Search results for: low order model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27277

Search results for: low order model

27007 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD

Procedia PDF Downloads 201
27006 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 445
27005 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage

Authors: L. Ramirez, E. Guillén, J. Sánchez

Abstract:

Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.

Keywords: analytics, telemedicine, internet of things, cloud computing

Procedia PDF Downloads 325
27004 Signature Verification System for a Banking Business Process Management

Authors: A. Rahaf, S. Liyakathunsia

Abstract:

In today’s world, unprecedented operational pressure is faced by banks that test the efficiency, effectiveness, and agility of their business processes. In a typical banking process, a person’s authorization is usually based on his signature on most all of the transactions. Signature verification is considered as one of the highly significant information needed for any bank document processing. Banks usually use Signature Verification to authenticate the identity of individuals. In this paper, a business process model has been proposed in order to increase the quality of the verification process and to reduce time and needed resources. In order to understand the current process, a survey has been conducted and distributed among bank employees. After analyzing the survey, a process model has been created using Bizagi modeler which helps in simulating the process after assigning time and cost of it. The outcomes show that the automation of signature verification process is highly recommended for a banking business process.

Keywords: business process management, process modeling, quality, Signature Verification

Procedia PDF Downloads 425
27003 NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine

Authors: Anas Rao, Hao Duan, Fanhua Ma

Abstract:

The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated.

Keywords: quasi-dimensional combustion , thermal NO, prompt NO, NO packet

Procedia PDF Downloads 251
27002 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: grouted connection, numerical model, offshore structure, wear, wind energy

Procedia PDF Downloads 452
27001 Supplier Selection and Order Allocation Using a Stochastic Multi-Objective Programming Model and Genetic Algorithm

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

In this paper, we develop a supplier selection and order allocation multi-objective model in stochastic environment in which purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. To do so, we use dependent chance programming (DCP) that maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. After transforming the above mentioned stochastic multi-objective programming problem into a stochastic single objective problem using minimum deviation method, we apply a genetic algorithm to get the later single objective problem solved. The employed genetic algorithm performs a simulation process in order to calculate the stochastic objective function as its fitness function. At the end, we explore the impact of stochastic parameters on the given solution via a sensitivity analysis exploiting coefficient of variation. The results show that as stochastic parameters have greater coefficients of variation, the value of objective function in the stochastic single objective programming problem is worsened.

Keywords: dependent chance programming, genetic algorithm, minimum deviation method, order allocation, supplier selection

Procedia PDF Downloads 256
27000 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy

Authors: Erick Pruchnicki, Nikhil Padhye

Abstract:

Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.

Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials

Procedia PDF Downloads 110
26999 Model Driven Architecture Methodologies: A Review

Authors: Arslan Murtaza

Abstract:

Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies.

Keywords: OMG, model driven rrchitecture (MDA), computation independent model (CIM), platform independent model (PIM), platform specific model(PSM), MDA-based methodologies

Procedia PDF Downloads 458
26998 Probabilistic Graphical Model for the Web

Authors: M. Nekri, A. Khelladi

Abstract:

The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.

Keywords: clustering coefficient, preferential attachment, small world, web community

Procedia PDF Downloads 272
26997 Model Predictive Control Applied to Thermal Regulation of Thermoforming Process Based on the Armax Linear Model and a Quadratic Criterion Formulation

Authors: Moaine Jebara, Lionel Boillereaux, Sofiane Belhabib, Michel Havet, Alain Sarda, Pierre Mousseau, Rémi Deterre

Abstract:

Energy consumption efficiency is a major concern for the material processing industry such as thermoforming process and molding. Indeed, these systems should deliver the right amount of energy at the right time to the processed material. Recent technical development, as well as the particularities of the heating system dynamics, made the Model Predictive Control (MPC) one of the best candidates for thermal control of several production processes like molding and composite thermoforming to name a few. The main principle of this technique is to use a dynamic model of the process inside the controller in real time in order to anticipate the future behavior of the process which allows the current timeslot to be optimized while taking future timeslots into account. This study presents a procedure based on a predictive control that brings balance between optimality, simplicity, and flexibility of its implementation. The development of this approach is progressive starting from the case of a single zone before its extension to the multizone and/or multisource case, taking thus into account the thermal couplings between the adjacent zones. After a quadratic formulation of the MPC criterion to ensure the thermal control, the linear expression is retained in order to reduce calculation time thanks to the use of the ARMAX linear decomposition methods. The effectiveness of this approach is illustrated by experiment and simulation.

Keywords: energy efficiency, linear decomposition methods, model predictive control, mold heating systems

Procedia PDF Downloads 272
26996 Study of the Phenomenon Nature of Order and Disorder in BaMn(Fe/V)F7 Fluoride Glass by the Hybrid Reverse Monte Carlo Method

Authors: Sidi Mohamed Mesli, Mohamed Habchi, Mohamed Kotbi, Rafik Benallal, Abdelali Derouiche

Abstract:

Fluoride glasses with a nominal composition of BaMnMF7 (M = FeV assuming isomorphous replacement) have been structurally modelled through the simultaneous simulation of their neutron diffraction patterns by a reverse Monte Carlo (RMC) model and by a Rietveld for disordered materials (RDM) method. Model is consistent with an expected network of interconnected [MF6] polyhedra. The RMC results are accompanied by artificial satellite peaks. To remedy this problem, we use an extension of the RMC algorithm, which introduces an energy penalty term in acceptance criteria. This method is called the Hybrid Reverse Monte Carlo (HRMC) method. The idea of this paper is to apply the (HRMC) method to the title glasses, in order to make a study of the phenomenon nature of order and disorder by displaying and discussing the partial pair distribution functions (PDFs) g(r). We suggest that this method can be used to describe average correlations between components of fluoride glass or similar system.

Keywords: fluoride glasses, RMC simulation, neutron scattering, hybrid RMC simulation, Lennard-Jones potential, partial pair distribution functions

Procedia PDF Downloads 534
26995 Control of an SIR Model for Basic Reproduction Number Regulation

Authors: Enrique Barbieri

Abstract:

The basic disease-spread model described by three states denoting the susceptible (S), infectious (I), and removed (recovered and deceased) (R) sub-groups of the total population N, or SIR model, has been considered. Heuristic mitigating action profiles of the pharmaceutical and non-pharmaceutical types may be developed in a control design setting for the purpose of reducing the transmission rate or improving the recovery rate parameters in the model. Even though the transmission and recovery rates are not control inputs in the traditional sense, a linear observer and feedback controller can be tuned to generate an asymptotic estimate of the transmission rate for a linearized, discrete-time version of the SIR model. Then, a set of mitigating actions is suggested to steer the basic reproduction number toward unity, in which case the disease does not spread, and the infected population state does not suffer from multiple waves. The special case of piecewise constant transmission rate is described and applied to a seventh-order SEIQRDP model, which segments the population into four additional states. The offline simulations in discrete time may be used to produce heuristic policies implemented by public health and government organizations.

Keywords: control of SIR, observer, SEIQRDP, disease spread

Procedia PDF Downloads 109
26994 Predicting Financial Distress in South Africa

Authors: Nikki Berrange, Gizelle Willows

Abstract:

Business rescue has become increasingly popular since its inclusion in the Companies Act of South Africa in May 2011. The Alternate Exchange (AltX) of the Johannesburg Stock Exchange has experienced a marked increase in the number of companies entering business rescue. This study sampled twenty companies listed on the AltX to determine whether Altman’s Z-score model for emerging markets (ZEM) or Taffler’s Z-score model is a more accurate model in predicting financial distress for small to medium size companies in South Africa. The study was performed over three different time horizons; one, two and three years prior to the event of financial distress, in order to determine how many companies each model predicted would be unlikely to succeed as well as the predictive ability and accuracy of the respective models. The study found that Taffler’s Z-score model had a greater ability at predicting financial distress from all three-time horizons.

Keywords: Altman’s ZEM-score, Altman’s Z-score, AltX, business rescue, Taffler’s Z-score

Procedia PDF Downloads 372
26993 Checking Energy Efficiency by Simulation Tools: The Case of Algerian Ksourian Models

Authors: Khadidja Rahmani, Nahla Bouaziz

Abstract:

Algeria is known for its rich heritage. It owns an immense historical heritage with a universal reputation. Unfortunately, this wealth is withered because of abundance. This research focuses on the Ksourian model, which constitutes a large portion of this wealth. In fact, the Ksourian model is not just a witness to a great part of history or a vernacular culture, but also it includes a panoply of assets in terms of energetic efficiency. In this context, the purpose of our work is to evaluate the performance of the old techniques which are derived from the Ksourian model , and that using the simulation tools. The proposed method is decomposed in two steps; the first consists of isolate and reintroduce each device into a basic model, then run a simulation series on acquired models. And this in order to test the contribution of each of these dialectal processes. In another scale of development, the second step consists of aggregating all these processes in an aboriginal model, then we restart the simulation, to see what it will give this mosaic on the environmental and energetic plan .The model chosen for this study is one of the ksar units of Knadsa city of Bechar (Algeria). This study does not only show the ingenuity of our ancestors in their know-how, and their adapting power to the aridity of the climate, but also proves that their conceptions subscribe in the current concerns of energy efficiency, and respond to the requirements of sustainable development.

Keywords: dialectal processes, energy efficiency, evaluation, Ksourian model, simulation tools

Procedia PDF Downloads 195
26992 Spread of Measles Disease in Indonesia with Susceptible Vaccinated Infected Recovered Model

Authors: Septiawan A. Saputro, Purnami Widyaningsih, Sutanto Sastraredja

Abstract:

Measles is a disease which can spread caused by a virus and has been a priority’s Ministry of Health in Indonesia to be solved. Each infected person can be recovered and get immunity so that the spread of the disease can be constructed with susceptible infected recovered (SIR). To prevent the spread of measles transmission, the Ministry of Health holds vaccinations program. The aims of the research are to derive susceptible vaccinated infected recovered (SVIR) model, to determine the patterns of disease spread with SVIR model, and also to apply the SVIR model on the spread of measles in Indonesia. Based on the article, it can be concluded that the spread model of measles with vaccinations, that is SVIR model. It is a first-order differential equation system. The patterns of disease spread is determined by solution of the model. Based on that model Indonesia will be a measles-free nation in 2186 with the average of vaccinations scope about 88% and the average score of vaccinations failure about 4.9%. If it is simulated as Ministry of Health new programs with the average of vaccinations scope about 95% and the average score of vaccinations failure about 3%, then Indonesia will be a measles-free nation in 2184. Even with the average of vaccinations scope about 100% and no failure of vaccinations, Indonesia will be a measles-free nation in 2183. Indonesia’s target as a measles-free nation in 2020 has not been reached.

Keywords: measles, vaccination, susceptible infected recovered (SIR), susceptible vaccinated infected recovered (SVIR)

Procedia PDF Downloads 247
26991 Development of Terrorist Threat Prediction Model in Indonesia by Using Bayesian Network

Authors: Hilya Mudrika Arini, Nur Aini Masruroh, Budi Hartono

Abstract:

There are more than 20 terrorist threats from 2002 to 2012 in Indonesia. Despite of this fact, preventive solution through studies in the field of national security in Indonesia has not been conducted comprehensively. This study aims to provide a preventive solution by developing prediction model of the terrorist threat in Indonesia by using Bayesian network. There are eight stages to build the model, started from literature review, build and verify Bayesian belief network to what-if scenario. In order to build the model, four experts from different perspectives are utilized. This study finds several significant findings. First, news and the readiness of terrorist group are the most influent factor. Second, according to several scenarios of the news portion, it can be concluded that the higher positive news proportion, the higher probability of terrorist threat will occur. Therefore, the preventive solution to reduce the terrorist threat in Indonesia based on the model is by keeping the positive news portion to a maximum of 38%.

Keywords: Bayesian network, decision analysis, national security system, text mining

Procedia PDF Downloads 391
26990 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.

Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems

Procedia PDF Downloads 432
26989 The Influence of the Concentration and Temperature on the Rheological Behavior of Carbonyl-Methylcellulose

Authors: Mohamed Rabhi, Kouider Halim Benrahou

Abstract:

The rheological properties of the carbonyl-methylcellulose (CMC), of different concentrations (25000, 50000, 60000, 80000 and 100000 ppm) and different temperatures were studied. We found that the rheological behavior of all CMC solutions presents a pseudo-plastic behavior, it follows the model of Ostwald-de Waele. The objective of this work is the modeling of flow by the CMC Cross model. The Cross model gives us the variation of the viscosity according to the shear rate. This model allowed us to adjust more clearly the rheological characteristics of CMC solutions. A comparison between the Cross model and the model of Ostwald was made. Cross the model fitting parameters were determined by a numerical simulation to make an approach between the experimental curve and those given by the two models. Our study has shown that the model of Cross, describes well the flow of "CMC" for low concentrations.

Keywords: CMC, rheological modeling, Ostwald model, cross model, viscosity

Procedia PDF Downloads 405
26988 Development of a Predictive Model to Prevent Financial Crisis

Authors: Tengqin Han

Abstract:

Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.

Keywords: delinquency, mortgage, model development, model validation

Procedia PDF Downloads 228
26987 3D Model of Rain-Wind Induced Vibration of Inclined Cable

Authors: Viet-Hung Truong, Seung-Eock Kim

Abstract:

Rain–wind induced vibration of inclined cable is a special aerodynamic phenomenon because it is easily influenced by many factors, especially the distribution of rivulet and wind velocity. This paper proposes a new 3D model of inclined cable, based on single degree-of-freedom model. Aerodynamic forces are firstly established and verified with the existing results from a 2D model. The 3D model of inclined cable is developed. The 3D model is then applied to assess the effects of wind velocity distribution and the continuity of rivulets on the cable. Finally, an inclined cable model with small sag is investigated.

Keywords: 3D model, rain - wind induced vibration, rivulet, analytical model

Procedia PDF Downloads 489
26986 A Study of Two Disease Models: With and Without Incubation Period

Authors: H. C. Chinwenyi, H. D. Ibrahim, J. O. Adekunle

Abstract:

The incubation period is defined as the time from infection with a microorganism to development of symptoms. In this research, two disease models: one with incubation period and another without incubation period were studied. The study involves the use of a  mathematical model with a single incubation period. The test for the existence and stability of the disease free and the endemic equilibrium states for both models were carried out. The fourth order Runge-Kutta method was used to solve both models numerically. Finally, a computer program in MATLAB was developed to run the numerical experiments. From the results, we are able to show that the endemic equilibrium state of the model with incubation period is locally asymptotically stable whereas the endemic equilibrium state of the model without incubation period is unstable under certain conditions on the given model parameters. It was also established that the disease free equilibrium states of the model with and without incubation period are locally asymptotically stable. Furthermore, results from numerical experiments using empirical data obtained from Nigeria Centre for Disease Control (NCDC) showed that the overall population of the infected people for the model with incubation period is higher than that without incubation period. We also established from the results obtained that as the transmission rate from susceptible to infected population increases, the peak values of the infected population for the model with incubation period decrease and are always less than those for the model without incubation period.

Keywords: asymptotic stability, Hartman-Grobman stability criterion, incubation period, Routh-Hurwitz criterion, Runge-Kutta method

Procedia PDF Downloads 175
26985 Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models

Authors: Michael Danilov, Sergei Iskakov, Vladimir Mazurenko

Abstract:

The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage.

Keywords: sparse matrix, compressed format, Hubbard model, Anderson model

Procedia PDF Downloads 402
26984 Transport Mode Selection under Lead Time Variability and Emissions Constraint

Authors: Chiranjit Das, Sanjay Jharkharia

Abstract:

This study is focused on transport mode selection under lead time variability and emissions constraint. In order to reduce the carbon emissions generation due to transportation, organization has often faced a dilemmatic choice of transport mode selection since logistic cost and emissions reduction are complementary with each other. Another important aspect of transportation decision is lead-time variability which is least considered in transport mode selection problem. Thus, in this study, we provide a comprehensive mathematical based analytical model to decide transport mode selection under emissions constraint. We also extend our work through analysing the effect of lead time variability in the transport mode selection by a sensitivity analysis. In order to account lead time variability into the model, two identically normally distributed random variables are incorporated in this study including unit lead time variability and lead time demand variability. Therefore, in this study, we are addressing following questions: How the decisions of transport mode selection will be affected by lead time variability? How lead time variability will impact on total supply chain cost under carbon emissions? To accomplish these objectives, a total transportation cost function is developed including unit purchasing cost, unit transportation cost, emissions cost, holding cost during lead time, and penalty cost for stock out due to lead time variability. A set of modes is available to transport each node, in this paper, we consider only four transport modes such as air, road, rail, and water. Transportation cost, distance, emissions level for each transport mode is considered as deterministic and static in this paper. Each mode is having different emissions level depending on the distance and product characteristics. Emissions cost is indirectly affected by the lead time variability if there is any switching of transport mode from lower emissions prone transport mode to higher emissions prone transport mode in order to reduce penalty cost. We provide a numerical analysis in order to study the effectiveness of the mathematical model. We found that chances of stock out during lead time will be higher due to the higher variability of lead time and lad time demand. Numerical results show that penalty cost of air transport mode is negative that means chances of stock out zero, but, having higher holding and emissions cost. Therefore, air transport mode is only selected when there is any emergency order to reduce penalty cost, otherwise, rail and road transport is the most preferred mode of transportation. Thus, this paper is contributing to the literature by a novel approach to decide transport mode under emissions cost and lead time variability. This model can be extended by studying the effect of lead time variability under some other strategic transportation issues such as modal split option, full truck load strategy, and demand consolidation strategy etc.

Keywords: carbon emissions, inventory theoretic model, lead time variability, transport mode selection

Procedia PDF Downloads 434
26983 A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate

Authors: Diteboho Xaba, Kolentino Mpeta, Tlotliso Qejoe

Abstract:

This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA.

Keywords: ARIMA, error metrices, model selection, SETAR

Procedia PDF Downloads 244
26982 Training to Evaluate Creative Activity in a Training Context, Analysis of a Learner Evaluation Model

Authors: Massy Guillaume

Abstract:

Introduction: The implementation of creativity in educational policies or curricula raises several issues, including the evaluation of creativity and the means to do so. This doctoral research focuses on the appropriation and transposition of creativity assessment models by future teachers. Our objective is to identify the elements of the models that are most transferable to practice in order to improve their implementation in the students' curriculum while seeking to create a new model for assessing creativity in the school environment. Methods: In order to meet our objective, this preliminary quantitative exploratory study by questionnaire was conducted at two points in the participants' training: at the beginning of the training module and throughout the practical work. The population is composed of 40 people of diverse origins with an average age of 26 (s:8,623) years. In order to be as close as possible to our research objective and to test our questionnaires, we set up a pre-test phase during the spring semester of 2022. Results: The results presented focus on aspects of the OECD Creative Competencies Assessment Model. Overall, 72% of participants support the model's focus on skill levels as appropriate for the school context. More specifically, the data indicate that the separation of production and process in the rubric facilitates observation by the assessor. From the point of view of transposing the grid into teaching practice, the participants emphasised that production is easier to plan and observe in students than in the process. This difference is reinforced by a lack of knowledge about certain concepts such as innovation or risktaking in schools. Finally, the qualitative results indicate that the addition of multiple levels of competencies to the OECD rubric would allow for better implementation in the classroom. Conclusion: The identification by the students of the elements allowing the evaluation of creativity in the school environment generates an innovative approach to the training contents. These first data, from the test phase of our research, demonstrate the difficulty that exists between the implementation of an evaluation model in a training program and its potential transposition by future teachers.

Keywords: creativity, evaluation, schooling, training

Procedia PDF Downloads 95
26981 Resource Allocation Modeling and Simulation in Border Security Application

Authors: Kai Jin, Hua Li, Qing Song

Abstract:

Homeland security and border safety is an issue for any country. This paper takes the border security of US as an example to discuss the usage and efficiency of simulation tools in the homeland security application. In this study, available resources and different illegal infiltration parameters are defined, including their individual behavior and objective, in order to develop a model that describes border patrol system. A simulation model is created in Arena. This simulation model is used to study the dynamic activities in the border security. Possible factors that may affect the effectiveness of the border patrol system are proposed. Individual and factorial analysis of these factors is conducted and some suggestions are made.

Keywords: resource optimization, simulation, modeling, border security

Procedia PDF Downloads 516
26980 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: ganoderma, oil palm, regression model, yield loss, economic loss

Procedia PDF Downloads 388
26979 Floodplain Modeling of River Jhelum Using HEC-RAS: A Case Study

Authors: Kashif Hassan, M.A. Ahanger

Abstract:

Floods have become more frequent and severe due to effects of global climate change and human alterations of the natural environment. Flood prediction/ forecasting and control is one of the greatest challenges facing the world today. The forecast of floods is achieved by the use of hydraulic models such as HEC-RAS, which are designed to simulate flow processes of the surface water. Extreme flood events in river Jhelum , lasting from a day to few are a major disaster in the State of Jammu and Kashmir, India. In the present study HEC-RAS model was applied to two different reaches of river Jhelum in order to estimate the flood levels corresponding to 25, 50 and 100 year return period flood events at important locations and to deduce flood vulnerability of important areas and structures. The flow rates for the two reaches were derived from flood-frequency analysis of 50 years of historic peak flow data. Manning's roughness coefficient n was selected using detailed analysis. Rating Curves were also generated to serve as base for determining the boundary conditions. Calibration and Validation procedures were applied in order to ensure the reliability of the model. Sensitivity analysis was also performed in order to ensure the accuracy of Manning's n in generating water surface profiles.

Keywords: flood plain, HEC-RAS, Jhelum, return period

Procedia PDF Downloads 426
26978 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters

Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn

Abstract:

The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.

Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm

Procedia PDF Downloads 112