measurement of binary mixtures (0.0- 0.5 wt% NaCMC and 1 mM gemini surfactant/10 mM CTAC solution). Surface tension measurements were used to determine critical aggregation concentration (CAC) and critical micelle concentration (CMC). The maximum surface excess concentration (Ґmax) at the air-water interface was evaluated by the Gibbs adsorption equation. The minimum area per surfactant molecule was evaluated, which indicates the surfactant-polymer Interaction in a mixed system. The effect of changing surfactant chain length on CAC and CMC values of mixed polymer-surfactant systems was examined. From the results, it was found that the gemini surfactant interacts strongly with NaCMC as compared to its corresponding monomeric counterpart CTAC. In these systems, electrostatic interactions predominate. The lowering of surface tension with an increase in the concentration of surfactants is higher in the case of gemini surfactants almost 10-15 times. The measurements indicated that the Interaction between NaCMC-CTAC resulted in complex formation. The volume of coacervate increases with an increase in CTAC concentration; however, above 0.1 wt. % concentration coacervate vanishes.Keywords: anionic polymer, gemni surfactants, tensiometer, CMC, interaction
Procedia PDF Downloads 89727 Biochemical Assessments of the Effects of Crude Oil Contaminated Diets Wistar Rats
Authors: Olawuyi Sikiru Owolabi
Abstract:
A research was carried out to assess the biochemical effects of crude oil contaminated cat fish on selected rat kidney function tests. Thirty-six (36) albino rats (rattus novergicus) were grouped into six (6) of (6) in each group. The rats in group one served as control and they were placed on feed formulated with catfish cultured in borehole water while those ones from group 2 to group 6 were placed on feed formulated with catfish exposed to various concentrations of crude oil (0.1%,0.25%,0.5%,0.75% and 1% respectively).The results obtained showed that there was a significant increase in serum concentration of creatinine, Urea, sodium and potassium ions in the kidney of experimental rats when compared with the control. This may be interpreted to mean possible adverse effects on the kidney. Several studies have been done especially on the biological effects of crude oil in fish. These include Direct Lethal Toxicity, Sub-Lethal disruption of physiological and behavioral activities, interference with feeding and reproduction, direct coating or tainting of fish, effect of entry of hydrocarbons into the food web as well as alteration of biological habitat. The present study attempts to assess the effects of crude oil contaminated diet on rat kidney by carrying out some kidney function tests like determination of serum sodium and potassium ions by flame photometry method, determination of serum urea and determination of serum creatinine.Keywords: crude oil, serum urea, creatinine, wistar rats
Procedia PDF Downloads 245726 Selective Electrooxidation of Ammonia to Nitrogen Gas on the Crystalline Cu₂O/Ni Foam Electrode
Authors: Ming-Han Tsai, Chihpin Huang
Abstract:
Electrochemical oxidation of ammonia (AEO) is one of the highly efficient and environmentally friendly methods for NH₃ removal from wastewater. Recently, researchers have focused on non-Pt-based electrodes (n-PtE) for AEO, aiming to evaluate the feasibility of these low-cost electrodes for future practical applications. However, for most n-PtE, NH₃ is oxidized mainly to nitrate ion NO₃⁻ instead of the desired nitrogen gas N₂, which requires further treatment to remove excess NO₃⁻. Therefore, developing a high N₂ conversion electrode for AEO is highly urgent. In this study, we fabricated various Cu₂O/Ni foam (NF) electrodes by electrodeposition of Cu on NF. The Cu plating bath contained different additives, including cetyltrimethylammonium chloride (CTAC), sodium dodecyl sulfate (SDS), polyamide acid (PAA), and sodium alginate (SA). All the prepared electrodes were physically and electrochemically investigated. Batch AEO experiments were conducted for 3 h to clarify the relation between electrode structures and N₂ selectivity. The SEM and XRD results showed that crystalline platelets-like Cu₂O, particles-like Cu₂O, cracks-like Cu₂O, and sheets-like Cu₂O were formed in the Cu plating bath by adding CTAC, SDS, PAA, and SA, respectively. For electrochemical analysis, all Cu₂O/NF electrodes revealed a higher current density (2.5-3.2 mA/cm²) compared to that without additives modification (1.6 mA/cm²). At a constant applied potential of 0.95 V (vs Hg/HgO), the Cu₂O sheet (51%) showed the highest N₂ selectivity, followed by Cu₂O cracks (38%), Cu₂O particles (30%), and Cu₂O platelet (18%) after 3 h reaction. Our result demonstrated that the selectivity of N₂ during AEO was surface structural dependent.Keywords: ammonia, electrooxidation, selectivity, cuprous oxide, Ni foam
Procedia PDF Downloads 86725 Analytical Performance of Cobas C 8000 Analyzer Based on Sigma Metrics
Authors: Sairi Satari
Abstract:
Introduction: Six-sigma is a metric that quantifies the performance of processes as a rate of Defects-Per-Million Opportunities. Sigma methodology can be applied in chemical pathology laboratory for evaluating process performance with evidence for process improvement in quality assurance program. In the laboratory, these methods have been used to improve the timeliness of troubleshooting, reduce the cost and frequency of quality control and minimize pre and post-analytical errors. Aim: The aim of this study is to evaluate the sigma values of the Cobas 8000 analyzer based on the minimum requirement of the specification. Methodology: Twenty-one analytes were chosen in this study. The analytes were alanine aminotransferase (ALT), albumin, alkaline phosphatase (ALP), Amylase, aspartate transaminase (AST), total bilirubin, calcium, chloride, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, lactate dehydrogenase (LDH), magnesium, potassium, protein, sodium, triglyceride, uric acid and urea. Total error was obtained from Clinical Laboratory Improvement Amendments (CLIA). The Bias was calculated from end cycle report of Royal College of Pathologists of Australasia (RCPA) cycle from July to December 2016 and coefficient variation (CV) from six-month internal quality control (IQC). The sigma was calculated based on the formula :Sigma = (Total Error - Bias) / CV. The analytical performance was evaluated based on the sigma, sigma > 6 is world class, sigma > 5 is excellent, sigma > 4 is good and sigma < 4 is satisfactory and sigma < 3 is poor performance. Results: Based on the calculation, we found that, 96% are world class (ALT, albumin, ALP, amylase, AST, total bilirubin, cholesterol, HDL-cholesterol, creatinine, creatinine kinase, glucose, LDH, magnesium, potassium, triglyceride and uric acid. 14% are excellent (calcium, protein and urea), and 10% ( chloride and sodium) require more frequent IQC performed per day. Conclusion: Based on this study, we found that IQC should be performed frequently for only Chloride and Sodium to ensure accurate and reliable analysis for patient management.Keywords: sigma matrics, analytical performance, total error, bias
Procedia PDF Downloads 171724 Use of Yeast-Chitosan Bio-Microcapsules with Ultrafiltration Membrane to Remove Ammonia Nitrogen and Organic Matter in Raw Water
Authors: Chao Ding, Jun Shi, Huiping Deng
Abstract:
This study reports the preparation of a new type yeast-chitosan bio-microcapsule coating sodium alginate and chitosan, with good biocompatibility and mechanical strength. Focusing on the optimum preparation conditions of bio-microcapsule, a dynamic test of yeast-chitosan bio-microcapsule combined with ultrafiltration membrane was established to evaluate both the removal efficiency of major pollutants from raw water and the applicability of this system. The results of orthogonal experiments showed that the optimum preparation procedure are as follows: mix sodium alginate solution (3%) with bacteria liquid in specific proportion, drop in calcium chloride solution (4%) and solidify for 30 min; put the plastic beads into chitosan liquid (1.8%) to overlay film for 10 min and then into glutaraldehyde solution (1%) to get cross-linked for 5 min. In dynamic test, the microcapsules were effective as soon as were added in the system, without any start-up time. The removal efficiency of turbidity, ammonia nitrogen and organic matter was 60%, 80%, and 40%. Besides, the bio-microcapsules were prospective adsorbent for heavy metal; they adsorb Pb and Cr⁶⁺ in water while maintaining high biological activity to degrade ammonia nitrogen and small molecular organics through assimilation. With the presence of bio-microcapsules, the internal yeast strains’ adaptability on the external environment and resistance ability on toxic pollutants will be increased.Keywords: ammonia nitrogen, bio-microcapsules, ultrafiltration membrane, yeast-chitosan
Procedia PDF Downloads 346723 Sea-Spray Calculations Using the MESO-NH Model
Authors: Alix Limoges, William Bruch, Christophe Yohia, Jacques Piazzola
Abstract:
A number of questions arise concerning the long-term impact of the contribution of marine aerosol fluxes generated at the air-sea interface on the occurrence of intense events (storms, floods, etc.) in the coastal environment. To this end, knowledge is needed on sea-spray emission rates and the atmospheric dynamics of the corresponding particles. Our aim is to implement the mesoscale model MESO-NH on the study area using an accurate sea-spray source function to estimate heat fluxes and impact on the precipitations. Based on an original and complete sea-spray source function, which covers a large size spectrum since taking into consideration the sea-spray produced by both bubble bursting and surface tearing process, we propose a comparison between model simulations and experimental data obtained during an oceanic scientific cruise on board the navy ship Atalante. The results show the relevance of the sea-spray flux calculations as well as their impact on the heat fluxes and AOD.Keywords: atmospheric models, sea-spray source, sea-spray dynamics, aerosols
Procedia PDF Downloads 149722 Metformin and Its Combination with Sodium Hydrosulfide Influences Plasma Galectin-3 and CSE/H₂S System in Diabetic Rat's Heart
Authors: I. V. Palamarchuk, N. V. Zaichko
Abstract:
Background and Aims: Galectin-3 is a marker of subclinical cardiac injury and is elevated in individuals with type 2 diabetes mellitus; while hydrogen sulfide (H₂S), metabolite of sulfur-containing amino acids, is considered having antifibrogenic effects. This study was designed to investigate whether metformin and its combination with NaHS can influence plasma galectin-3 and cystathionine-γ-lyase/hydrogen sulfide (CSE/H₂S) system in diabetic rat’s heart. Methods: 32 healthy male rats (180-250 g) were divided into 4 groups. To induct diabetes, rats (group 2-4) were injected with streptozotocin (STZ, 40 mg/kg/i.p., 0.1 M citrate buffer (pH 4.5). Rats from 3d (STZ+Metf) and 4th (STZ+Metf+NaHS) groups were given metformin (500 mg/kg/day) orally, and rats from 4th (STZ+Metf+NaHS) group were injected sodium hydrosulfide (NaHS, 3 mg/kg/i.p.) once per day starting from 3 to 28 day after streptozotocin injection. Rats of first group (control) were administered the equivalent volumes of 0.9% NaCl. Plasma galectin-3 was measured by ELISA. Rats’ hearts were sampled for determination of H2S by reaction with N,N-Dimethyl-p-phenylenediamine. Determination of CSE gene expression was performed in real time using PCR in the presence of SYBR Green I, using DT-Light detecting amplifier ('DNA-technology', Russia). Results: Induction of streptozotocin diabetes (STZ-diabetes, group 2) was followed by low myocardial H2S concentration and CSE expression (by 35%, p < 0.05 and 60.5%, p < 0.001 respectively, than that in controls), while plasma galectin-3 in this group was significantly higher than in controls (by 3.8 times, p < 0.05). Administration of metformin (group 3) resulted in significantly higher H₂S concentration (by 28.5%, p < 0.05), whereas CSE expression was only by 6% more than that in STZ-diabetes, as well as plasma galectin-3 was only by 14.8% lower in comparison with untreated diabetic rats. The inhibition of H₂S generation and CSE activity by diabetes was greatly attenuated in STZ+Metf+NaHS group. The combination of metformin with NaHS significantly stimulated H₂S production (by 48%, p < 0.05 and 15%, p < 0.05 more than STZ-diabetes and STZ+Metf respectively) and CSE gene expression (by 64.8%, p < 0.05 compared to STZ-diabetes and by 55.4%,p < 0.05 compared to STZ+Metf). Besides, plasma galectin-3 in rats receiving metformin and NaHS was significantly lower by 42%, p < 0.05 and 32.5%, p < 0.05 compared to STZ-diabetes and STZ+Metf groups respectively. Conclusions: To summarize, dysfunction of CSE/H2S system and galectin-3 stimulation was found in streptozotocin-induced diabetic rats. Metformin and its combination with exogenous H2S effectively prevented the development of metabolic changes induced by diabetes. These findings suggest that CSE/H₂S system can be integrated into pathogenesis of diabetic complications through modulation of pro-inflammatory and pro-fibrogenic mediator galectin-3.Keywords: cystathionine-γ-lyase, diabetic heart, galectin-3, hydrogen sulfide, metformin, sodium hydrosulfide
Procedia PDF Downloads 226721 Electrophoretic Changes in Testis and Liver of Mice after Exposure to Diclofenac Sodium
Authors: Deepak Mohan, Sushma Sharma, Mohammad Asif
Abstract:
Diclofenac sodium being one of the most common non-steroidal anti-inflammatory drugs is normally used as painkiller and to reduce inflammation. The drug is known to alter the enzymatic activities of acid and alkaline phosphatase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminases. The drug also results in change in the concentration of proteins and lipids in the body. The present study is an attempt to study different biochemical changes electrophoretically due to administration of different doses of diclofenac (4mg/kg/body weight and 14mg/kg/body weight) on liver and testes of mice from 7-28 days of investigation. Homogenization of the tissue was done, supernatant separated was loaded in the gel and native polyacrylamide gel electrophoresis was conducted. Diclofenac administration resulted in alterations of all these biochemical parameters which were observed in native polyacrylamide gel electrophoretic studies. The severe degenerative changes as observed during later stages of the experiment showed correlation with increase or decrease in the activities of all the enzymes studied in the present investigation. Image analysis of gel in liver showed a decline of 7.4 and 5.3 % in low and high dose group after 7 days whereas a decline of 9.6 and 7.5% was registered after 28 days of investigation. Similar analysis for testis also showed an appreciable decline in the activity of alkaline phosphatase after 28 days. Gel analysis of serum was also performed to find a correlation in the enzymatic activities between the tissue and blood.Keywords: diclofenac, inflammation, polyacrylamide, phosphatase
Procedia PDF Downloads 152720 Purification, Extraction and Visualization of Lipopolysaccharide of Escherichia coli from Urine Samples of Patients with Urinary Tract Infection
Authors: Fariha Akhter Chowdhury, Mohammad Nurul Islam, Anamika Saha, Sabrina Mahboob, Abu Syed Md. Mosaddek, Md. Omar Faruque, Most. Fahmida Begum, Rajib Bhattacharjee
Abstract:
Urinary tract infection (UTI) is one of the most common infectious diseases in Bangladesh where Escherichia coli is the prevalent organism and responsible for most of the infections. Lipopolysaccharide (LPS) is known to act as a major virulence factor of E. coli. The present study aimed to purify, extract and visualize LPS of E. coli clinical isolates from urine samples of patients with UTI. The E. coli strain was isolated from the urine samples of 10 patients with UTI and then the antibiotic sensitivity pattern of the isolates was determined. The purification of LPS was carried out using the hot aqueous-phenol method and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, which was directly stained using the modified silver staining method and Coomassie blue. The silver-stained gel demonstrated both smooth and rough type LPS by showing trail-like band patterns with the presence and lacking O-antigen region, respectively. Coomassie blue staining showed no band assuring the absence of any contaminating protein. Our successful extraction of purified LPS from E. coli isolates of UTI patients’ urine samples can be an important step to understand the UTI disease conditions.Keywords: Escherichia coli, electrophoresis, polyacrylamide gel, silver staining, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
Procedia PDF Downloads 389719 Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation
Authors: André C. Silva, Débora N. Sousa, Elenice M. S. Silva, Thales P. Fontes, Raphael S. Tomaz
Abstract:
Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 oC. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization.Keywords: froth flotation, gelatinization, sodium hydroxide, starches and flours
Procedia PDF Downloads 363718 Potency of Some Dietary Acidifiers on Productive Performance and Controlling Salmonella enteritidis in Broilers
Authors: Mohamed M. Zaki, Maha M. Hady
Abstract:
Salmonella spp. have been categorized as the world’s biggest threats to human health and poultry products are mostly incriminated sources. In Egypt, it was found that S. enteritidis and S. typhimurium are the most prevalent ones in poultry farms. It is recommended to eliminate salmonella from living bird by competing for salmonella contamination in feed in order to establish a healthy gut. The Feed acidifiers are the group of feed additives containing low-molecular-weight organic acids and/ or their salts which act as performance promoters by lowering the pH in the gut, optimizes digestion and inhibit bacterial growth. The inclusion of organic acid in pure form nonetheless effective in feed, yet, it is difficult to handle in feed mills as it is corrosive and produce more losses during pelleting process. The current study aimed at to evaluate the impact of incorporation of sodium diformate (SDF) and a commercial acidifier, CA (a mixture of butyric and propionic acids and their ammonium salts) at 0.4% dietary levels on broilers performance and the control S. enteritidis infection. Two hundreds and seventy unsexed cobb chickens were allotted in one of three treatments (90/ group) which were, the control (no acidifier, C- &C+), the 0.4% SDF (SDF- & SDF +) and the 0.4% CA (CA- & CA +) dietary levels for 35 days. Before the allocation of the groups, ten extra birds and a diet sample were bacteriologically examined to ensure negative contamination with salmonella. The birds were raised on deep-litter separated pens and had free access to feed and water all the time. The experimentally formulated diets were kept at 40C. After 24h access to the different dietary treatments, all the birds in the positive groups (n=15/ replicate) were inoculated intra-crop with 0.2 ml of 24 h broth culture of S. entertidis containing 1X 107 organisms while the negative-treated groups were inoculated with the same amount of the negative broth and second inoculation was done at 22 d of age. Colocal swabs were collected individually from all birds 2 h pre-inoculation to assure the absence of salmonella, then 1, 3, 5, 7, 21 days post-inoculation to recover salmonella. Performance parameter (body weight gain and feed efficiency) were calculated. Mortalities were recorded and reisolation of the salmonella was adopted to ensure it was the inoculated ones. The results revealed that the dietary acidification with sodium diformate significantly improved broilers performance and tends to produce heavier birds as compared to the negative control and CA groups. Moreover, the dietary inclusion of both acidifiers at level of 0.4% was able to eliminate mortalities completely at the relevant inoculation time. Regarding the shedding of S. enteritidius in positive groups, the SDF treatment resulted in significant (p<0.05) cessation of the shedding at 3 days post-inoculation compared to 7 days post-inoculation for the CA-group. In conclusion, sodium diformate at 0.4% dietary level in broiler diets has a valuable effect not only on broilers performance but also by eliminating S. enteritidis the main source of salmonella contamination in poultry farms which is feed.Keywords: acidifier, broilers, Salmonalla spp, sodium diformate
Procedia PDF Downloads 285717 Optimization of Chitosan Membrane Production Parameters for Zinc Ion Adsorption
Authors: Peter O. Osifo, Hein W. J. P. Neomagus, Hein V. D. Merwe
Abstract:
Chitosan materials from different sources of raw materials were characterized in order to determine optimal preparation conditions and parameters for membrane production. The membrane parameters such as molecular weight, viscosity, and degree of deacetylation were used to evaluate the membrane performance for zinc ion adsorption. The molecular weight of the chitosan was found to influence the viscosity of the chitosan/acetic acid solution. An increase in molecular weight (60000-400000 kg.kmol-1) of the chitosan resulted in a higher viscosity (0.05-0.65 Pa.s) of the chitosan/acetic acid solution. The effect of the degree of deacetylation on the viscosity is not significant. The effect of the membrane production parameters (chitosan- and acetic acid concentration) on the viscosity is mainly determined by the chitosan concentration. For higher chitosan concentrations, a membrane with a better adsorption capacity was obtained. The membrane adsorption capacity increases from 20-130 mg Zn per gram of wet membrane for an increase in chitosan concentration from 2-7 mass %. Chitosan concentrations below 2 and above 7.5 mass % produced membranes that lack good mechanical properties. The optimum manufacturing conditions including chitosan concentration, acetic acid concentration, sodium hydroxide concentration and crosslinking for chitosan membranes within the workable range were defined by the criteria of adsorption capacity and flux. The adsorption increases (50-120 mg.g-1) as the acetic acid concentration increases (1-7 mass %). The sodium hydroxide concentration seems not to have a large effect on the adsorption characteristics of the membrane however, a maximum was reached at a concentration of 5 mass %. The adsorption capacity per gram of wet membrane strongly increases with the chitosan concentration in the acetic acid solution but remains constant per gram of dry chitosan. The optimum solution for membrane production consists of 7 mass % chitosan and 4 mass % acetic acid in de-ionised water. The sodium hydroxide concentration for phase inversion is at optimum at 5 mass %. The optimum cross-linking time was determined to be 6 hours (Percentage crosslinking of 18%). As the cross-linking time increases the adsorption of the zinc decreases (150-50 mg.g-1) in the time range of 0 to 12 hours. After a crosslinking time of 12 hours, the adsorption capacity remains constant. This trend is comparable to the effect on flux through the membrane. The flux decreases (10-3 L.m-2.hr-1) with an increase in crosslinking time range of 0 to 12 hours and reaches a constant minimum after 12 hours.Keywords: chitosan, membrane, waste water, heavy metal ions, adsorption
Procedia PDF Downloads 387716 Environmental Impact Assessment of OMI Irrigation Scheme, Nigeria
Authors: Olumuyiwa I. Ojo, Kola Amao, Josiah A. Adeyemo, Fred A. O. Otieno
Abstract:
A study was carried out to assess the environmental impact of Kampe (Omi) irrigation scheme with respect to public health hazards, the rising water table, salinity and alkalinity problems on the project site. A structured questionnaire was used as the main tool to gather information on the effect of the irrigation project on the various communities around the project site. The different sections of the questionnaire enabled the gathering of information ranging from general to more specific information. The results obtained from the study showed that the two effects are obvious: the 'positive effects' which include increasing the socioeconomic development of the entire communities, resulting in an increase in employment opportunities and better lifestyle and the 'negative effects' in which malaria (100% occurrence) and schistosomiasis (66.7%) were found to be active diseases caused by irrigation activities. Increase in height of water table and salinity is eminent in the irrigation site unless adequate drainage is provided. The collection and experimental analyses of representation soil and water samples from each scheme were used to assess the current status of each receptor. Results obtained indicate the absence of soil with sodium adsorption ration (SAR) values ranging from 3.0 to 3.89, exchangeable sodium percentage (ESP) ranged from 3.8% to 5.5% while pH values ranged from 6.60 to 7.00. Drainage facilities of the project site are inadequate, therefore making it difficult to leach the soil and flood history is occasional.Keywords: irrigation, impact, soil analysis, Nigeria
Procedia PDF Downloads 294715 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions
Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly
Abstract:
Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability
Procedia PDF Downloads 88714 Preparation of Chromium Nanoparticles on Carbon Substrate from Tannery Waste Solution by Chemical Method Compared to Electrokinetic Process
Authors: Mahmoud A. Rabah, Said El Sheikh
Abstract:
This work shows the preparation of chromium nanoparticles from tannery waste solution on glassy carbon by chemical method compared to electrokinetic process. The waste solution contains free and soluble fats, calcium, iron, magnesium and high sodium in addition to the chromium ions. Filtration helps removal of insoluble matters. Diethyl ether successfully extracted soluble fats. The method started by removing calcium as insoluble oxalate salts at hot conditions in a faint acidic medium. The filtrate contains iron, magnesium, chromium ions and sodium chloride in excess. Chromium was separated selectively as insoluble hydroxide sol-gel at pH 6.5, filtered and washed with distilled water. Part of the gel reacted with sulfuric acid to produce chromium sulfate solution having 15-25 g/L concentration. Electrokinetic deposition of chromium nanoparticles on a carbon cathode was carried out using platinum anode under different galvanostatic conditions. The chemical method involved impregnating the carbon specimens with chromium hydroxide gel followed by reduction using hydrazine hydrate or by thermal reduction using hydrogen gas at 1250°C. Chromium grain size was characterized by TEM, FT-IR and SEM. Properties of the Cr grains were correlated to the conditions of the preparation process. Electrodeposition was found to control chromium particles to be more identical in size and shape as compared to the chemical method.Keywords: chromium, electrodeposition, nanoparticles, tannery waste solution
Procedia PDF Downloads 409713 Evaluation of Risk and the Beneficial Effects of Synthesized Nano Silver-Based Disinfectant on Poultry Mortality and Health
Authors: Indrajeet Kumar, Jayanta Bhattacharya
Abstract:
This study was evaluated for the potential use of nanosilver (nAg) as a disinfectant and antimicrobial growth promoter supplement for the poultry. The experiments were conducted in the Kangsabati river basin region, in West Medinipur district, West Bengal, India for six months. Two poultry farms were adopted for the experiment. The rural economy of this region from Jhargram to Barkola is heavily dependent on contract poultry farming. The water samples were collected from the water source of poultry farm which has been used for poultry drinking purpose. The bacteriological analysis of water sample revealed that the total bacterial count (total coliform and E. coli) were higher than the acceptable standards. The bacterial loads badly affected the growth performance and health of the poultry. For disinfection, a number of chemical compounds (like formaldehyde, calcium hypochloride, sodium hypochloride, and sodium bicarbonate) have been used in typical commercial formulations. However, the effects of all these chemical compounds have not been significant over time. As a part of our research-to-market initiative, we used nanosilver (nAg) formulation as a disinfectant. The nAg formulation was synthesized by hydrothermal technique and characterized by UV-visible, TEM, SEM, and EDX. The obtained results revealed that the mortality rate of poultry was reduced due to nAg formulation compared to the mortality rate of the negative control. Moreover, the income of the farmer family was increased by 10-20% due to less mortality and better health of the poultry.Keywords: farm water, nanosilver, field application, and poultry performance
Procedia PDF Downloads 162712 Binding of Avian Excreta-Derived Enteroccoci to a Streptococcocus mutans: Implications for Avian to Human Transmission
Authors: Richard K. Jolley, Jonathan A. Coffman
Abstract:
Since Enterococci has been implicated in oral disease, we hypothesized the transmission of avian Enterococci to humans via fecal-oral transmission facilitated by adherence to dental plaque. To demonstrate the capability of Enterococci to bind to a dental plaque we filtered avian excreta and incubated the filtrate on a sucrose-induced, Streptococcus mutans biofilm. The biofilm was washed several times with a detergent to remove bacteria binding non-specifically to the biofilm, DNA was isolated from the biofilm, 16S rDNA was amplified, sequenced by Ion Torrent DNA sequencing and analyzed with bioinformatics. Enterococci and other known bacterial pathogens were shown to adhere to the biofilm. Culturing the washed biofilm with Bile Esculin Azide (BEA) agar also confirmed the presence of Enterococci as verified with Sanger sequencing. The results suggest that Enteroccoci in avian excreta has the ability to adhere to human dental plaque and may be a mechanism of entry when humans encounter contaminated aerosols, water or food.Keywords: Enterococci, avian excreta, dental plaque, NGS
Procedia PDF Downloads 160711 Preparation of Wool Fiber/Keratin/PVA Film and Study on Their Structure and Properties
Authors: Min Wu, Shuming Shen, Xuhong Yang, Rencheng Tang
Abstract:
Every year, numerous organic wastes from fiber byproducts of the wool textile industry, poor quality raw wools not fit for spinning, horns, nails and feathers from butchery are disposed. These wastes are abundant in keratin which is a renewable material. Wool fiber/keratin/PVA composites with different proportions were prepared in this study, and the influence of the proportions on their structure and properties were studied, aiming to understand the potential application of keratin in the field of biomedicine, degradable wrapper, and cosmetics film, and provide a new way to reuse keratin wastes. The urea / sodium sulfide / sodium dodecyl sulfate (SDS) method was used to dissolve the wool. After filtration and dialysis, the wool keratin solution was achieved. Then the keratin solution and polyvinal (PVA) solution were blended in different proportions, and the wool fibers cut into a certain length were cast into the blended solution. Thereby, various wool fiber/keratin/PVA composite films with different proportions were formed through pouring the solution into a flat box and drying at room temperature. The surface morphology, molecular structure, and mechanical property of the composite films were studied. The results showed that, there are α-helix structure, β-sheet and random coil conformations in the pure keratin film, as well as in the wool fiber. Compared with wool fiber, the crystallinity of keratin decreased. PVA can obviously improve the mechanical property of the blended film. When the blended ratio of keratin and PVA is 20:80, the mechanical property of the blended film is greatly improved. The composite films with 8%-16% of wool fibers have better flexibility than those without wool fibers.Keywords: composite film, keratin, mechanical property, morphological structure, PVA, wool fiber
Procedia PDF Downloads 286710 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications
Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin
Abstract:
This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack
Procedia PDF Downloads 83709 Investigation of Compressive Strength of Slag-Based Geopolymer Concrete Incorporated with Rice Husk Ash Using 12M Alkaline Activator
Authors: Festus A. Olutoge, Ahmed A. Akintunde, Anuoluwapo S. Kolade, Aaron A. Chadee, Jovanca Smith
Abstract:
Geopolymer concrete's (GPC) compressive strength was investigated. The GPC was incorporated with rice husk ash (RHA) and ground granulated blast furnace slag (GGBFS), which may have potential in the construction industry to replace Portland limestone cement (PLC) concrete. The sustainable construction binders used were GGBFS and RHA, and a solution of sodium hydroxide (NaOH) and sodium silicate gel (Na₂SiO₃) was used as the 12-molar alkaline activator. Five GPC mixes comprising fine aggregates, coarse aggregates, GGBS, and RHA, and the alkaline solution in the ratio 2: 2.5: 1: 0.5, respectively, were prepared to achieve grade 40 concrete, and PLC was wholly substituted with GGBFS and RHA in the ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. A control mix was also prepared which comprised of 100% water and 100% PLC as the cementitious material. The GPC mixes were thermally cured at 60-80ºC in an oven for approximately 24hrs. After curing for 7 and 28 days, the compressive strength test results of the hardened GPC samples showed that GPC-Mix #3, comprising 50% GGBFS and 50% RHA, was the most efficient geopolymer mix. The mix had compressive strengths of 35.71MPa and 47.26MPa, 19.87% and 8.69% higher than the PLC concrete samples, which had 29.79MPa and 43.48MPa after 7 and 28 days, respectively. Therefore, geopolymer concrete containing GGBFS incorporated with RHA is an efficient method of decreasing the use of PLC in conventional concrete production and reducing the high amounts of CO₂ emitted into the atmosphere in the construction industry.Keywords: alkaline solution, cementitious material, geopolymer concrete, ground granulated blast furnace slag, rice husk ash
Procedia PDF Downloads 107708 A Straightforward Method for Determining Inorganic Selenium Speciations by Graphite Furnace Atomic Absorption Spectroscopy in Water Samples
Authors: Sahar Ehsani, David James, Vernon Hodge
Abstract:
In this experimental study, total selenium in solution was measured with Graphite Furnace Atomic Absorption Spectroscopy, GFAAS, then chemical reactions with sodium borohydride were used to reduce selenite to hydrogen selenide. Hydrogen selenide was then stripped from the solution by purging the solution with nitrogen gas. Since the two main speciations in oxic waters are usually selenite, Se(IV) and selenate, Se(VI), it was assumed that after Se(IV) is removed, the remaining total selenium was Se(VI). Total selenium measured after stripping gave Se(VI) concentration, and the difference of total selenium measured before and after stripping gave Se(IV) concentration. An additional step of reducing Se(VI) to Se(IV) was performed by boiling the stripped solution under acidic conditions, then removing Se(IV) by a chemical reaction with sodium borohydride. This additional procedure of removing Se(VI) from the solution is useful in rare cases where the water sample is reducing and contains selenide speciation. In this study, once Se(IV) and Se(VI) were both removed from the water sample, the remaining total selenium concentration was zero. The method was tested to determine Se(IV) and Se(VI) in both purified water and synthetic irrigation water spiked with Se(IV) and Se(VI). Average recovery of spiked samples of diluted synthetic irrigation water was 99% for Se(IV) and 97% for Se(VI). Detection limits of the method were 0.11 µg L⁻¹ and 0.32 µg L⁻¹ for Se(IV) and Se(VI), respectively.Keywords: Analytical Method, Graphite Furnace Atomic Absorption Spectroscopy, Selenate, Selenite, Selenium Speciations
Procedia PDF Downloads 142707 Influence of Sodium Lauryl Ether Sulfate and Curing Temperature on Behaviors of Lightweight Kaolinite-Based Geopolymer
Authors: W. Sornlar, S. Supothina, A. Wannagon
Abstract:
Lightweight geopolymer can be prepared by using some foaming agents, such as metal powders or hydrogen peroxide; however, it is difficult to control the generated cell size due to the high reactivity of the system. This study aims to investigate the influence of Sodium Lauryl Ether Sulfate (SLES) foam addition and curing temperature on the physical, mechanical, thermal, and microstructure behaviors of the lightweight kaolinite-based geopolymer. To provide porous structure, the geopolymer paste was mixed with 0-15 wt% of SLES foam before casting into the mold. Testing and characterizations were carried out after 28 days. The results showed that SLES foam generated the regular and spherical macropores, which were well distributed in the geopolymer samples. The total porosity increased as SLES foam increased, similarly as the apparent porosity and water absorption. On the other hand, the bulk density and mechanical strength decreased as SLES foam increased. Curing temperature was studied simultaneously due to it strongly affects the mechanical strength of geopolymer. In this study, rising of curing temperature from 27 to 50°C (at 75% relative humidity) improved the compressive strength of samples but deteriorated after curing at 60°C. Among them, the composition of 15 wt% SLES foam (NF15) presented the highest porosity (70.51-72.89%), the lowest density (0.68-0.73 g/cm³), and very low thermal conductivity (0.172-0.197 W/mK). It had the proper compressive strength of 4.21-4.74 MPa that can be applied for the thermal insulation.Keywords: lightweight, kaolinite-based geopolymer, curing temperature, foaming agent, thermal conductivity
Procedia PDF Downloads 181706 Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India
Authors: D. S. Jaya, G. P. Deepthi
Abstract:
Groundwater is vital to the livelihoods and health of the majority of the people since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical, and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area are wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre-monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analysed following standard procedures. The concentration of heavy metals (Cd, Pb, and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to the alkaline level. In the majority of well water samples ( > 54%) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area is good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Kerala in terms of its chemical and bacteriological characteristics and is not potable without proper treatment. In the study, more than 1/3rd of the wells tested were positive for total coliforms, and the bacterial contamination may pose threats to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.Keywords: bacteriological, groundwater, irrigational suitability, physicochemical, portability
Procedia PDF Downloads 263705 Layer-by-Layer Coated Dexamethasone Microcrystals for Experimental Inflammatory Bowel Disease Therapy
Authors: Murtada Ahmed Oshi, Jin-Wook Yoo
Abstract:
Layer-by-layer (LBL) coating has gained popularity for drug delivery of therapeutic drugs. Herein we described a novel approach for enhancing the therapeutic efficiency of the locally administered dexamethasone (Dex) for inflammatory bowel disease (IBD). We utilized a LBL-coating technique on Dex microcrystals (DexMCs) with multiple layers of polyelectrolytes composed of poly (allylamine hydrochloride) (PAH), poly (sodium 4-styrene sulfonate) (PSS) and Eudragit® S100 (ES). The successful deposition of the layers onto DexMCs surfaces were confirmed through zeta potential measurement and confocal laser scanning microscopy. The surface morphology was investigated through scanning electron microscopy. The drug encapsulation efficiency was 95% with a mean particle size of 2 µm and negative surface charge (-40 mV). Moreover, in vitro drug release study showed a minimum release of the drug ( 15%) at an acidic condition during initial first 5 h, followed by sustained-release at an alkaline condition. For in vivo study, LBL-DxMCs were administered orally to ICR mice suffering from dextran sulfate sodium-induced colitis. LBL-DxMCs substantially enhanced anti-IBD activities as compared to DxMCs. Macroscopic, histological and biochemical (tumor necrosis factor-α, interleukin-6 and myeloperoxidase) examinations revealed marked improvements of colitis signs in the mice treated with LBL-DxMCs compared with those treated with DxMCs. Overall, LBL-DxMCs could be a suitable candidate for the treatment of IBD.Keywords: dexamethasone, inflammatory bowel disease, LBL-coating, polyelectrolytes
Procedia PDF Downloads 196704 Design and Development of Buccal Delivery System for Atenolol Tablets by Using Different Bioadhesive Polymers
Authors: Venkatalakshmi Ranganathan, Ong Hsin Ju, Tan Yinn Ming, Lim Kien Sin, Wong Man Ting, Venkata Srikanth Meka
Abstract:
The mucoadhesive buccal tablet is an oral drug delivery system which attached to the buccal surface for direct drug absorption into the systemic circulation and the unidirectional drug release is ensured by formulating a hydrophobic backing layer. The objective of present study was to formulate mucoadhesive atenolol bilayer buccal tablets by using sodium alginate, hydroxyethyl cellulose, and xanthan gum as mucoadhesive polymer and the technique applied was direct compression method. Ethyl cellulose was used as backing layer of the tablet. FTIR and DSC analysis were carried out to identify the drug polymer interactions. The prepared tablets were evaluated for physicochemical parameters, ex vivo mucoadhesion time and in-vitro drug release. The formulated tablets showed the average surface pH 6-7 which is favourable for oral mucosa. The formulation containing sodium alginate showed more than 90 % of drug release at the end of the 7 hours in vitro dissolution studies. The formulation containing xanthan gum showed more than 8 hours of mucoadhesion time and all formulation exhibited non fickian release kinetics. The present study indicates enormous potential of erodible mucoadhesive buccal tablet containing atenolol for systemic delivery with an added advantage of circumventing the hepatic first pass metabolism.Keywords: atenolol, mucoadhesion, in vitro drug release, direct compression, ethyl cellulose
Procedia PDF Downloads 619703 Identification of a Lead Compound for Selective Inhibition of Nav1.7 to Treat Chronic Pain
Authors: Sharat Chandra, Zilong Wang, Ru-Rong Ji, Andrey Bortsov
Abstract:
Chronic pain (CP) therapeutic approaches have limited efficacy. As a result, doctors are prescribing opioids for chronic pain, leading to opioid overuse, abuse, and addiction epidemic. Therefore, the development of effective and safe CP drugs remains an unmet medical need. Voltage-gated sodium (Nav) channels act as cardiovascular and neurological disorder’s molecular targets. Nav channels selective inhibitors are hard to design because there are nine closely-related isoforms (Nav1.1-1.9) that share the protein sequence segments. We are targeting the Nav1.7 found in the peripheral nervous system and engaged in the perception of pain. The objective of this project was to screen a 1.5 million compound library for identification of inhibitors for Nav1.7 with analgesic effect. In this study, we designed a protocol for identification of isoform-selective inhibitors of Nav1.7, by utilizing the prior information on isoform-selective antagonists. First, a similarity search was performed; then the identified hits were docked into a binding site on the fourth voltage-sensor domain (VSD4) of Nav1.7. We used the FTrees tool for similarity searching and library generation; the generated library was docked in the VSD4 domain binding site using FlexX and compounds were shortlisted using a FlexX score and SeeSAR hyde scoring. Finally, the top 25 compounds were tested with molecular dynamics simulation (MDS). We reduced our list to 9 compounds based on the MDS root mean square deviation plot and obtained them from a vendor for in vitro and in vivo validation. Whole-cell patch-clamp recordings in HEK-293 cells and dorsal root ganglion neurons were conducted. We used patch pipettes to record transient Na⁺ currents. One of the compounds reduced the peak sodium currents in Nav1.7-HEK-293 stable cell line in a dose-dependent manner, with IC50 values at 0.74 µM. In summary, our computer-aided analgesic discovery approach allowed us to develop pre-clinical analgesic candidate with significant reduction of time and cost.Keywords: chronic pain, voltage-gated sodium channel, isoform-selective antagonist, similarity search, virtual screening, analgesics development
Procedia PDF Downloads 123