Search results for: partition plate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1071

Search results for: partition plate

801 Euler-Bernoulli’s Approach for Buckling Analysis of Thick Rectangular Plates Using Alternative I Refined Theory

Authors: Owus Mathias Ibearugbulem

Abstract:

The study presents Euler-Bernoulli’s approach for buckling analysis of thick rectangular plates using alternative I refined theory. No earlier study, to the best knowledge of the author, based on the literature available to this research, applied Euler-Bernoulli’s approach in the alternative I refined theory for buckling analysis of thick rectangular plates. In this study, basic kinematics and constitutive relations for thick rectangular plates are employed in the differential equations of equilibrium of stresses in a deformable elemental body to obtain alternative I governing differential equations of thick rectangular plates and the corresponding compatibility equations. Solving these equations resulted in a general deflection function of a thick rectangular plate. Using this function and satisfying the boundary conditions of three plates, their peculiar deflection functions are obtained. Going further, the study determined the non-dimensional critical buckling loads of the six plates. Values of the non-dimensional critical buckling load from the present study are compared with those from a three-dimensional buckling analysis of a thick plate. The highest percentage difference recorded for the plates: all edges simply supported (ssss), all edges clamped (cccc) and adjacent edges clamped with the other edges simply supported (ccss) are 3.31%, 5.57% and 3.38% respectively.

Keywords: Euler-Bernoulli, buckling, alternative I, kinematics, constitutive relation, governing differential equation, compatibility equation, thick plate

Procedia PDF Downloads 30
800 A Closed-Form Solution and Comparison for a One-Dimensional Orthorhombic Quasicrystal and Crystal Plate

Authors: Arpit Bhardwaj, Koushik Roy

Abstract:

The work includes derivation of the exact-closed form solution for simply supported quasicrystal and crystal plates by using propagator matrix method under surface loading and free vibration. As a numerical example a quasicrystal and a crystal plate are considered, and after investigation, the variation of displacement and stress fields along the thickness of these two plates are presented. Further, it includes analyzing the displacement and stress fields for two plates having two different stacking arrangement, i.e., QuasiCrystal/Crystal/QuasiCrystal and Crystal/QuasiCrystal/Crystal and comparing their results. This will not only tell us the change in the behavior of displacement and stress fields in two different materials but also how these get changed after trying their different combinations. For the free vibration case, Crystal and Quasicrystal plates along with their different stacking arrangements are considered, and displacements are plotted in all directions for different Mode Shapes.

Keywords: free vibration, multilayered plates, surface loading, quasicrystals

Procedia PDF Downloads 147
799 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 390
798 Comparative Settlement Analysis on the under of Embankment with Empirical Formulas and Settlement Plate Measurement for Reducing Building Crack around of Embankments

Authors: Safitri Nur Wulandari, M. Ivan Adi Perdana, Prathisto L. Panuntun Unggul, R. Dary Wira Mahadika

Abstract:

In road construction on the soft soil, we need a soil improvement method to improve the soil bearing capacity of the land base so that the soil can withstand the traffic loads. Most of the land in Indonesia has a soft soil, where soft soil is a type of clay that has the consistency of very soft to medium stiff, undrained shear strength, Cu <0:25 kg/cm2, or the estimated value of NSPT <5 blows/ft. This study focuses on the analysis of the effect on preloading load (embarkment) to the amount of settlement ratio on the under of embarkment that will impact on the building cracks around of embarkment. The method used in this research is a superposition method for embarkment distribution on 27 locations with undisturbed soil samples at some borehole point in Java and Kalimantan, Indonesia. Then correlating the results of settlement plate monitoring on the field with Asaoka method. The results of settlement plate monitoring taken from an embarkment of Ahmad Yani airport in Semarang on 32 points. Where the value of Cc (index compressible) soil data based on some laboratory test results, while the value of Cc is not tested obtained from empirical formula Ardhana and Mochtar, 1999. From this research, the results of the field monitoring showed almost the same results with an empirical formulation with the standard deviation of 4% where the formulation of the empirical results of this analysis obtained by linear formula. Value empirical linear formula is to determine the effect of compression heap area as high as 4,25 m is 3,1209x + y = 0.0026 for the slope of the embankment 1: 8 for the same analysis with an initial height of embankment on the field. Provided that at the edge of the embankment settlement worth is not equal to 0 but at a quarter of embankment has a settlement ratio average 0.951 and at the edge of embankment has a settlement ratio 0,049. The influence areas around of embankment are approximately 1 meter for slope 1:8 and 7 meters for slope 1:2. So, it can cause the building cracks, to build in sustainable development.

Keywords: building cracks, influence area, settlement plate, soft soil, empirical formula, embankment

Procedia PDF Downloads 344
797 Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors

Authors: Ravindra Raju, Vidhu Kampurath

Abstract:

For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model.

Keywords: ANSYS, clutch, composite materials, creo

Procedia PDF Downloads 299
796 Control of the Sustainability of Fresh Cheese in Order to Extend the Shelf-Life of the Product

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

The fresh cheese is in the group of perishable food which cannot be kept a long period of time. The study of sustainability have been done in order to extend the shelf-life of the product which was 15 days. According to the plan of sustainability it was defined that 35 samples had to be stored for 30 days at 2°C−6°C and analyzed every 7th day from the day of reception until 30th day. Shelf life of the cheese has expired during the study of sustainability in the period between 15th and 30th day of analyses. Cheese samples were subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp., Bacillus cereus, Staphylococcus aureus and total plate count) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579, Bacillus cereus ISO 7932, Staphylococcus aureus ISO 6888-1, and total plate count ISO 4833. Analyses showed that after fifteen days of storage at a temperature defined by the manufacturers and within the product's shelf life, the cheese did not have any noticeable changes in sensory characteristics. Smell and taste are unaffected there was no separation of whey and there was not presence of strange smell or taste. As far as microbiological analyses are concerned neither one pathogen was detected and total plate count was at level of 103 cfu/g. After expiry of shelf life in a period of 15th and 30th day of storage, the analysis showed that there was a separation of whey on the surface. Along the edge of the container was present a dried part of cheese and sour-milky smell and taste were very weakly expressed. Concerning the microbiological analyses there still were not positive results for pathogen microorganisms but the total plate count was at a level of 106cfu/g. Based on the obtained results it can be concluded that this product cannot have longer shelf life than shelf life which is already defined because there are a sensory changes that would certainly have influence on decision of customers when purchase of this product is concerned.

Keywords: sustainability, fresh cheese, shelf-life, product

Procedia PDF Downloads 377
795 New Insulation Material for Solar Thermal Collectors

Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka

Abstract:

1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.

Keywords: clay, insulation material, polystyrene, solar collector, straw

Procedia PDF Downloads 461
794 Analysis of Shallow Foundation Using Conventional and Finite Element Approach

Authors: Sultan Al Shafian, Mozaher Ul Kabir, Khondoker Istiak Ahmad, Masnun Abrar, Mahfuza Khanum, Hossain M. Shahin

Abstract:

For structural evaluation of shallow foundation, the modulus of subgrade reaction is one of the most widely used and accepted parameter for its ease of calculations. To determine this parameter, one of the most common field method is Plate Load test method. In this field test method, the subgrade modulus is considered for a specific location and according to its application, it is assumed that the displacement occurred in one place does not affect other adjacent locations. For this kind of assumptions, the modulus of subgrade reaction sometimes forced the engineers to overdesign the underground structure, which eventually results in increasing the cost of the construction and sometimes failure of the structure. In the present study, the settlement of a shallow foundation has been analyzed using both conventional and numerical analysis. Around 25 plate load tests were conducted on a sand fill site in Bangladesh to determine the Modulus of Subgrade reaction of ground which is later used to design a shallow foundation considering different depth. After the collection of the field data, the field condition was appropriately simulated in a finite element software. Finally results obtained from both the conventional and numerical approach has been compared. A significant difference has been observed in the case of settlement while comparing the results. A proper correlation has also been proposed at the end of this research work between the two methods of in order to provide the most efficient way to calculate the subgrade modulus of the ground for designing the shallow foundation.

Keywords: modulus of subgrade reaction, shallow foundation, finite element analysis, settlement, plate load test

Procedia PDF Downloads 181
793 A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate

Authors: O. Ansari, H. Hafs, A. Bah, M. Asbik, M. Malha, M. Bakhouya

Abstract:

Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution.

Keywords: active solar still, desalination, fins, solar collector

Procedia PDF Downloads 217
792 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall

Authors: Zhao Cai-qi, Ma Jun

Abstract:

Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that:(1)the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete,(2)both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of a 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.

Keywords: twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing

Procedia PDF Downloads 402
791 Detecting Characters as Objects Towards Character Recognition on Licence Plates

Authors: Alden Boby, Dane Brown, James Connan

Abstract:

Character recognition is a well-researched topic across disciplines. Regardless, creating a solution that can cater to multiple situations is still challenging. Vehicle licence plates lack an international standard, meaning that different countries and regions have their own licence plate format. A problem that arises from this is that the typefaces and designs from different regions make it difficult to create a solution that can cater to a wide range of licence plates. The main issue concerning detection is the character recognition stage. This paper aims to create an object detection-based character recognition model trained on a custom dataset that consists of typefaces of licence plates from various regions. Given that characters have featured consistently maintained across an array of fonts, YOLO can be trained to recognise characters based on these features, which may provide better performance than OCR methods such as Tesseract OCR.

Keywords: computer vision, character recognition, licence plate recognition, object detection

Procedia PDF Downloads 121
790 Comparative Performance Study of Steel Plate Shear Wall with Reinforced Concrete Shear Wall

Authors: Amit S. Chauhan, S. Mandal

Abstract:

The structural response of shear walls subjected to various types of loads is difficult to predict precisely. They are incorporated in buildings to resist lateral forces and support the gravity loads. The steel plate shear walls (SPSWs) are used as lateral load resisting systems for buildings and acts as an alternative to reinforced concrete shear walls (RCSWs). This paper compares the behavior of SPSW with the RCSW incorporated in a building frame having G+6 storey, located in Zone III, using the technique of Equivalent Static Method (ESM) as per Indian Standard Criteria For Earthquake Resistant Design of Structures IS 1893:2002. This paper intends to evaluate several parameters such as lateral displacement at tip, inter-storey drift, weight of steel and volume of concrete with the alteration of the shear wall with respect to different types viz., SPSW and RCSW. The strip model employed in this study is a widely accepted analytical tool for SPSW analysis. SPSW can be modelled as truss members by using a series of diagonal tension strips positioned at 45-degree angles. In this paper, by replacing the SPSWs with the tension strips, the G+6 building has been analyzed using STAAD.Pro V8i. Based on the present study, it can be concluded that structure with SPSWs is much better then structure with RCSWs.

Keywords: equivalent static method, inter-storey drift, lateral displacement, Steel plate shear wall, strip model

Procedia PDF Downloads 246
789 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.

Keywords: clustering, unsupervised learning, algorithms, hierarchical

Procedia PDF Downloads 885
788 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis

Procedia PDF Downloads 135
787 Influence of Replacement used Reference Coordinate System for Georeferencing of the Old Map of Europe

Authors: Jakub Havlicek, Jiri Cajthaml

Abstract:

The article describes the effect of the replacement of the used reference coordinate system in the georeferencing of an old map of Europe. In particular, it was the map entitled “Europe, the Map of Rivers and Mountains on a 1 : 12 000 000 Scale”, elaborated by professor D. Cipera and Dr. J. Metelka for Otto’s Geographic Atlas of 1924. The work was most likely produced using the equal-area conic (Albers) projection. The map was georeferenced into three types of projection – the equal-area conic, cylindrical Plate Carrée and cylindrical Mercator map projection. The map was georeferenced by means of the affine and the second-order polynomial transformation. The resulting georeferenced raster datasets from the Plate Carrée and Mercator projection were projected into the equal-area conic projection by means of projection equations. The output is the comparison of drawn graphics, the magnitude of standard deviations for individual projections and types of transformation.

Keywords: georeferencing, reference coordinate system, transformation, standard deviation

Procedia PDF Downloads 348
786 Influence of Thermal Radiation on MHD Micropolar Fluid Flow, Heat and Mass Transfer over Vertical Flat Plate

Authors: Alouaoui Redha, Ferhat Samira, Bouaziz Mohamed Najib

Abstract:

In this work, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation as well as the skin friction coefficient and the both local Nusselt and local Sherwood numbers are significantly influenced by Magnetic parameter, material parameter and thermal radiation parameter.

Keywords: MHD, micropolar fluid, thermal radiation, heat and mass transfer, boundary layer

Procedia PDF Downloads 453
785 Performance Analysis of New Types of Reference Targets Based on Spaceborne and Airborne SAR Data

Authors: Y. S. Zhou, C. R. Li, L. L. Tang, C. X. Gao, D. J. Wang, Y. Y. Guo

Abstract:

Triangular trihedral corner reflector (CR) has been widely used as point target for synthetic aperture radar (SAR) calibration and image quality assessment. The additional “tip” of the triangular plate does not contribute to the reflector’s theoretical RCS and if it interacts with a perfectly reflecting ground plane, it will yield an increase of RCS at the radar bore-sight and decrease the accuracy of SAR calibration and image quality assessment. Regarding this problem, two types of CRs were manufactured. One was the hexagonal trihedral CR. It is a self-illuminating CR with relatively small plate edge length, while large edge length usually introduces unexpected edge diffraction error. The other was the triangular trihedral CR with extended bottom plate which considers the effect of ‘tip’ into the total RCS. In order to assess the performance of the two types of new CRs, flight campaign over the National Calibration and Validation Site for High Resolution Remote Sensors was carried out. Six hexagonal trihedral CRs and two bottom-extended trihedral CRs, as well as several traditional triangular trihedral CRs, were deployed. KOMPSAT-5 X-band SAR image was acquired for the performance analysis of the hexagonal trihedral CRs. C-band airborne SAR images were acquired for the performance analysis of the bottom-extended trihedral CRs. The analysis results showed that the impulse response function of both the hexagonal trihedral CRs and bottom-extended trihedral CRs were much closer to the ideal sinc-function than the traditional triangular trihedral CRs. The flight campaign results validated the advantages of new types of CRs and they might be useful in the future SAR calibration mission.

Keywords: synthetic aperture radar, calibration, corner reflector, KOMPSAT-5

Procedia PDF Downloads 272
784 Investigation of Stoneley Waves in Multilayered Plates

Authors: Bing Li, Tong Lu, Lei Qiang

Abstract:

Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.

Keywords: characteristic equation, interface waves, potential function, Stoneley waves, wave structure

Procedia PDF Downloads 319
783 Comparative Investigation of Two Non-Contact Prototype Designs Based on a Squeeze-Film Levitation Approach

Authors: A. Almurshedi, M. Atherton, C. Mares, T. Stolarski, M. Miyatake

Abstract:

Transportation and handling of delicate and lightweight objects is currently a significant issue in some industries. Two common contactless movement prototype designs, ultrasonic transducer design and vibrating plate design, are compared. Both designs are based on the method of squeeze-film levitation, and this study aims to identify the limitations, and challenges of each. The designs are evaluated in terms of levitation capabilities, and characteristics. To this end, theoretical and experimental explorations are made. It is demonstrated that the ultrasonic transducer prototype design is better suited to the terms of levitation capabilities. However, the design has some operating and mechanical designing difficulties. For making accurate industrial products in micro-fabrication and nanotechnology contexts, such as semiconductor silicon wafers, micro-components and integrated circuits, non-contact oil-free, ultra-precision and low wear transport along the production line is crucial for enabling. One of the designs (design A) is called the ultrasonic chuck, for which an ultrasonic transducer (Langevin, FBI 28452 HS) comprises the main part. Whereas the other (design B), is a vibrating plate design, which consists of a plain rectangular plate made of Aluminium firmly fastened at both ends. The size of the rectangular plate is 200x100x2 mm. In addition, four rounded piezoelectric actuators of size 28 mm diameter with 0.5 mm thickness are glued to the underside of the plate. The vibrating plate is clamped at both ends in the horizontal plane through a steel supporting structure. In addition, the dynamic of levitation using the designs (A and B) has been investigated based on the squeeze film levitation (SFL). The input apparatus that is used with designs consist of a sine wave signal generator connected to an amplifier type ENP-1-1U (Echo Electronics). The latter has to be utilised to magnify the sine wave voltage that is produced by the signal generator. The measurements of the maximum levitation for three different semiconductor wafers of weights 52, 70 and 88 [g] for design A are 240, 205 and 187 [um], respectively. Whereas the physical results show that the average separation distance for a disk of 5 [g] weight for design B reaches 70 [um]. By using the methodology of squeeze film levitation, it is possible to hold an object in a non-contact manner. The analyses of the investigation outcomes signify that the non-contact levitation of design A provides more improvement than design B. However, design A is more complicated than design B in terms of its manufacturing. In order to identify an adequate non-contact SFL design, a comparison between two common such designs has been adopted for the current investigation. Specifically, the study will involve making comparisons in terms of the following issues: floating component geometries and material type constraints; final created pressure distributions; dangerous interactions with the surrounding space; working environment constraints; and complication and compactness of the mechanical design. Considering all these matters is essential for proficiently distinguish the better SFL design.

Keywords: ANSYS, floating, piezoelectric, squeeze-film

Procedia PDF Downloads 149
782 Through-Bolt Moment Connection in HSS Column

Authors: Bardia Khafaf, Mehrdad Ghaffari, Amir Hussein Samakar

Abstract:

It is currently desirable to use Hollow Square Sections (HSS) in moment resistant structures in construction of building because they offer fewer restrictions for designing and more useful space while adhering to build design codes. This paper present a through bolt connection in HSS column. This connection meets building code standards that require the moment resistant connections to deflect and absorb energy resulting from gravity and seismic loads. Connection through bolts is installed and pretension to provide the connection strength needed to make a beam–column moment rigid zone. A rigid joint is typically used to resist lateral forces by holding columns and beams fixed in relation to one another. With bolted moment frames using HSS columns, a through–bolt connection could be used to secure the beam and end plate to the column. However, when multiple columns and beams are used to span a length of building, the use of through-bolts would necessities aligning multiple beams simultaneously to the columns. In the case of a linear span, the assembly process requires the holes of a first beam end plate to be aligned with through bolt holes in a column and aligning the holes of a second, opposing beam plate with the column through bolt, then inserting the through bolts in each hole for tightening with nuts and washers. In moment resistant building, a problem arises when assembling beams to columns where multiple beams and columns are required. Through bolt, moment connections are among the economical, practical and not difficult rigid steel connection for HSS column building. In this paper, the results of numerous analytical studies performed for moment structures with HSS columns with through bolt based on AISC standard codes are shown.

Keywords: through bolt, moment resistant connection, HSS columns section, construction engineering

Procedia PDF Downloads 469
781 Mechanical Behavior of CFTR Column Joint under Pull out Testing

Authors: Nasruddin Junus

Abstract:

CFTR column is one of the improvements CFT columns by inserting reinforcing steel bars into infill concrete. The presence of inserting reinforcing steel bars is increasing the excellent structural performance of the CFT column, especially on the fire-resisting performance. Investigation on the mechanical behavior of CFTR column connection is summarized in the three parts; column to column joint, column to beam connection, and column base. Experiment that reported in this paper is concerned on the mechanical behavior of CFTR column joint under pull out testing, especially on its stress transfer mechanism. A number series of the pull out test on the CFT with inserting reinforcing steel bar are conducted. Ten test specimens are designed, constructed, and tested to examine experimentally the effect of the size of square steel tube, size of the bearing plate, length of embedment steel bars, kind of steel bars, and the numbers of rib plate.

Keywords: CFTR column, pull out, stress, transfer mechanism

Procedia PDF Downloads 290
780 Experimental Investigation and Hardness Analysis of Chromoly Steel Multipass Welds Using GMAW

Authors: S. Ramesh, A. S. Sasiraaju, K. Sidhaarth, N. Sudhan Rajkumar, V. Manivel Muralidaran

Abstract:

This work presents the result of investigations aimed at determining the hardness of the welded Chromoly (A 4130) steel plate of 2” thickness. Multi pass welding for the thick sections was carried out and analyzed for the Chromoly alloy steel plates. The study of hardness at the weld metal reveals that there is the presence of different micro structure products which yields diverse properties. The welding carried out using GMAW with ER70s-2 electrode. Single V groove design was selected for the butt joint configuration. The presence of hydrogen has been suppressed by selecting low hydrogen electrode. Preheating of the plate prior to welding reduces the cooling rate which also affects the weld metal microstructure. The shielding gas composition used in this analysis is 80% Ar-20% CO2. The experimental analysis gives the detailed study of the hardness of the material.

Keywords: chromoly, gas metal arc weld (GMAW), hardness, multi pass weld, shielding gas composition

Procedia PDF Downloads 216
779 Effects of Bipolar Plate Coating Layer on Performance Degradation of High-Temperature Proton Exchange Membrane Fuel Cell

Authors: Chen-Yu Chen, Ping-Hsueh We, Wei-Mon Yan

Abstract:

Over the past few centuries, human requirements for energy have been met by burning fossil fuels. However, exploiting this resource has led to global warming and innumerable environmental issues. Thus, finding alternative solutions to the growing demands for energy has recently been driving the development of low-carbon and even zero-carbon energy sources. Wind power and solar energy are good options but they have the problem of unstable power output due to unpredictable weather conditions. To overcome this problem, a reliable and efficient energy storage sub-system is required in future distributed-power systems. Among all kinds of energy storage technologies, the fuel cell system with hydrogen storage is a promising option because it is suitable for large-scale and long-term energy storage. The high-temperature proton exchange membrane fuel cell (HT-PEMFC) with metallic bipolar plates is a promising fuel cell system because an HT-PEMFC can tolerate a higher CO concentration and the utilization of metallic bipolar plates can reduce the cost of the fuel cell stack. However, the operating life of metallic bipolar plates is a critical issue because of the corrosion phenomenon. As a result, in this work, we try to apply different coating layer on the metal surface and to investigate the protection performance of the coating layers. The tested bipolar plates include uncoated SS304 bipolar plates, titanium nitride (TiN) coated SS304 bipolar plates and chromium nitride (CrN) coated SS304 bipolar plates. The results show that the TiN coated SS304 bipolar plate has the lowest contact resistance and through-plane resistance and has the best cell performance and operating life among all tested bipolar plates. The long-term in-situ fuel cell tests show that the HT-PEMFC with TiN coated SS304 bipolar plates has the lowest performance decay rate. The second lowest is CrN coated SS304 bipolar plate. The uncoated SS304 bipolar plate has the worst performance decay rate. The performance decay rates with TiN coated SS304, CrN coated SS304 and uncoated SS304 bipolar plates are 5.324×10⁻³ % h⁻¹, 4.513×10⁻² % h⁻¹ and 7.870×10⁻² % h⁻¹, respectively. In addition, the EIS results indicate that the uncoated SS304 bipolar plate has the highest growth rate of ohmic resistance. However, the ohmic resistance with the TiN coated SS304 bipolar plates only increases slightly with time. The growth rate of ohmic resistances with TiN coated SS304, CrN coated SS304 and SS304 bipolar plates are 2.85×10⁻³ h⁻¹, 3.56×10⁻³ h⁻¹, and 4.33×10⁻³ h⁻¹, respectively. On the other hand, the charge transfer resistances with these three bipolar plates all increase with time, but the growth rates are all similar. In addition, the effective catalyst surface areas with all bipolar plates do not change significantly with time. Thus, it is inferred that the major reason for the performance degradation is the elevated ohmic resistance with time, which is associated with the corrosion and oxidation phenomena on the surface of the stainless steel bipolar plates.

Keywords: coating layer, high-temperature proton exchange membrane fuel cell, metallic bipolar plate, performance degradation

Procedia PDF Downloads 281
778 Analysis of the Performance of a Solar Water Heating System with Flat Collector

Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Camargo Nogueira, Carlos Eduardo, Lenz, Anderson Miguel, Souza Melegari, Samuel N.

Abstract:

The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel-PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55 °C, while the maximum temperature of the water at the bottom of the hot water tank was 35 °C. The average daily energy collected was 19 6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.

Keywords: recycling materials, energy efficiency, solar collector, solar water heating system

Procedia PDF Downloads 597
777 Design and Fabrication of Micro-Bubble Oxygenator

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng

Abstract:

This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.

Keywords: micro-bubble, oxygenator, nozzle, piezoelectric

Procedia PDF Downloads 319
776 Assessment of Metal Dynamics in Dissolved and Particulate Phase in Human Impacted Hooghly River Estuary, India

Authors: Soumita Mitra, Santosh Kumar Sarkar

Abstract:

Hooghly river estuary (HRE), situated at the north eastern part of Bay of Bengal has global significance due to its holiness. It is of immense importance to the local population as it gives perpetual water supply for various activities such as transportation, fishing, boating, bathing etc. to the local people who settled on both the banks of this estuary. This study was done to assess the dissolved and particulate trace metal in the estuary covering a stretch of about 175 Km. The water samples were collected from the surface (0-5 cm) along the salinity gradient and metal concentration were studied both in dissolved and particulate phase using Graphite Furnace Atomic Absorption Spectrophotometer (GF-AAS) along some physical characteristics such as water temperature, salinity, pH, turbidity and total dissolved solids. Although much significant spatial variation was noticed but little enrichment was found along the downstream of the estuary. The mean concentration of the metals in the dissolved and particulate phase followed the same trend and as follows: Fe>Mn>Cr>Zn>Cu>Ni>Pb. The concentration of the metals in the particulate phase were much greater than that in dissolved phase which was also depicted from the values of the partition coefficient (Kd)(ml mg-1). The Kdvalues ranged from 1.5x105 (in case of Pb) to 4.29x106 (in case of Cr). The high value of Kd for Cr denoted that the metal Cr is mostly bounded with the suspended particulate matter while the least value for Pb signified it presence more in dissolved phase. Moreover, the concentrations of all the studied metals in the dissolved phase were many folds higher than their respective permissible limits assested by WHO 2008, 2009 and 2011. On the other hand, according to Sediment Quality Guidelines (SQGs), Zn, Cu and Ni in the particulate phase lied between ERL and ERM values but Cr exceeded ERM values at all the stations confirming that the estuary is mostly contaminated with the particulate Cr and it might cause frequent adverse effects on the aquatic life. Multivariate statistics Cluster analysis was also performed which separated the stations according to the level of contamination from several point and nonpoint sources. Thus, it is found that the estuarine system is much polluted by the toxic metals and further investigation, toxicological studies should be implemented for full risk assessment of this system, better management and restoration of the water quality of this globally significant aquatic system.

Keywords: dissolved and particulate phase, Hooghly river estuary, partition coefficient, surface water, toxic metals

Procedia PDF Downloads 279
775 Study on the Effect of Different Media on Green Roof Water Retention

Authors: Chen Zhi-Wei, Hsieh Wei-Fang

Abstract:

Taiwan annual rainfall is global average of 2.5 times, plus city excessive development, green constantly to reduced, instead of is big area of artificial base disc, makes Taiwan rainy season during occurred of storm cannot timely of emissions, led to flood constantly, and rain also cannot was retained again using, led to city hydrological balance suffered damage, and to Regulation city of by brings of negative effect, increased green covered rate became most effective of method, and city land limited, so roof green gradually became a alternative program. Green roofs have become one of the Central and local government policy initiatives for urban development, in foreign countries, such as the United States, and Japan, and Singapore etc. Development of roof greening as an important policy, has become a trend of the times. In recent years, many experts and scholars are also on the roof greening all aspects of research, mostly for green roof for the environmental impact of benefits, such as: carbon reduction, cooling, thermostat, but research on the benefits of green roofs under water cut but it is rare. Therefore, this research literature from green roof in to view and analyze what kind of medium suitable for roof greening and use of green base plate combination simulated green roof structure, via different proportions of the medium with water retention plate and drainage board, experiment with different planting base plate combination of water conservation performance. Research will want to test the effect of roof planting base mix, promotion of relevant departments and agencies in future implementation of green roofs, prompted the development of green roofs, which in the end Taiwan achieve sustainable development of the urban environment help.

Keywords: thin-layer roof greening and planting medium, water efficiency

Procedia PDF Downloads 354
774 Load Carrying Capacity of Soils Reinforced with Encased Stone Columns

Authors: S. Chandrakaran, G. Govind

Abstract:

Stone columns are effectively used to improve bearing strength of soils and also for many geotechnical applications. In soft soils when stone columns are loaded they undergo large settlements due to insufficient lateral confinement. Use of geosynthetics encasement has proved to be a solution for this problem. In this paper, results of a laboratory experimental study carried out with model stone columns with and without encasement. Sand was used for making test beds, and grain size of soil varies from 0.075mm to 4.75mm. Woven geotextiles produced by Gareware ropes India with mass per unit area of 240gm/M2 and having tensile strength of 52KN/m is used for the present investigation. Tests were performed with large scale direct shear box and also using scaled laboratory plate load tests. Stone column of 50mm and 75mm is used for the present investigation. Diameter of stone column, size of stones used for making stone columns is varied in making stone column in the present study. Two types of stone were used namely small and bigger in size. Results indicate that there is an increase in angle of internal friction and also an increase in the shear strength of soil when stone columns are encased. With stone columns with 50mm dia, an average increase of 7% in shear strength and 4.6 % in angle of internal friction was achieved. When large stones were used increase in the shear strength was 12.2%, and angle of internal friction was increased to 5.4%. When the stone column diameter has increased to 75mm increase in shear strength and angle of internal friction was increased with smaller size of stones to 7.9 and 7.5%, and with large size stones, it was 7.7 and 5.48% respectively. Similar results are obtained in plate load tests, also.

Keywords: stone columns, encasement, shear strength, plate load test

Procedia PDF Downloads 236
773 Evaluation of Pollution in Underground Water from ODO-NLA and OGIJO Metropolis Industrial Areas in Ikorodu

Authors: Zaccheaus Olasupo Apotiola

Abstract:

This study evaluates the level of pollution in underground water from Ogijo and Odo-nla areas in lkorodu, Lagos State. Water sample were collected around various industries and transported in ice packs to the laboratory. Temperature and pH was determined on site, physicochemical parameters and total plate were determined using standard methods, while heavy metal concentration was determined using Atomic Absorption spectrophotometry method. The temperature was observed at a range of 20-28 oC, the pH was observed at a range of 5.64 to 6.91 mol/l and were significantly different (P < 0.05) from one another. The chloride content was observed at a range 70.92 to 163.10 mg/l there was no significant difference (P > 0.05) between sample 40 GAJ and ISUP, but there was significant difference (P < 0.05) between other samples. The acidity value varied from 11.0 – 34.5 (mg/l), the samples had no alkalinity. The Total plate count was found at 20-125 cfu/ml. Asernic, Lead, Cadmium, and Mercury concentration ranged between 0.03 - 0.09, 0.04 - 0.11, 0.00 -0.00, and 0.00 – 0.00(mg/l) respectively. However there was significant difference (p < 0.05) between all samples except for sample 4OGA, 5OGAJ, and 3SUTN that were not significantly different (P > 0.05). The results revealed all samples are not safe for human consumption as the levels of Asernic and Lead are above the maximum value of (0.01 mg/l) recommended by NIS 554 and WHO.

Keywords: arsenic, cadmium, lead mercury, WHO

Procedia PDF Downloads 519
772 Simplified Ultimate Strength Assessment of Ship Structures Based on Biro Klasifikasi Indonesia Rules for Hull

Authors: Sukron Makmun, Topan Firmandha, Siswanto

Abstract:

Ultimate Strength Assessment on ship cross section in accordance with Biro Klasifikasi Indonesia (BKI) Rules for Hull, follows step by step incremental iterative approach. In this approach, ship cross section is divided into plate-stiffener combinations and hard corners element. The average stress-strain relationship (σ-ε) for all structural elements will be defined, where the subscript k refers to the modes 0, 1, 2, 3 or 4. These results would be verified with a commercial software calculation in similar cases. The numerical calculations of buckling strength are in accordance with the commercial software (GL Rules ND). Then the comparison of failure behaviours of stiffened panels and hard corners are presented. Where failure modes 3 are likely to occur first follows the failure mode 4 and the last one is the failure mode 1.

Keywords: ultimate strength assessment, BKI rules, incremental, plate-stiffener combination and hard corner, commercial software

Procedia PDF Downloads 367