Search results for: recovered addicts
149 Transcriptome Analysis Reveals Role of Long Non-Coding RNA NEAT1 in Dengue Patients
Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee
Abstract:
Background: Long non-coding RNAs (lncRNAs) are the important regulators of gene expression and play important role in viral replication and disease progression. The role of lncRNA genes in the pathogenesis of Dengue virus-mediated pathogenesis is currently unknown. Methods: To gain additional insights, we utilized an unbiased RNA sequencing followed by in silico analysis approach to identify the differentially expressed lncRNA and genes that are associated with dengue disease progression. Further, we focused our study on lncRNAs NEAT1 (Nuclear Paraspeckle Assembly Transcript 1) as it was found to be differentially expressed in PBMC of dengue infected patients. Results: The expression of lncRNAs NEAT1, as compared to dengue infection (DI), was significantly down-regulated as the patients developed the complication. Moreover, pairwise analysis on follow up patients confirmed that suppression of NEAT1 expression was associated with rapid fall in platelet count in dengue infected patients. Severe dengue patients (DS) (n=18; platelet count < 20K) when recovered from infection showing high NEAT1 expression as it observed in healthy donors. By co-expression network analysis and subsequent validation, we revealed that coding gene; IFI27 expression was significantly up-regulated in severe dengue cases and negatively correlated with NEAT1 expression. To discriminate DI from dengue severe, receiver operating characteristic (ROC) curve was calculated. It revealed sensitivity and specificity of 100% (95%CI: 85.69 – 97.22) and area under the curve (AUC) = 0.97 for NEAT1. Conclusions: Altogether, our first observations demonstrate that monitoring NEAT1and IFI27 expression in dengue patients could be useful in understanding dengue virus-induced disease progression and may be involved in pathophysiological processes.Keywords: dengue, lncRNA, NEAT1, transcriptome
Procedia PDF Downloads 310148 Recovery of Selenium from Scrubber Sludge in Copper Process
Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu
Abstract:
The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂
Procedia PDF Downloads 205147 Impact of Changes in Travel Behavior Triggered by the Covid-19 Pandemic on Tourist Ininfrastructure. Water Reservoirs of the Vltava Cascade (Czechia) Case Study
Authors: Jiří Vágner, Dana Fialová
Abstract:
The Covid-19 pandemic and its effects have triggered significant changes in travel behavior. On the contrary to a deep decline in international tourism, domestic tourism has recovered. It has not fully replaced the total volume of national tourism so far. However, from a regional point of view, and especially according to the type of destinations, regional targeting has changed significantly compared to the previous period. Urban destinations, which used to be the domain of foreign tourists, have been relatively orphaned, in contrast to destinations tied to natural attractions, which have seen seasonal increases. Even here, at a lower hierarchical geographic level, we can observe the differentiation resulting from the existing localization and infrastructure. The case study is focused on the three largest water reservoirs of the Vltava Cascade in Czechia– Lipno, Orlík, and Slapy. Based on a detailed field survey, in the periods before and during the pandemic, as well as available statistical data (Tourdata; Czech Statistical Office, Czech Cadaster and Ordnance Survey), different trends in the exploitation of these destinations with regard to existing or planned infrastructure are documented, analyzed and explained. This gives us the opportunity to discuss on concrete examples of generally known phenomena that are usually neglected in tourism: slum, brownfield, greenfield. Changes in travel behavior – especially the focus on spending leisure time individually in naturally attractive destinations – can affect the use of sites, which can be defined as a tourist or recreational slum, brownfield, but also as a tourist greenfield development. Sociocultural changes and perception of destinations by tourists and other actors represent, besides environmental changes, major trends in current tourism.Keywords: Covid-19 pandemic, czechia, sociocultural and environmental impacts, tourist infrastructure, travel behavior, the Vltava Cascade water reservoirs
Procedia PDF Downloads 146146 Evaluation of Anti-Arthritic Activity of Eulophia ochreata Lindl and Zingiber cassumunar Roxb in Freund's Complete Adjuvant Induced Arthritic Rat Model
Authors: Akshada Amit Koparde, Candrakant S. Magdum
Abstract:
Objective: To investigate the anti-arthritic activity of chloroform extract and Isolate 1 of Eulophia ochreata Lindl and dichloromethane extract and Isolate 2 of Zingiber cassumunar Roxb in adjuvant arthritic (AA) rat model induced by Freund’s complete adjuvant (FCA). Methods: Forty two healthy albino rats were selected and randomly divided into six groups. Freund’s complete adjuvant (FCA) was used to induce arthritis and then treated with chloroform extract, isolate 1 and dichloromethane extract, isolate 2 for 28 days. The various parameters like paw volume, haematological parameters (RBC, WBC, Hb and ESR), were studied. Structural elucidation of active constituents isolate 1 and isolate 2 from Eulophia ochreata Lindl and Zingiber cassumunar Roxb will be done using GCMS and H1NMR. Results: In FCA induced arthritic rats, there was significant increase in rat paw volume whereas chloroform extract and Isolate 1 of Eulophia ochreata Lindl and dichloromethane extract and Isolate 2 of Zingiber cassumunar Roxb treated groups showed strong significant reduction in paw volume. The altered haematological parameters in the arthritic rats were significantly recovered to near normal by the treatment with extracts at the dose of 200 mg/kg. Further histopathological studies revealed the anti-arthritic activity of Eulophia ochreata Lindl and Zingiber cassumunar Roxb by preventing cartilage and bone destruction of the arthritic joints of AA rats. Conclusion: Extracts and isolates of Eulophia ochreata Lindl and Zingiber cassumunar Roxb have shown anti-arthritic activity. Decrease in paw volume and normalization of haematological abnormalities in adjuvant induced arthritic rats is significantly seen in the experiment. Further histopathological studies confirmed the anti-arthritic activity of Eulophia ochreata Lindl and Zingiber cassumunar Roxb.Keywords: arthritis, Eulophia ochreata Lindl, Freund's complete adjuvant, paw volume, Zingiber cassumunar Roxb
Procedia PDF Downloads 176145 The State of Employee Motivation During Covid-19 Outbreak in Sri Lankan Construction Sector
Authors: Tharaki Hetti Arachchi
Abstract:
Sri Lanka has undergone numerous changes in the fields of social-economic and cultural processors during the past decades. Consequently, the Sri Lankan construction industry was subjected to rapid growth while contributing a considerable amount to the national economy. The prevailing situation under the Covid-19 pandemic exhibited challenges to almost all of the sectors of the country in attaining success. Although productivity is one of the dimensions that measure the degree of project success, achieving sufficient productivity has become challengeable due to the Covid-19 outbreak. As employee motivation is an influential factor in defining productivity, the present study becomes significant in discovering ways of enhancing construction productivity via employee motivation. The study has adopted a combination of qualitative and quantitative methodologies in attaining the study objectives. While the research population refers to construction professionals in Sri Lanka, the study sample is aimed at Quantity Surveyors in the bottom and middle managements of organizational hierarchies. The data collection was implemented via primary and secondary sources. The primary data collection was accomplished by undertaking semi-structured interviews and online questionnaire surveys while sampling the overall respondents based on the purposive sample method. The responses of the questionnaire survey were gathered in a form of a ‘Likert Scale’ to examine the degree of applicability on each respondent. Overall, 76.36% of primary data were recovered from the expected count while obtaining 60 responses from the questionnaire survey and 24 responses from interviews. Secondary data were obtained by reviewing sources such as research articles, journals, newspapers, books, etc. The findings suggest adopting and enhancing sixteen motivational factors in achieving greater productivity in the Sri Lankan construction sector.Keywords: Covid 19 pandemic, motivation, quantity surveying, Sri Lanka
Procedia PDF Downloads 95144 Comparative Evaluation of Pentazocine and Tramadol as Pre-Emptive Analgesics for Ovariohysterectomy in Female Dogs
Authors: Venkatgiri, Ranganath, L. Nagaraja, B. N. Sagar Pandav, S. M. Usturge, D. Dilipkumar, B. V. Shivprakash, B. Bhagwanthappa, D. Jahangir
Abstract:
A comparative evaluation of Tramadol and Pentazocine as a pre-emptive analgesic in clinical cases of female dogs undergoing ovariohysterectomy was undertaken during this study. During the study, the following parameters were assessed viz., Rectal temperature (ᵒF), Respiratory rate (breaths/min) and Heart rate (beats/min). Hematological and biochemical parameters viz., total erythrocyte count (TEC) (millions/cmm), hemoglobin (g %), otal leucocytes count (TLC) (thousands/cmm), differential leucocytes count (DLC) (%), serum creatinine (mg/dl), plasma protein (mg/dl), blood glucose (mg/dl) was estimated before the surgery and after administration of general anaesthesia and immediate postoperative periods of 0, 12 and 24 hr respectively. Mean Total Pain Score (MTPS) includes measurement of parameters like posture, vocalization, activity level, response to palpation and agitation at different intervals was calculated before surgery and after administration of general anesthesia and post-operative periods of 1, 2, 4, 6, 12hrs and 24 hrs respectively. Mean Total Pain Score (MTPS) was given for each parameter (Posture, Vocalization, Activity Level, Response to Palpation and Agitation) like 0,1,2,3. (maximum score will be given was 4.). Results were revealed in all three groups including control group. There were significant minor alterations in physiological, hematological and biochemical parameters. MTPS (mean total pain score) were revealed and found a significant alteration when compared with control group. In conclusion, Tramadol found to be a better analgesic and had up to 8hrs of analgesic effect and Pentazocine is superior in post-operative pain management when compared to Tramadol because this group of dogs experienced less surgical stress, consumed less anesthetic dose, they recovered early, and they had less MTPS score.Keywords: dog, pentazocine, tramadol, ovariohysterectomy
Procedia PDF Downloads 167143 BTEX Removal from Water: A Comparative Analysis of Efficiency of Low Cost Adsorbents and Granular Activated Carbon
Authors: Juliet Okoli
Abstract:
The removal of BTEX (Benzene, toluene, Ethylbenzene and p-Xylene) from water by orange peel and eggshell compared to GAC were investigated. The influence of various factors such as contact time, dosage and pH on BTEX removal by virgin orange peel and egg shell were accessed using the batch adsorption set-up. These were also compared to that of GAC which serves as a benchmark for this study. Further modification (preparation of Activated carbon) of these virgin low-cost adsorbents was also carried out. The batch adsorption result showed that the optimum contact time, dosage and pH for BTEX removal by virgin LCAs were 180 minutes, 0.5g and 7 and that of GAC was 30mintues, 0.2g and 7. The maximum adsorption capacity for total BTEX showed by orange peel and egg shell were 42mg/g and 59mg/g respectively while that of GAC was 864mg/g. The adsorbent preference for adsorbate were in order of X>E>T>B. A comparison of batch and column set-up showed that the batch set-up was more efficient than the column set-up. The isotherm data for the virgin LCA and GAC prove to fit the Freundlich isotherm better than the Langmuir model, which produced n values >1 in case of GAC and n< 1 in case of virgin LCAs; indicating a more appropriate adsorption of BTEX onto the GAC. The adsorption kinetics for the three studied adsorbents were described well by the pseudo-second order, suggesting chemisorption as the rate limiting step. This was further confirmed by desorption study, as low levels of BTEX (<10%) were recovered from the spent adsorbents especially for GAC (<3%). Further activation of the LCAs which was compared to the virgin LCAs, revealed that the virgin LCAs had minor higher adsorption capacity than the activated LCAs. Economic analysis revealed that the total cost required to clean-up 9,600m3 of BTEX contaminated water using LCA was just 2.8% lesser than GAC, a difference which could be considered negligible. However, this area still requires a more detailed cost-benefit analysis, and if similar conclusions are reached; a low-cost adsorbent, easy to obtain are still promising adsorbents for BTEX removal from aqueous solution; however, the GAC are still more superior to these materials.Keywords: activated carbon, BTEX removal, low cost adsorbents, water treatment
Procedia PDF Downloads 269142 Treatment of Low-Grade Iron Ore Using Two Stage Wet High-Intensity Magnetic Separation Technique
Authors: Moses C. Siame, Kazutoshi Haga, Atsushi Shibayama
Abstract:
This study investigates the removal of silica, alumina and phosphorus as impurities from Sanje iron ore using wet high-intensity magnetic separation (WHIMS). Sanje iron ore contains low-grade hematite ore found in Nampundwe area of Zambia from which iron is to be used as the feed in the steelmaking process. The chemical composition analysis using X-ray Florence spectrometer showed that Sanje low-grade ore contains 48.90 mass% of hematite (Fe2O3) with 34.18 mass% as an iron grade. The ore also contains silica (SiO2) and alumina (Al2O3) of 31.10 mass% and 7.65 mass% respectively. The mineralogical analysis using X-ray diffraction spectrometer showed hematite and silica as the major mineral components of the ore while magnetite and alumina exist as minor mineral components. Mineral particle distribution analysis was done using scanning electron microscope with an X-ray energy dispersion spectrometry (SEM-EDS) and images showed that the average mineral size distribution of alumina-silicate gangue particles is in order of 100 μm and exists as iron-bearing interlocked particles. Magnetic separation was done using series L model 4 Magnetic Separator. The effect of various magnetic separation parameters such as magnetic flux density, particle size, and pulp density of the feed was studied during magnetic separation experiments. The ore with average particle size of 25 µm and pulp density of 2.5% was concentrated using pulp flow of 7 L/min. The results showed that 10 T was optimal magnetic flux density which enhanced the recovery of 93.08% of iron with 53.22 mass% grade. The gangue mineral particles containing 12 mass% silica and 3.94 mass% alumna remained in the concentrate, therefore the concentrate was further treated in the second stage WHIMS using the same parameters from the first stage. The second stage process recovered 83.41% of iron with 67.07 mass% grade. Silica was reduced to 2.14 mass% and alumina to 1.30 mass%. Accordingly, phosphorus was also reduced to 0.02 mass%. Therefore, the two stage magnetic separation process was established using these results.Keywords: Sanje iron ore, magnetic separation, silica, alumina, recovery
Procedia PDF Downloads 258141 Recycling of Spent Mo-Co Catalyst for the Recovery of Molybdenum Using Cyphos IL 104
Authors: Harshit Mahandra, Rashmi Singh, Bina Gupta
Abstract:
Molybdenum is widely used in thermocouples, anticathode of X-ray tubes and in the production of alloys of steels. Molybdenum compounds are extensively used as a catalyst in petroleum-refining industries for hydrodesulphurization. Activity of the catalysts decreases gradually with time and are dumped as hazardous waste due to contamination with toxic materials during the process. These spent catalysts can serve as a secondary source for metal recovery and help to sort out environmental and economical issues. In present study, extraction and separation of molybdenum from a Mo-Co spent catalyst leach liquor containing 0.870 g L⁻¹ Mo, 0.341 g L⁻¹ Co, 0.422 ×10⁻¹ g L⁻¹ Fe and 0.508 g L⁻¹ Al in 3 mol L⁻¹ HCl has been investigated using solvent extraction technique. The extracted molybdenum has been finally recovered as molybdenum trioxide. Leaching conditions used were- 3 mol L⁻¹ HCl, 90°C temperature, solid to liquid ratio (w/v) of 1.25% and reaction time of 60 minutes. 96.45% molybdenum was leached under these conditions. For the extraction of molybdenum from leach liquor, Cyphos IL 104 [trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate] in toluene was used as an extractant. Around 91% molybdenum was extracted with 0.02 mol L⁻¹ Cyphos IL 104, and 75% of molybdenum was stripped from the loaded organic phase with 2 mol L⁻¹ HNO₃ at A/O=1/1. McCabe Thiele diagrams were drawn to determine the number of stages required for the extraction and stripping of molybdenum. According to McCabe Thiele plots, two stages are required for both extraction and stripping of molybdenum at A/O=1/1 which were also confirmed by countercurrent simulation studies. Around 98% molybdenum was extracted in two countercurrent extraction stages with no co-extraction of cobalt and aluminum. Iron was removed from the loaded organic phase by scrubbing with 0.01 mol L⁻¹ HCl. Quantitative recovery of molybdenum is achieved in three countercurrent stripping stages at A/O=1/1. Trioxide of molybdenum was obtained from strip solution and was characterized by XRD, FE-SEM and EDX techniques. Molybdenum trioxide due to its distinctive electrochromic, thermochromic and photochromic properties is used as a smart material for sensors, lubricants, and Li-ion batteries. Molybdenum trioxide finds application in various processes such as methanol oxidation, metathesis, propane oxidation and in hydrodesulphurization. It can also be used as a precursor for the synthesis of MoS₂ and MoSe₂.Keywords: Cyphos IL 104, molybdenum, spent Mo-Co catalyst, recovery
Procedia PDF Downloads 206140 Plasmodium knowlesi Zoonotic Malaria: An Emerging Challenge of Health Problems in Thailand
Authors: Surachart Koyadun
Abstract:
Currently, Plasmodium knowlesi malaria has spread to almost all countries in Southeast Asia. This research aimed to 1) describe the epidemiology of Plasmodium knowlesi malaria, 2) examine the clinical symptoms of P. knowlesi malaria patients 3) analyze the ecology, animal reservoir and entomology of P. knowlesi malaria. 4) summarize the diagnosis, blood parasites, and treatment of P. knowlesi malaria. The study design was a case report combined with retrospective descriptive survey research. A total of 34 study subjects were patients with a confirmed diagnosis of P. knowlesi malaria who received treatment at hospitals and vector-borne disease control units in Songkhla Province during 2021 – 2022. The results of the epidemiological study unveiled the majority of the samples were male, had a history of staying overnight in the forest before becoming sick, the source of the infection was in the forest, and the season during which they were sick was mostly summer. The average length of time from the onset of illness until receiving a blood test was 3.8 days. The average length of hospital stay was 4 days. Patients were treated with Chloroquine Phosphate, Primaquine, Artesunate, Quinine, and Dihydroartemisinin-piperaquine (40 mg DHA-320 mg PPQ). One death was seen in 34 P. knowlesi malaria patients. All remaining patients recovered and responded to treatment. All symptoms improved after drug administration. No treatment failures were found. Analyses of ecological, zoonotic and entomological data revealed an association between infected patients and forested, monkey-hosted and mosquito-transmitted areas. The recommendation from this study was that the Polymerase Chain Reaction (PCR) method should be used in conjunction with the Thick/Thin Film test and blood parasite test (Parasitaemia) for the specificity of the infection, accuracy of diagnosis, leading to treatment of disease in a timely manner and be effective in disease control.Keywords: human malaria, Plasmodium knowlesi, zoonotic disease, diagnosis and treatment, epidemiology, ecology
Procedia PDF Downloads 26139 Synthesis of 5-Substituted 1H-Tetrazoles in Deep Eutectic Solvent
Authors: Swapnil A. Padvi, Dipak S. Dalal
Abstract:
The chemistry of tetrazoles has been grown tremendously in the past few years because tetrazoles are important and useful class of heterocyclic compounds which have a widespread application such as anticancer, antimicrobial, analgesics, antibacterial, antifungal, antihypertensive, and anti-allergic drugs in medicinal chemistry. Furthermore, tetrazoles have application in material sciences as explosives, rocket propellants, and in information recording systems. In addition to this, they have a wide range of application in coordination chemistry as a ligand. Deep eutectic solvents (DES) have emerged over the current decade as a novel class of green reaction media and applied in various fields of sciences because of their unique physical and chemical properties similar to the ionic liquids such as low vapor pressure, non-volatility, high thermal stability and recyclability. In addition, the reactants of DES are cheaply available, low-toxic, and biodegradable, which makes them predominantly required for large-scale applications effectively in industrial production. Herein we report the [2+3] cycloaddition reaction of organic nitriles with sodium azide affords the corresponding 5-substituted 1H-tetrazoles in six different types of choline chloride based deep eutectic solvents under mild reaction condition. Choline chloride: ZnCl2 (1:2) showed the best results for the synthesis of 5-substituted 1 H-tetrazoles. This method reduces the disadvantages such as: the use of toxic metals and expensive reagents, drastic reaction conditions and the presence of dangerous hydrazoic acid. The approach provides environment-friendly, short reaction times, good to excellent yields; safe process and simple workup make this method an attractive and useful contribution to present green organic synthesis of 5-substituted-1H-tetrazoles. All synthesized compounds were characterized by IR, 1H NMR, 13C NMR and Mass spectroscopy. DES can be recovered and reused three times with very little loss in activity.Keywords: click chemistry, choline chloride, green chemistry, deep eutectic solvent, tetrazoles
Procedia PDF Downloads 231138 Evaluation of Anti-Typhoid Effects of Azadirachta indica L. Fractions
Authors: A. Adetutu, T. M. Awodugba, O. A. Owoade
Abstract:
The development of resistance to currently known conventional anti-typhoid drugs has necessitated search into cheap, more potent and less toxic anti-typhoid drugs of plant origin. Therefore, this study investigated the anti-typhoid activity of fractions of A. indica in Salmonella typhi infected rats. Leaves of A. indica were extracted in methanol and fractionated into n-hexane, chloroform, ethyl-acetate, and aqueous fractions. The anti-salmonella potentials of fractions of A. indica were assessed via in-vitro inhibition of S. typhi using agar well diffusion, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and biofilm assays. The biochemical and haematological parameters were determined by spectrophotometric methods. The histological analysis was performed using Haematoxylin and Eosin staining methods. Data analysis was performed by one-way ANOVA. Results of this study showed that S. typhi was sensitive to aqueous and chloroform fractions of A. indica, and the fractions showed biofilm inhibition at concentrations of 12.50, 1.562, and 0.39 mg/mL. In the in-vivo study, the extract and chloroform fraction had significant (p < 0.05) effects on the number of viable S. typhi recovered from the blood and stopped salmonellosis after 6 days of treatment of rats at 500 mg/kg b.w. Treatments of infected rats with chloroform and aqueous fractions of A. indica normalized the haematological parameters in the animals. Similarly, treatment with fractions of the plants sustained a normal antioxidant status when compared with the normal control group. Chloroform and ethyl-acetate fractions of A. indica reversed the liver and intestinal degeneration induced by S. typhi infection in rats. The present investigation indicated that the aqueous and chloroform fractions of A. indica showed the potential to provide an effective treatment for salmonellosis, including typhoid fever. The results of the study may justify the ethno-medicinal use of the extract in traditional medicine for the treatment of typhoid and salmonella infections.Keywords: Azadirachta indica L, salmonella, typhoid, leave fractions
Procedia PDF Downloads 132137 Mathematical Modeling and Analysis of COVID-19 Pandemic
Authors: Thomas Wetere
Abstract:
Background: The coronavirus disease 2019 (COVID-19) pandemic (COVID-19) virus infection is a severe infectious disease with the highly transmissible variant, which become the global public health treat now. It has taken the life of more than 4 million people so far. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. Methodology: To end the global COVID-19 pandemic, implementation of multiple population-wide strategies, including vaccination, environmental factors, Government action, testing, and contact tracing, is required. In this article, a new mathematical model incorporating both temperature and government action to study the dynamics of the COVID-19 pandemic has been developed and comprehensively analysed. The model considers eight stages of infection: susceptible (S), infected Asymptomatic and Undetected(IAU ), infected Asymptomatic and detected(IAD), infected symptomatic and Undetected(ISU ), infected Symptomatic and detected(ISD), Hospitalized or threatened(H), Recovered(R) and Died(D). Results: The existence as well as non-negativity of the solution to the model is also verified, and the basic reproduction number is calculated. Besides, stability conditions are also checked, and finally, simulation results are compared with real data. The results demonstrates that effective government action will need to be combined with vaccination to end the ongoing COVID-19 pandemic. Conclusion: Vaccination and Government action are highly the crucial measures to control the COVID-19 pandemic. Besides, as the cost of vaccination might be high, we recommend an optimal control to reduce the cost and number of infected individuals. Moreover, in order to prevent COVID-19 pandemic, through the analysis of the model, the government must strictly manage the policy on COVID-19 and carry it out. This, in turn, helps for health campaigning and raising health literacy which plays a role to control the quick spread of the disease. We finally strongly believe that our study will play its own role in the current effort of controlling the pandemic.Keywords: modeling, COVID-19, MCMC, stability
Procedia PDF Downloads 112136 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure
Authors: Q. Giraud, J. Gonçalvès, B. Paris
Abstract:
Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media
Procedia PDF Downloads 174135 Reverse Logistics End of Life Products Acquisition and Sorting
Authors: Badli Shah Mohd Yusoff, Khairur Rijal Jamaludin, Rozetta Dollah
Abstract:
The emerging of reverse logistics and product recovery management is an important concept in reconciling economic and environmental objectives through recapturing values of the end of life product returns. End of life products contains valuable modules, parts, residues and materials that can create value if recovered efficiently. The main objective of this study is to explore and develop a model to recover as much of the economic value as reasonably possible to find the optimality of return acquisition and sorting to meet demand and maximize profits over time. In this study, the benefits that can be obtained for remanufacturer is to develop demand forecasting of used products in the future with uncertainty of returns and quality of products. Formulated based on a generic disassembly tree, the proposed model focused on three reverse logistics activity, namely refurbish, remanufacture and disposal incorporating all plausible means quality levels of the returns. While stricter sorting policy, constitute to the decrease amount of products to be refurbished or remanufactured and increases the level of discarded products. Numerical experiments carried out to investigate the characteristics and behaviour of the proposed model with mathematical programming model using Lingo 16.0 for medium-term planning of return acquisition, disassembly (refurbish or remanufacture) and disposal activities. Moreover, the model seeks an analysis a number of decisions relating to trade off management system to maximize revenue from the collection of use products reverse logistics services through refurbish and remanufacture recovery options. The results showed that full utilization in the sorting process leads the system to obtain less quantity from acquisition with minimal overall cost. Further, sensitivity analysis provides a range of possible scenarios to consider in optimizing the overall cost of refurbished and remanufactured products.Keywords: core acquisition, end of life, reverse logistics, quality uncertainty
Procedia PDF Downloads 302134 Polymer Impregnated Sulfonated Carbon Composite as a Solid Acid Catalyst for the Dehydration of Xylose to Furfural
Authors: Praveen K. Khatri, Neha Karanwal, Savita Kaul, Suman L. Jain
Abstract:
Conversion of biomass through green chemical routes is of great industrial importance as biomass is considered to be most widely available inexpensive renewable resource that can be used as a raw material for the production of bio fuel and value-added organic products. In this regard, acid catalyzed dehydration of biomass derived pentose sugar (mainly D-xylose) to furfural is a process of tremendous research interest in current scenario due to the wider industrial applications of furfural. Furfural is an excellent organic solvent for refinement of lubricants and separation of butadiene from butene mixture in synthetic rubber fabrication. In addition it also serve as a promising solvent for many organic materials, such as resins, polymers and also used as a building block for synthesis of various valuable chemicals such as furfuryl alcohol, furan, pharmaceutical, agrochemicals and THF. Here in a sulfonated polymer impregnated carbon composite solid acid catalyst (P-C-SO3H) was prepared by the pyrolysis of a polymer matrix impregnated with glucose followed by its sulfonation and used for the dehydration of xylose to furfural. The developed catalyst exhibited excellent activity and provided almost quantitative conversion of xylose with the selective synthesis of furfural. The higher catalytic activity of P-C-SO3H may be due to the more even distribution of polycyclic aromatic hydrocarbons generated from incomplete carbonization of glucose along the polymer matrix network, leading to more available sites for sulfonation which resulted in greater sulfonic acid density in P-C-SO3H as compared to sulfonated carbon catalyst (C-SO3H). In conclusion, we have demonstrated sulfonated polymer impregnated carbon composite (P-C-SO3H) as an efficient and selective solid acid catalyst for the dehydration of xylose to furfural. After completion of the reaction, the catalyst was easily recovered and reused for several runs without noticeable loss in its activity and selectivity.Keywords: Solid acid , Biomass conversion, Xylose Dehydration, Heterogeneous catalyst
Procedia PDF Downloads 409133 Processing and Economic Analysis of Rain Tree (Samanea saman) Pods for Village Level Hydrous Bioethanol Production
Authors: Dharell B. Siano, Wendy C. Mateo, Victorino T. Taylan, Francisco D. Cuaresma
Abstract:
Biofuel is one of the renewable energy sources adapted by the Philippine government in order to lessen the dependency on foreign fuel and to reduce carbon dioxide emissions. Rain tree pods were seen to be a promising source of bioethanol since it contains significant amount of fermentable sugars. The study was conducted to establish the complete procedure in processing rain tree pods for village level hydrous bioethanol production. Production processes were done for village level hydrous bioethanol production from collection, drying, storage, shredding, dilution, extraction, fermentation, and distillation. The feedstock was sundried, and moisture content was determined at a range of 20% to 26% prior to storage. Dilution ratio was 1:1.25 (1 kg of pods = 1.25 L of water) and after extraction process yielded a sugar concentration of 22 0Bx to 24 0Bx. The dilution period was three hours. After three hours of diluting the samples, the juice was extracted using extractor with a capacity of 64.10 L/hour. 150 L of rain tree pods juice was extracted and subjected to fermentation process using a village level anaerobic bioreactor. Fermentation with yeast (Saccharomyces cerevisiae) can fasten up the process, thus producing more ethanol at a shorter period of time; however, without yeast fermentation, it also produces ethanol at lower volume with slower fermentation process. Distillation of 150 L of fermented broth was done for six hours at 85 °C to 95 °C temperature (feedstock) and 74 °C to 95 °C temperature of the column head (vapor state of ethanol). The highest volume of ethanol recovered was established at with yeast fermentation at five-day duration with a value of 14.89 L and lowest actual ethanol content was found at without yeast fermentation at three-day duration having a value of 11.63 L. In general, the results suggested that rain tree pods had a very good potential as feedstock for bioethanol production. Fermentation of rain tree pods juice can be done with yeast and without yeast.Keywords: fermentation, hydrous bioethanol, fermentation, rain tree pods, village level
Procedia PDF Downloads 294132 Biocontrol Potential of Growth Promoting Rhizobacteria against Root Rot of Chili and Enhancement of Plant Growth
Authors: Kiran Nawaz, Waheed Anwar, Sehrish Iftikhar, Muhammad Nasir Subhani, Ahmad Ali Shahid
Abstract:
Plant growth promoting rhizobacteria (PGPR) have been extensively studied and applied for the biocontrol of many soilborne diseases. These rhizobacteria are very efficient against root rot and many other foliar diseases associated with solanaceous plants. These bacteria may inhibit the growth of various pathogens through direct inhibition of target pathogens or indirectly by the initiation of systemic resistance (ISR) which is active all over the complete plant. In the present study, 20 different rhizobacterial isolates were recovered from the root zone of healthy chili plants. All soil samples were collected from various chili-growing areas in Punjab. All isolated rhizobacteria species were evaluated in vitro and in vivo against Phytophthora capsici. Different species of Bacillus and Pseudomonas were tested for the antifungal activity against P. capsici the causal organism of Root rot disease in different crops together with chili. Dual culture and distance culture bioassay were carried out to study the antifungal potential of volatile and diffusible metabolites secreted from rhizobacteria. After seven days of incubation at 22°C, growth inhibition rate was recorded. Growth inhibition rate depended greatly on the tested bacteria and screening methods used. For diffusible metabolites, inhibition rate was 35-62% and 20-45% for volatile metabolites. The screening assay for plant growth promoting and disease inhibition potential of chili associated PGPR indicated 42-100% reduction in disease severity and considerable enhancement in roots fresh weight by 55-87%, aerial parts fresh weight by 35-65% and plant height by 65-76% as compared to untreated control and pathogen-inoculated plants. Pseudomonas flourescene, B. thuringiensis, and B. subtilis were found to be the most efficient isolates in inhibiting P. capsici radial growth, increase plant growth and suppress disease severity.Keywords: rhizobacteria, chili, phytophthora, root rot
Procedia PDF Downloads 263131 Regional Anesthesia: A Vantage Point for Management of Normal Pressure Hydrocephalus
Authors: Kunal K. S., Shwetashri K. R., Keerthan G., Ajinkya R.
Abstract:
Background: Normal pressure hydrocephalus is a condition caused by abnormal accumulation of cerebrospinal fluid (CSF) within the brain resulting in enlarged cerebral ventricles due to a disruption of CSF formation, absorption, or flow. Over the course of time, ventriculoperitoneal shunt under general anesthesia has become a standard of care. Yet only a finite number of centers have started the inclusion of regional anesthesia techniques for the such patient cohort. Stem Case: We report a case of a 75-year-old male with underlying aortic sclerosis and cardiomyopathy who presented with complaints of confusion, forgetfulness, and difficulty in walking. Neuro-imaging studies revealed disproportionally enlarged subarachnoid space hydrocephalus (DESH). The baseline blood pressure was 116/67 mmHg with a heart rate of 106 beats/min and SpO2 of 96% on room air. The patient underwent smooth induction followed by sonographically guided superficial cervical plexus block and transverse abdominis plane block. Intraoperative pain indices were monitored with Analgesia nociceptive index monitor (ANI, MdolorisTM) and surgical plethysmographic index (SPI, GE Healthcare, Helsinki, FinlandTM). These remained stable during the application of the block and the entire surgical duration. No significant hemodynamic response was observed during the tunneling of the skin by the surgeon. The patient underwent a smooth recovery and emergence. Conclusion: Our decision to incorporate peripheral nerve blockade in conjunction with general anesthesia resulted in opioid-sparing anesthesia and decreased post-operative analgesic requirement by the patient. This blockade was successful in suppressing intraoperative stress responses. Our patient recovered adequately and underwent an uncomplicated post-operative stay.Keywords: desh, NPH, VP shunt, cervical plexus block, transversus abdominis plane block
Procedia PDF Downloads 80130 A Comprehensive Study of a Hybrid System Integrated Solid Oxide Fuel cell, Gas Turbine, Organic Rankine Cycle with Compressed air Energy Storage
Authors: Taiheng Zhang, Hongbin Zhao
Abstract:
Compressed air energy storage become increasingly vital for solving intermittency problem of some renewable energies. In this study, a new hybrid system on a combination of compressed air energy storage (CAES), solid oxide fuel cell (SOFC), gas turbine (GT), and organic Rankine cycle (ORC) is proposed. In the new system, excess electricity during off-peak time is utilized to compress air. Then, the compressed air is stored in compressed air storage tank. During peak time, the compressed air enters the cathode of SOFC directly instead of combustion chamber of traditional CAES. There is no air compressor consumption of SOFC-GT in peak demand, so SOFC- GT can generate power with high-efficiency. In addition, the waste heat of exhaust from GT is recovered by applying an ORC. Three different organic working fluid (R123, R601, R601a) of ORC are chosen to evaluate system performance. Based on Aspen plus and Engineering Equation Solver (EES) software, energy and exergoeconomic analysis are used to access the viability of the combined system. Besides, the effect of two parameters (fuel flow and ORC turbine inlet pressure) on energy efficiency is studied. The effect of low-price electricity at off-peak hours on thermodynamic criteria (total unit exergy cost of products and total cost rate) is also investigated. Furthermore, for three different organic working fluids, the results of round-trip efficiency, exergy efficiency, and exergoeconomic factors are calculated and compared. Based on thermodynamic performance and exergoeconomic performance of different organic working fluids, the best suitable working fluid will be chosen. In conclusion, this study can provide important guidance for system efficiency improvement and viability.Keywords: CAES, SOFC, ORC, energy and exergoeconomic analysis, organic working fluids
Procedia PDF Downloads 122129 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles
Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban
Abstract:
In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272
Procedia PDF Downloads 338128 Non-Candida Albicans Candida: Virulence Factors and Species Identification in India
Authors: Satender Saraswat, Dharmendra Prasad Singh, Rajesh Kumar Verma, Swati Sarswat
Abstract:
Background and Purpose: The predominant cause of candidiasis was Candida albicans which has shifted towards non-Candida albicans Candida (NCAC) (Candida species other than the C. albicans). NCAC, earlier considered non-pathogenic or minimally virulent, are now considered a primary cause of morbidity and mortality in immunocompromised. With the NCAC spp. gaining weightage in the clinical cases, this study was conducted to determine the prevalence of NCAC spp. in different clinical specimens and to assess a few of their virulence factors. Material and Methods: Routine samples for bacterial culture and sensitivity, showing colony characteristics like Candida on Blood Agar and microscopic features resembling Candida spp. were processed further. Candida isolates were tested for chlamydospore formation, biochemical tests including sugar fermentation and sugar assimilation tests, and growth at 42oC, colony colour on HiCrome™ Candida Differential Agar, HiCandida Identification Kit and VITEK-2 Compact. Virulence factors like adherence to buccal epithelial cells (ABEC), biofilm formation, hemolytic activity, and production of coagulase enzyme were also tested. Results: Mean age of the patients was 38.46 with a male-female ratio of 1.36:1. 137 Candida isolates were recovered. 45.3% isolates were isolated from urine, 19.7% from vaginal swabs and 13.9% from oropharyngeal swabs. 55 (40.1%) isolates of C. albicans and 82 (59.9%) of NCAC spp. were identified, with C. tropicalis (23.4%) in NCAC. C. albicans (3; 50%) was the commonest species in cases of candidemia. Haemolysin production (85.5%) and ABEC (78.2%) were the major virulence factors in C. albicans. C. tropicalis (59.4%) and C. dubliniensis (50%) showed maximum ABEC. Biofilm forming capacity was higher in C. tropicalis (78.1%) than C. albicans (67%). Conclusion: This study suggests varied prevalence and virulence based on geographical locations, even within a subcontinent. It clearly demarcates the emergence of NCAC and their predominance in different body fluids. Identification of Candida to species level should become a routine in all the laboratories.Keywords: ABEC, NCAC, non-Candida albicans Candida, Vitek-2TM compact
Procedia PDF Downloads 133127 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes
Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje
Abstract:
The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR
Procedia PDF Downloads 158126 Prevalence and Antibiotic Susceptibility of Bacterial Isolates from Mastitis Milk of Cow and Buffalo in Udaipur, India
Authors: Hardik Goswami, Gayatri Swarnakar
Abstract:
-Mastitis disease has been known as one of the most costly diseases of dairy cattle and observed as an inflammatory disease of cow and buffalo udder. Mastitis badly affected animal health, quality of milk and economics of milk production along with cause’s great economic loss. Bacteria have been representing the most common etiological agents of mastitis. The antibiotic sensitivity test was important to attain accurate treatment of mastitis. The aim of present research work was to explore prevalence and antibiotic susceptibility pattern of bacterial isolates recovered from cow and buffalo clinical mastitis milk sample. During the period of April 2010 to April 2014, total 1487 clinical mastitis milk samples of cow and buffalo were tested to check the prevalence of mastitis causing bacterial isolates. Milk samples were collected aseptically from the udder at the time of morning milking. The most prevalent bacterial isolates were Staphylococcus aureus (24.34%) followed by coliform bacteria (15.87%), coagulase negative Staphylococcus aureus (13.85%), non-coliform bacteria (13.05%), mixed infection (12.51%), Streptococcus spp. (10.96%). Out of 1487, 140 (9.42%) mastitis milk samples showed no growth on culture media. Identification of bacteria made on the basis of Standard Microbial features and procedures. Antibiotic susceptibility of bacterial isolates was investigated by Kirby-Bauer disk diffusion method. In vitro Antibiotic susceptibility test of bacterial isolates revealed higher sensitivity to Gentamicin (74.6%), Ciprofloxacin (62.1%) and Amikacin (59.4%). The lower susceptibility was shown to Amoxicillin (21.6%), Erythromycin (26.4%) and Ceftizoxime (29.9%). Antibiotic sensitivity pattern revealed Gentamicin are the possible effective antibiotic against the major prevalent mastitis pathogens. Present research work would be helpful in increase production, quality and quantity of milk, increase annual income of dairy owners and improve health of cow and buffaloes.Keywords: antibiotic, buffalo, cow, mastitis, prevalence
Procedia PDF Downloads 403125 Experiences and Perspectives of Jewish Heritage Conservation and Promotion in Oradea and Timişoara, Western Romania
Authors: Andrea Corsale
Abstract:
The historical and geographical regions of Banat and Crişana in Western Romania have long been characterized by a high degree of ethnic diversity. However, this traditionally complex cultural, linguistic, and religious mosaic has undergone a progressive simplification during the past century due to deportations, emigration, and assimilation, and both regions now have a large Romanian-speaking majority population. This contribution focuses on Jewish heritage in the two largest cities of these two regions, Timişoara (Banat) and Oradea (Crişana). The two cities shared some historical events but also went through different experiences, despite their relative geographic proximity. The Jewish community of Timişoara survived the Holocaust basically intact, an almost unique case in Central-Eastern Europe, but largely left the city after the war. Instead, the Jewish community of Oradea was almost completely deported and killed in Auschwitz, and a renewed post-war community gradually emigrated abroad in the following decades. The two Jewish communities are now very small in size but inherited a vast tangible and intangible heritage (synagogues, cemeteries, community buildings, characteristic architecture, memories, local traditions, and histories), partially restored and recovered in recent years. The author’s fieldwork shows that local Jewish stakeholders are aware of the potential of this heritage in terms of cultural and economic benefits, but significant weaknesses and concerns exist, as the small dimension of these communities, and their financial constraints, challenge their future role in the eventual promotion and management of this heritage, which is now basically in the hands of the non-Jewish public and private stakeholders. Projects, experiences, and views related to Jewish heritage conservation and promotion in these two contexts will be portrayed and analysed in order to contribute to a broader discussion on representations and narratives of minority heritage within cultural tourism development dynamics.Keywords: Jewish heritage, ethnic minorities, heritage tourism, Romania
Procedia PDF Downloads 109124 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation
Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma
Abstract:
The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation
Procedia PDF Downloads 506123 Catalytic Hydrothermal Decarboxylation of Lipid from Activated Sludge for Renewable Diesel Production
Authors: Ifeanyichukwu Edeh, Tim Overton, Steve Bowra
Abstract:
Currently biodiesel is produced from plant oils or animal’s fats by a liquid-phase catalysed transesterification process at low temperature. Although biodiesel is renewable and to a large extent sustainable, inherent properties such as poor cold flow, low oxidation stability, low cetane value restrict application to blends with fossil fuels. An alternative to biodiesel is renewable diesel produced by catalytic hydrotreating of oils and fats and is considered a drop in fuel because its properties are similar to petroleum diesel. In addition to developing alternative productions routes there is continued interest in reducing the cost of the feed stock, waste cooking oils and fats are increasingly used as the feedstocks due to low cost. However, use of oils and fat are highly adulterated resulting in high free fatty acid content which turn impacts on the efficiency of FAME production. Therefore, in light of the need to develop, alternative lipid feed stocks and related efficient catalysis the present study investigates the potential of producing renewable diesel from the lipids-extracted from activated sludge, a waste water treatment by-product, through catalytic hydrothermal decarboxylation. The microbial lipids were first extracted from the activated sludge using the Folch et al method before hydrothermal decarboxylation reactions were carried out using palladium (Pd/C) and platinum (Pt/C) on activated carbon as the catalysts in a batch reactor. The impact of three temperatures 290, 300, 330 °C and residence time between 30 min and 4hrs was assessed. At the end of the reaction, the products were recovered using organic solvents and characterized using gas chromatography (GC). The principle products of the reaction were pentadecane and heptadecane. The highest yields of pentadecane and heptadecane from lipid-extract were 23.23% and 15.21%, respectively. These yields were obtained at 290 °C and residence time 1h using Pt/C. To the best of our knowledge, the current work is the first investigation on the hydrothermal decarboxylation of lipid-extract from activated sludge.Keywords: activated sludge, lipid, hydrothermal decarboxylation, renewable diesel
Procedia PDF Downloads 318122 Potential Use of Cnidoscolus Chayamansa Leaf from Mexico as High-Quality Protein Source
Authors: Diana Karina Baigts Allende, Mariana Gonzalez Diaz, Luis Antonio Chel Guerrero, Mukthar Sandoval Peraza
Abstract:
Poverty and food insecurity are still incident problems in the developing countries, where population´s diet is based on cereals which are lack in protein content. Nevertheless, during last years the use of native plants has been studied as an alternative source of protein in order to improve the nutritional intake. Chaya crop also called Spinach tree, is a prehispanic plant native from Central America and South of Mexico (Mayan culture), which has been especially valued due to its high nutritional content particularly protein and some medicinal properties. The aim of this work was to study the effect of protein isolation processing from Chaya leaf harvest in Yucatan, Mexico on its structure quality in order: i) to valorize the Chaya crop and ii) to produce low-cost and high-quality protein. Chaya leaf was extruded, clarified and recovered using: a) acid precipitation by decreasing the pH value until reach the isoelectric point (3.5) and b) thermal coagulation, by heating the protein solution at 80 °C during 30 min. Solubilized protein was re-dissolved in water and spray dried. The presence of Fraction I protein, known as RuBisCO (Rubilose-1,5-biphosfate carboxylase/oxygenase) was confirmed by gel electrophoresis (SDS-PAGE) where molecular weight bands of 55 KDa and 12 KDa were observed. The infrared spectrum showed changes in protein structure due to the isolation method. The use of high temperatures (thermal coagulation) highly decreased protein solubility in comparison to isoelectric precipitated protein, the nutritional properties according to amino acid profile was also disturbed, showing minor amounts of overall essential amino acids from 435.9 to 367.8 mg/g. Chaya protein isolate obtained by acid precipitation showed higher protein quality according to essential amino acid score compared to FAO recommendations, which could represent an important sustainable source of protein for human consumption.Keywords: chaya leaf, nutritional properties, protein isolate, protein structure
Procedia PDF Downloads 341121 An Experimental Investigation of Rehabilitation and Strengthening of Reinforced Concrete T-Beams Under Static Monotonic Increasing Loading
Authors: Salem Alsanusi, Abdulla Alakad
Abstract:
An experimental investigation to study the behaviour of under flexure reinforced concrete T-Beams. Those Beams were loaded to pre-designated stress levels as percentage of calculated collapse loads. Repairing these beans by either reinforced concrete jacket, or by externally bolted steel plates were utilized. Twelve full scale beams were tested in this experimental program scheme. Eight out of the twelve beams were loaded under different loading levels. Tests were performed for the beams before and after repair with Reinforced Concrete Jacket (RCJ). The applied Load levels were 60%, 77% and 100% of the calculated collapse loads. The remaining four beams were tested before and after repair with Bolted Steel Plate (BSP). Furthermore, out previously mentioned four beams two beams were loaded to the calculated failure load 100% and the remaining two beams were not subjected to any load. The eight beams recorded for the RCJ test were repaired using reinforced concrete jacket. The four beams recorded for the BSP test were all repaired using steel plate at the bottom. All the strengthened beams were gradually loaded until failure occurs. However, in each loading case, the beams behaviour, before and after strengthening, were studied through close inspection of the cracking propagation, and by carrying out an extensive measurement of deformations and strength. The stress-strain curve for reinforcing steel and the failure strains measured in the tests were utilized in the calculation of failure load for the beams before and after strengthening. As a result, the calculated failure loads were close to the actual failure tests in case of beams before repair, ranging from 85% to 90% and also in case of beams repaired by reinforced concrete jacket ranging from 70% to 85%. The results were in case of beams repaired by bolted steel plates ranging from (50% to 85%). It was observed that both jacketing and bolted steel plate methods could effectively restore the full flexure capacity of the damaged beams. However, the reinforced jacket has increased the failure load by about 67%, whereas the bolted steel plates recovered the failure load.Keywords: rehabilitation, strengthening, reinforced concrete, beams deflection, bending stresses
Procedia PDF Downloads 306120 A Simulation-Based Method for Evaluation of Energy System Cooperation between Pulp and Paper Mills and a District Heating System: A Case Study
Authors: Alexander Hedlund, Anna-Karin Stengard, Olof Björkqvist
Abstract:
A step towards reducing greenhouse gases and energy consumption is to collaborate with the energy system between several industries. This work is based on a case study on integration of pulp and paper mills with a district heating system in Sundsvall, Sweden. Present research shows that it is possible to make a significant reduction in the electricity demand in the mechanical pulping process. However, the profitability of the efficiency measures could be an issue, as the excess steam recovered from the refiners decreases with the electricity consumption. A consequence will be that the fuel demand for steam production will increase. If the fuel price is similar to the electricity price it would reduce the profit of such a project. If the paper mill can be integrated with a district heating system, it is possible to upgrade excess heat from a nearby kraft pulp mill to process steam via the district heating system in order to avoid the additional fuel need. The concept is investigated by using a simulation model describing both the mass and energy balance as well as the operating margin. Three scenarios were analyzed: reference, electricity reduction and energy substitution. The simulation show that the total input to the system is lowest in the Energy substitution scenario. Additionally, in the Energy substitution scenario the steam from the incineration boiler covers not only the steam shortage but also a part of the steam produced using the biofuel boiler, the cooling tower connected to the incineration boiler is no longer needed and the excess heat can cover the whole district heating load during the whole year. The study shows a substantial economic advantage if all stakeholders act together as one system. However, costs and benefits are unequally shared between the actors. This means that there is a need for new business models in order to share the system costs and benefits.Keywords: energy system, cooperation, simulation method, excess heat, district heating
Procedia PDF Downloads 226