Search results for: degradation rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9489

Search results for: degradation rate

9219 New Dynamic Constitutive Model for OFHC Copper Film

Authors: Jin Sung Kim, Hoon Huh

Abstract:

The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson-Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.

Keywords: rate dependent material properties, dynamic constitutive model, OFHC copper film, strain rate

Procedia PDF Downloads 485
9218 Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer

Authors: N. Metidji, N. Kasbadji Merzouk, O. Badaoui, R. Sellami, A. Djebli

Abstract:

The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste.

Keywords: solar energy, solar dryer, energy conversion, orange drying, forced convection solar dryer

Procedia PDF Downloads 354
9217 Analytical Method Development and Validation of Stability Indicating Rp - Hplc Method for Detrmination of Atorvastatin and Methylcobalamine

Authors: Alkaben Patel

Abstract:

The proposed RP-HPLC method is easy, rapid, economical, precise and accurate stability indicating RP-HPLC method for simultaneous estimation of Astorvastatin and Methylcobalamine in their combined dosage form has been developed.The separation was achieved by LC-20 AT C18(250mm*4.6mm*2.6mm)Colum and water (pH 3.5): methanol 70:30 as mobile phase, at a flow rate of 1ml/min. wavelength of this dosage form is 215nm.The drug is related to stress condition of hydrolysis, oxidation, photolysis and thermal degradation.

Keywords: RP- HPLC, atorvastatin, methylcobalamine, method, development, validation

Procedia PDF Downloads 334
9216 Remediation of Dye Contaminated Wastewater Using N, Pd Co-Doped TiO₂ Photocatalyst Derived from Polyamidoamine Dendrimer G1 as Template

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N, Pt) co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. The resultant photocatalysts were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), UV‐Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), thermal gravimetric analysis (TGA). The results showed that the calcination atmosphere played an important role in the morphology, crystal structure, spectral absorption, oxygen vacancy concentration, and visible light photocatalytic performance of the catalysts. Anatase phase particles ranging between 9- 20 nm were also confirmed by TEM, SEM, and analysis. The origin of the visible light photocatalytic activity was attributed to both the elemental N and Pd dopants and the existence of oxygen vacancies. Co-doping imparted a shift in the visible region of the solar spectrum. The visible light photocatalytic activity of the samples was investigated by monitoring the photocatalytic degradation of brilliant black dye. Co-doped TiO₂ showed greater photocatalytic brilliant black degradation efficiency compared to singly doped N-TiO₂ or Pd-TiO₂ under visible light irradiation. The highest reaction rate constant of 3.132 x 10-2 min⁻¹ was observed for N, Pd co-doped TiO₂ (2% Pd). The results demonstrated that the N, Pd co-doped TiO₂ (2% Pd) sample could completely degrade the dye in 3 h, while the commercial TiO₂ showed the lowest dye degradation efficiency (52.66%).

Keywords: brilliant black, Co-doped TiO₂, polyamidoamine generation 1 (PAMAM G1), photodegradation

Procedia PDF Downloads 178
9215 Residual Life Estimation Based on Multi-Phase Nonlinear Wiener Process

Authors: Hao Chen, Bo Guo, Ping Jiang

Abstract:

Residual life (RL) estimation based on multi-phase nonlinear Wiener process was studied in this paper, which is significant for complicated products with small samples. Firstly, nonlinear Wiener model with random parameter was introduced and multi-phase nonlinear Wiener model was proposed to model degradation process of products that were nonlinear and separated into different phases. Then the multi-phase RL probability density function based on the presented model was derived approximately in a closed form and parameters estimation was achieved with the method of maximum likelihood estimation (MLE). Finally, the method was applied to estimate the RL of high voltage plus capacitor. Compared with the other three different models by log-likelihood function (Log-LF) and Akaike information criterion (AIC), the results show that the proposed degradation model can capture degradation process of high voltage plus capacitors in a better way and provide a more reliable result.

Keywords: multi-phase nonlinear wiener process, residual life estimation, maximum likelihood estimation, high voltage plus capacitor

Procedia PDF Downloads 452
9214 Biodegrading Potentials of Plant Growth - Promoting Bacteria on Insecticides Used in Agricultural Soil

Authors: Chioma Nwakanma, Onyeka Okoh Irene, Emmanuel Eze

Abstract:

Pesticide residues left in agricultural soils after cropping are always accumulative, difficult to degrade and harmful to animals, plants, soil and human health in general. The biodegrading potential of pesticides- resistant PGPB on soil pollution was investigated using in situ remediation technique following recommended standards. In addition, screening for insecticide utilization, maximum insecticide concentration tolerance, insecticide biodegradation and insecticide residues analyses via gas chromatographic/electron column detector were determined. The location of bacterial degradation genes was also determined. Three plant growth-promoting rhizophere (PGPR) were isolated and identified according to 16S rRNA as Paraburkholderia tropica, Burkolderia glumae and Achromobacter insolitus. From the results, all the three isolates showed phosphate solubilizing traits and were able to grow on nitrogen free medium. The isolates were able to utilize the insecticide as sole carbon source and increase in biomass. They were statistically significantly tolerant to all the insecticide concentrations screened. The gas chromatographic profiles of the insecticide residues showed a reduction in the peak areas of the insecticides, indicating degradation. The bacterial consortium had the lowest peak areas, showing the highest degradation efficiency. The genes responsible for degradation were found to be in the plasmids of the isolates. Therefore, the use of PGPR is recommended for bioremediation of agricultural soil insecticide polluted areas and can also enhance soil fertility.

Keywords: biodegradation, rhizosphere, insecticides utilization, agricultural soil

Procedia PDF Downloads 113
9213 Determination of in Situ Degradation Kinetics of Some Legumes Waste Unused for Human Consumption

Authors: Şevket Evci, Mehmet Akif Karsli

Abstract:

The aim of this study is to determine nutrient contents, in situ ruminal degradation kinetics and protein fractions of screenings bean (B), chick pea (ChP), red lentil (RL) and green lentil (GL) that is used as residue in grain legume packing industry. For this purpose, four samples of each legumes species-a total of 16 samples, collected from different parts of our country were utilized. Feedstuffs used in the experiment were incubated for 0, 2 4, 8, 12, 24, and 48 hours in the rumen of 3 ruminally cannulated Akkaraman rams as duplicate. The nutrient contents, in situ ruminal dry matter (DM), organic matter (OM) and crude protein (CP) degradabilities and fractions, and escape protein contents were evaluated. The highest OM and CP contents were observed in RL (P<0.05). Chick pea had the highest ether extract (EE) content and EE values were 3.47, 6.72, 2.26, 8.66 % for RL, B, GL and ChP, respectively (P<0.05). Crude fiber (CF), ADF, and NDF contents were the highest in RL and the lowest in ChP. CF values were 24.03, 10.80, 4.09 and 3.57 % for RL, GL, B and ChP (P<0.05). Acid detergent insoluble nitrogen content of samples did not differ. Escape protein content was the highest in RL and the lowest in B (P<0.05). After 48 h incubation, the lowest OM and CP degradabilities were observed in RL. While the highest OM degradability was seen in ChP the highest CP degradability was observed in B (P<0.05). The lowest water soluble OM and CP contents were observed in RL whereas the highest potentially degradable OM and CP contents were seen in B and ChP (P<0.05). Both rate of OM and CP degradations (k-1) did not differ among samples (P>0.05). In conclusion, it was noted that feedstuffs (GL, ChP and B) used in the experiment except RL had a greater ruminal degradibilities of both OM and CP and moreover, had a higher escape protein contents, except B. It was thought that these feedstuffs can be substituted with some of common protein sources used in animal nutrition.

Keywords: in situ, nutrient contents, ruminant, subsieve

Procedia PDF Downloads 481
9212 The Influence of the Company's Financial Performance and Macroeconomic Factors to Stock Return

Authors: Angrita Denziana, Haninun, Hepiana Patmarina, Ferdinan Fatah

Abstract:

The aims of the study are to determine the effect of the company's financial performance with Return on Asset (ROA) and Return on Equity (ROE) indicators. The macroeconomic factors with the indicators of Indonesia interest rate (SBI) and exchange rate on stock returns of non-financial companies listed in IDX. The results of this study indicate that the variable of ROA has negative effect on stock returns, ROE has a positive effect on stock returns, and the variable interest rate and exchange rate of SBI has positive effect on stock returns. From the analysis data by using regression model, independent variables ROA, ROE, SBI interest rate and the exchange rate very significant (p value < 0.01). Thus, all the above variable can be used as the basis for investment decision making for investment in Indonesia Stock Exchange (IDX) mainly for shares in the non- financial companies.

Keywords: ROA, ROE, interest rate, exchange rate, stock return

Procedia PDF Downloads 429
9211 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current.

Keywords: gaAs solar cell, MeV electron irradiation, irradiation fluence, short circuit

Procedia PDF Downloads 472
9210 Biodegradable Polymeric Composites of Polylactide and Epoxidized Natural Rubber

Authors: Masek A., Diakowska K., Zaborski M.

Abstract:

Polymeric materials have found their use almost in every branch of industry worldwide. Most of them constitute so-called “petropolymers" obtained from crude oil. However literature information sounds a warning that its global sources are running out. Thus, it seems that one should search for polymeric materials from renewable raw materials belonging to the group of green polymers. Therefore on account of environmental protection and the issue of sustainable technologies, nowadays greater and greater achievements have been observed in the field of green technology using engineering sciences to develop composite materials. The main aim of this study was to research what is the influence of biofillers on the properties. We used biofillers like : cellulose with different length of fiber, cellulose UFC100, silica and montmorillonite. In our research, we reported on biodegradable composites exhibitingspecificity properties by melt blending of polylactide (PLA), one of the commercially available biodegradable material, and epoxidized natural rubber (ENR) containing 50 mol.%epoxy group. Blending hydrophilic natural polymers and aliphatic polyesters is of significant interest, since it could lead to the development of a new range of biodegradable polymeric materials. We research the degradation of composites on the basis epoxidized natural rubber and poly(lactide). The addition of biofillers caused far-reaching degradation processes. The greatest resistance to biodegradation showed a montmorillonite-based mixtures, the smallest inflated cellulose fibers of varying length.The final aim in the present study is to use ENR and poly(lactide) to design composite from renewable resources with controlled degradation.

Keywords: renewable resources, biopolymer, degradation, polylactide

Procedia PDF Downloads 376
9209 Determination of the Stability of Haloperidol Tablets and Phenytoin Capsules Stored in the Inpatient Dispensary System (Swisslog) by the Respective HPLC and Raman Spectroscopy Assay

Authors: Carol Yue-En Ong, Angelina Hui-Min Tan, Quan Liu, Paul Chi-Lui Ho

Abstract:

A public general hospital in Singapore has recently implemented an automated unit-dose machine in their inpatient dispensary, Swisslog, with the objective of reducing human error and improving patient safety. However, a concern in stability arises as tablets are removed from their original packaging (bottled loose tablets/capsules) and are repackaged into individual, clear plastic wrappers as unit doses in the system. Drugs that are light-sensitive and hygroscopic would be more susceptible to degradation as the wrapper does not offer full protection. Hence, this study was carried out to study the stability of haloperidol tablets and phenytoin capsules that are light-sensitive and hygroscopic respectively. Validated HPLC-UV assays were first established for quantification of these two compounds. The medications involved were put in the Swisslog and sampled every week for one month. The collected data was analysed and showed no degradation over time. This study also explored an alternative approach for drug stability determination-Raman spectroscopy. The advantage of Raman spectroscopy is its high time efficiency and non-destructive nature. The results suggest that drug degradation can indeed be detected using Raman microscopy, but further research is needed to establish this approach for quantification or qualification of compounds. NanoRam®, a portable Raman spectrocope was also used alongside Raman microscopy but was unsuccessful in detecting degradation in this study.

Keywords: drug stability, haloperidol, HPLC, phenytoin, raman spectroscopy, Swisslog

Procedia PDF Downloads 346
9208 Challenges of Peri-Urban Agriculture in Cities of Developing Countries: A Case Study of Nairobi City Peri-Urban Area

Authors: Aggrey Daniel Maina Thuo

Abstract:

Rapid urban population growth means an increasing demand for urban land, particularly for housing, and also for various other urban uses. This land is not available within cities but in peri-urban areas. The expansion of the cities into the peri-urban areas is creating direct and indirect impacts with those living there facing new challenges and opportunities in meeting their life needs and accommodating the by-products of urbanization. Although urbanization of these areas provides opportunities for employment, better housing, education, knowledge and technology transfer, and ready markets for the agricultural products, increase in population places enormous stress on natural resources and existing social services and infrastructure, therefore causing environmental degradation. This environmental degradation is affecting agriculture for those still holding onto their farms for agricultural purposes. This paper, using a multiple theoretical framework and qualitative research approach, attempts to describe the positive and adverse effects of urbanization on peri-urban agriculture, using the Town Council of Karuri within Nairobi peri-urban areas as a case study.

Keywords: peri-urban agriculture, urbanization, land use, environmental degradation, planning

Procedia PDF Downloads 357
9207 Strategies for Conserving Ecosystem Functions of the Aravalli Range to Combat Land Degradation: Case of Kishangarh and Tijara Tehsil in Rajasthan, India

Authors: Saloni Khandelwal

Abstract:

The Aravalli hills are one of the oldest and most distinctive mountain chains of peninsular India spanning in around 692 Km. More than 60% of it falls in the state of Rajasthan and influences ecological equilibrium in about 30% of the state. Because of natural and human-induced activities, physical gaps in the Aravallis are increasing, new gaps are coming up, and its physical structure is changing. There are no strict regulations to protect and monitor the Aravallis and no comprehensive research and study has been done for the enhancement of ecosystem functions of these ranges. Through this study, various factors leading to Aravalli’s degradation are identified and its impacts on selected areas are analyzed. A literature study is done to identify factors responsible for the degradation. To understand the severity of the problem at the lowest level, two tehsils from different districts in Rajasthan, which are the most affected due to illegal mining and increasing physical gaps are selected for the study. Case-1 of three-gram panchayats in Kishangarh Tehsil of Ajmer district focuses on the expanding physical gaps in the Aravalli range, and case-2 of three-gram panchayats in Tijara Tehsil of Alwar district focuses on increasing illegal mining in the Aravalli range. For measuring the degradation, physical, biological and social indicators are identified through literature review and for both the cases analysis is done on the basis of these indicators. Primary survey and focus group discussions are done with villagers, mining owners, illegal miners, and various government officials to understand dependency of people on the Aravalli and its importance to them along with the impact of degradation on their livelihood and environment. From the analysis, it has been found that green cover is continuously decreasing in both cases, dense forest areas do not exist now, the groundwater table is depleting at a very fast rate, soil is losing its moisture resulting in low yield and shift in agriculture. Wild animals which were easily seen earlier are now extinct. Cattles of villagers are dependent on the forest area in the Aravalli range for food, but with a decrease in fodder, their cattle numbers are decreasing. There is a decrease in agricultural land and an increase in scrub and salt-affected land. Analysis of various national and state programmes, acts which were passed to conserve biodiversity has been done showing that none of them is helping much to protect the Aravalli. For conserving the Aravalli and its forest areas, regional level and local level initiatives are required and are proposed in this study. This study is an attempt to formulate conservation and management strategies for the Aravalli range. These strategies will help in improving biodiversity which can lead to the revival of its ecosystem functions. It will also help in curbing the pollution at the regional and local level. All this will lead to the sustainable development of the region.

Keywords: Aravalli, ecosystem, LULC, Rajasthan

Procedia PDF Downloads 135
9206 Improvement in the Photocatalytic Activity of Nanostructured Manganese Ferrite – Type of Materials by Mechanochemical Activation

Authors: Katerina Zaharieva, Katya Milenova, Zara Cherkezova-Zheleva, Alexander Eliyas, Boris Kunev, Ivan Mitov

Abstract:

The synthesized nanosized manganese ferrite-type of samples have been tested as photocatalysts in the reaction of oxidative degradation of model contaminant Reactive Black 5 (RB5) dye in aqueous solutions under UV irradiation. As it is known this azo dye is applied in the textile-coloring industry and it is discharged into the waterways causing pollution. The co-precipitation procedure has been used for the synthesis of manganese ferrite-type of materials: Sample 1 - Mn0.25Fe2.75O4, Sample 2 - Mn0.5Fe2.5O4 and Sample 3 - MnFe2O4 from 0.03M aqueous solutions of MnCl2•4H2O, FeCl2•4H2O and/or FeCl3•6H2O and 0.3M NaOH in appropriate amounts. The mechanochemical activation of co-precipitated ferrite-type of samples has been performed in argon (Samples 1 and 2) or in air atmosphere (Sample 3) for 2 hours at a milling speed of 500 rpm. The mechano-chemical treatment has been carried out in a high energy planetary ball mill type PM 100, Retsch, Germany. The mass ratio between balls and powder was 30:1. As a result mechanochemically activated Sample 4 - Mn0.25Fe2.75O4, Sample 5 - Mn0.5Fe2.5O4 and Sample 6 - MnFe2O4 have been obtained. The synthesized manganese ferrite-type photocatalysts have been characterized by X-ray diffraction method and Moessbauer spectroscopy. The registered X-ray diffraction patterns and Moessbauer spectra of co-precipitated ferrite-type of materials show the presence of manganese ferrite and additional akaganeite phase. The presence of manganese ferrite and small amounts of iron phases is established in the mechanochemically treated samples. The calculated average crystallite size of manganese ferrites varies within the range 7 – 13 nm. This result is confirmed by Moessbauer study. The registered spectra show superparamagnetic behavior of the prepared materials at room temperature. The photocatalytic investigations have been made using polychromatic UV-A light lamp (Sylvania BLB, 18 W) illumination with wavelength maximum at 365 nm. The intensity of light irradiation upon the manganese ferrite-type photocatalysts was 0.66 mW.cm-2. The photocatalytic reaction of oxidative degradation of RB5 dye was carried out in a semi-batch slurry photocatalytic reactor with 0.15 g of ferrite-type powder, 150 ml of 20 ppm dye aqueous solution under magnetic stirring at rate 400 rpm and continuously feeding air flow. The samples achieved adsorption-desorption equilibrium in the dark period for 30 min and then the UV-light was turned on. After regular time intervals aliquot parts from the suspension were taken out and centrifuged to separate the powder from solution. The residual concentrations of dye were established by a UV-Vis absorbance single beam spectrophotometer CamSpec M501 (UK) measuring in the wavelength region from 190 to 800 nm. The photocatalytic measurements determined that the apparent pseudo-first-order rate constants calculated by linear slopes approximating to first order kinetic equation, increase in following order: Sample 3 (1.1х10-3 min-1) < Sample 1 (2.2х10-3 min-1) < Sample 2 (3.3 х10-3 min-1) < Sample 4 (3.8х10-3 min-1) < Sample 6 (11х10-3 min-1) < Sample 5 (15.2х10-3 min-1). The mechanochemically activated manganese ferrite-type of photocatalyst samples show significantly higher degree of oxidative degradation of RB5 dye after 120 minutes of UV light illumination in comparison with co-precipitated ferrite-type samples: Sample 5 (92%) > Sample 6 (91%) > Sample 4 (63%) > Sample 2 (53%) > Sample 1 (42%) > Sample 3 (15%). Summarizing the obtained results we conclude that the mechanochemical activation leads to a significant enhancement of the degree of oxidative degradation of the RB5 dye and photocatalytic activity of tested manganese ferrite-type of catalyst samples under our experimental conditions. The mechanochemically activated Mn0.5Fe2.5O4 ferrite-type of material displays the highest photocatalytic activity (15.2х10-3 min-1) and degree of oxidative degradation of the RB5 dye (92%) compared to the other synthesized samples. Especially a significant improvement in the degree of oxidative degradation of RB5 dye (91%) has been determined for mechanochemically treated MnFe2O4 ferrite-type of sample with the highest extent of substitution of iron ions by manganese ions than in the case of the co-precipitated MnFe2O4 sample (15%). The mechanochemically activated manganese ferrite-type of samples show good photocatalytic properties in the reaction of oxidative degradation of RB5 azo dye in aqueous solutions and it could find potential application for dye removal from wastewaters originating from textile industry.

Keywords: nanostructured manganese ferrite-type materials, photocatalytic activity, Reactive Black 5, water treatment

Procedia PDF Downloads 346
9205 Mitigation of Interference in Satellite Communications Systems via a Cross-Layer Coding Technique

Authors: Mario A. Blanco, Nicholas Burkhardt

Abstract:

An important problem in satellite communication systems which operate in the Ka and EHF frequency bands consists of the overall degradation in link performance of mobile terminals due to various types of degradations in the link/channel, such as fading, blockage of the link to the satellite (especially in urban environments), intentional as well as other types of interference, etc. In this paper, we focus primarily on the interference problem, and we develop a very efficient and cost-effective solution based on the use of fountain codes. We first introduce a satellite communications (SATCOM) terminal uplink interference channel model that is classically used against communication systems that use spread-spectrum waveforms. We then consider the use of fountain codes, with focus on Raptor codes, as our main mitigation technique to combat the degradation in link/receiver performance due to the interference signal. The performance of the receiver is obtained in terms of average probability of bit and message error rate as a function of bit energy-to-noise density ratio, Eb/N0, and other parameters of interest, via a combination of analysis and computer simulations, and we show that the use of fountain codes is extremely effective in overcoming the effects of intentional interference on the performance of the receiver and associated communication links. We then show this technique can be extended to mitigate other types of SATCOM channel degradations, such as those caused by channel fading, shadowing, and hard-blockage of the uplink signal.

Keywords: SATCOM, interference mitigation, fountain codes, turbo codes, cross-layer

Procedia PDF Downloads 360
9204 Cellular Degradation Activity is Activated by Ambient Temperature Reduction in an Annual Fish (Nothobranchius rachovii)

Authors: Cheng-Yen Lu, Chin-Yuan Hsu

Abstract:

Ambient temperature reduction (ATR) can extend the lifespan of an annual fish (Nothobranchius rachovii), but the underlying mechanism is unknown. In this study, the expression, concentration, and activity of cellular-degraded molecules were evaluated in the muscle of N. rachovii reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures by biochemical techniques. The results showed that (i) the activity of the 20S proteasome, the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), the expression of lysosome-associated membrane protein type 2a (Lamp 2a), and lysosome activity increased with ATR; (ii) the expression of the 70 kD heat shock cognate protein (Hsc 70) decreased with ATR; (iii) the expression of the 20S proteasome, the expression of lysosome-associated membrane protein type 1 (Lamp 1), the expression of molecular target of rapamycin (mTOR), the expression of phosphorylated mTOR (p-mTOR), and the p-mTOR/mTOR ratio did not change with ATR. These findings indicated that ATR activated the activity of proteasome, macroautophagy, and chaperone-mediated autophagy. Taken together these data reveal that ATR likely activates cellular degradation activity to extend the lifespan of N. rachovii.

Keywords: ambient temperature reduction, autophagy, degradation activity, lifespan, proteasome

Procedia PDF Downloads 459
9203 The Use of Secondary Crystallization in Cement-Based Composites

Authors: Nikol Žižková, Šárka Keprdová, Rostislav Drochytka

Abstract:

The paper focuses on the study of the properties of cement-based composites produced using secondary crystallization (crystalline additive). In this study, cement mortar made with secondary crystallization was exposed to an aggressive environment and the influence of secondary crystallization on the degradation of the cementitious composite was investigated. The results indicate that the crystalline additive contributed to increasing the resistance of the cement-based composite to the attack of the selected environments (sodium sulphate solution and ammonium chloride solution).

Keywords: secondary crystallization, cement-based composites, durability, degradation of the cementitious composite

Procedia PDF Downloads 397
9202 The Effect of Degraded Shock Absorbers on the Safety-Critical Stationary and Non-Stationary Lateral Dynamics of Passenger Cars

Authors: Tobias Schramm, Günther Prokop

Abstract:

The average age of passenger cars is rising steadily around the world. Older vehicles are more sensitive to the degradation of chassis components. A higher age and a higher mileage of passenger cars correlate with an increased failure rate of vehicle shock absorbers. The most common degradation mechanism of vehicle shock absorbers is the loss of oil and gas. It is not yet fully understood how the loss of oil and gas in twin-tube shock absorbers affects the lateral dynamics of passenger cars. The aim of this work is to estimate the effect of degraded twin-tube shock absorbers of passenger cars on their safety-critical lateral dynamics. A characteristic curve-based five-mass full vehicle model and a semi-physical phenomenological shock absorber model were set up, parameterized and validated. The shock absorber model is able to reproduce the damping characteristics of vehicle twin-tube shock absorbers with oil and gas loss for various excitations. The full vehicle model was used to simulate stationary cornering and steering wheel angle step maneuvers on road classes A to D. The simulations were carried out in a realistic parameter space in order to demonstrate the influence of various vehicle characteristics on the effect of degraded shock absorbers. As a result, it was shown that degraded shock absorbers have a negative effect on the understeer gradient of vehicles. For stationary lateral dynamics, degraded shock absorbers for high road excitations reduce the maximum lateral accelerations. Degraded rear axle shock absorbers can change the understeer gradient of a vehicle in the direction of oversteer. Degraded shock absorbers also lead to increased rolling angles. Furthermore, degraded shock absorbers have a major impact on driving stability during steering wheel angle steps. Degraded rear axle shock absorbers, in particular, can lead to unstable handling. Especially the tire stiffness, the unsprung mass and the stabilizer stiffness influence the effect of degraded shock absorbers on the lateral dynamics of passenger cars.

Keywords: driving dynamics, numerical simulation, road safety, shock absorber degradation, stationary and nonstationary lateral dynamics.

Procedia PDF Downloads 7
9201 Moisture Absorption Analysis of LLDPE-NR Nanocomposite for HV Insulation

Authors: M. S. Kamarulzaman, N. A. Muhamad, N. A. M. Jamail, M. A. M. Piah, N. F. Kasri

Abstract:

Insulation for high voltage application that has been service for a very long time is subjected to several types of degradation. The degradation can lead to premature breakdown and definitely will spent highly cost to replace the cable. Thus, there are many research on nano composite material get serious attention attention due to their abilities to enhance electrical performance by addition of nano filler. In this paper, water absorption of Low Linear Density Polyethyelene (LLDPE) with different amount of nano filler added is studied. This study is necessary to be conducted since most of electrical apparatus such as cable insulation are dominant used especially in high voltage application. The cable insulation are continuously exposed in uncontrolled environment may suffer degradation process. Three type of nano fillers, was used in this study are: Silicon dioxide (SiO2), Titanium dioxide (TiO2) and Monmorillonite (MMT). The percentage absorption of water was measured by weighted using high precision scales for absorption process up to 92 days. Experimental result demonstrate that SiO2 absorb less water than other filler while, the MMT has hydrophilic properties which it absorbs more water compare to another sample.

Keywords: nano composite, nano filler, water absorption, hydrophilic properties

Procedia PDF Downloads 355
9200 Reproduction Characteristics of Saanen Goats Raised under Intensive Conditions in Konya Province

Authors: Vahdettin Sariyel, Birol Dag

Abstract:

In this research, it is aimed to determine the effects of several environmental factors on adaptation and some yield parameters of Saanen goats reared under intensive conditions at a private farm in Konya province. Gestation rate, twins rate and litter size were evaluated as reproductive traits. Gestation rate was determined as 93.8% and 90.5% for 2011 and 2012 years respectively. Twins rate was determined as 59.35 % and 70.00 % for 2011 and 2012 years respectively. Litter size was 1.49 and 1.46 for 2011 and 2012 years respectively. Survival rates of kids from birth to weaning at three months of age were found as 87.74 % and 98.54 % for 2011 and 2012 years respectively.

Keywords: gestation rate, reproduction, saanen, twins rate, vitality

Procedia PDF Downloads 590
9199 Anticancer Activity of Calyx of Diospyros kaki Thunb. through Downregulation of Cyclin D1 Protein Level in Human Colorectal Cancer Cells

Authors: Jin Boo Jeong

Abstract:

In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β–catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03931713).

Keywords: anticancer, calyx of persimmon, cyclin D1, Diospyros kaki Thunb., human colorectal cancer

Procedia PDF Downloads 312
9198 An Approach on the Design of a Solar Cell Characterization Device

Authors: Christoph Mayer, Dominik Holzmann

Abstract:

This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments.

Keywords: solar cell, photovoltaics, PV, characterization

Procedia PDF Downloads 419
9197 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue

Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez

Abstract:

Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.

Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial

Procedia PDF Downloads 371
9196 Tax Evasion and Macroeconomic (In)stability

Authors: Wei-Neng Wang, Jhy-Yuan Shieh, Jhy-Hwa Chen, Juin-Jen Chang

Abstract:

This paper incorporate tax evasion into a one-sector real business cycle (RBC) model to explores the quantitative interrelations between income tax rate and equilibrium (in)determinacy, and income tax rate is endogenously determined in order to balance the government budget. We find that the level of the effective income tax rate is key factor for equilibrium (in)determinacy, instead of the level of income tax rate in a tax evasion economy. Under an economy with tax evasion, the higher income tax rate is not sufficiently to lead to equilibrium indeterminate, it must combine with a necessary condition which is the lower fraction of tax evasion and that can result in agents' optimistic expectations to become self-fulfilling and sunspot fluctuation more likely to occur. On the other hand, an economy with tax evasion can see its macroeconomy become more stabilize, and a higher fraction of income tax evasion may has a stronger stabilizing effect.

Keywords: tax evasion, balanced-budget rule, equlibirium (in)determinacy, effective income tax rate

Procedia PDF Downloads 62
9195 Environmental Awareness and Community Outreach: A Case Study of Speak Up World Foundation

Authors: Akshita Gaba, Ria P. Dey, Sanya Karotiya, Smrijanee Dash, Soni Gupta

Abstract:

This research paper explores the significance of environmental awareness and community outreach initiatives undertaken by the Speak Up World Foundation; a non-profit organization founded in 2021. The study delves into the historical context of environmental issues, identifies the driving factors contributing to environmental degradation, and outlines tasks undertaken by the foundation to promote environmental consciousness. The paper also highlights the impact of these efforts on the community and emphasizes the need for continued dedication to ensure sustainable coexistence with our environment.

Keywords: environment, social service, organization, degradation, survey

Procedia PDF Downloads 64
9194 BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma

Authors: Anelise Leal Vieira Cubas, Marina de Medeiros Machado, Marília de Medeiros Machado

Abstract:

The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this direction, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.

Keywords: BTEX, degradation, cold plasma, ecological sciences

Procedia PDF Downloads 316
9193 Using the Simple Fixed Rate Approach to Solve Economic Lot Scheduling Problem under the Basic Period Approach

Authors: Yu-Jen Chang, Yun Chen, Hei-Lam Wong

Abstract:

The Economic Lot Scheduling Problem (ELSP) is a valuable mathematical model that can support decision-makers to make scheduling decisions. The basic period approach is effective for solving the ELSP. The assumption for applying the basic period approach is that a product must use its maximum production rate to be produced. However, a product can lower its production rate to reduce the average total cost when a facility has extra idle time. The past researches discussed how a product adjusts its production rate under the common cycle approach. To the best of our knowledge, no studies have addressed how a product lowers its production rate under the basic period approach. This research is the first paper to discuss this topic. The research develops a simple fixed rate approach that adjusts the production rate of a product under the basic period approach to solve the ELSP. Our numerical example shows our approach can find a better solution than the traditional basic period approach. Our mathematical model that applies the fixed rate approach under the basic period approach can serve as a reference for other related researches.

Keywords: economic lot, basic period, genetic algorithm, fixed rate

Procedia PDF Downloads 562
9192 Nitrogen/Platinum Co-Doped TiO₂ for Enhanced Visible Light Photocatalytic Degradation of Brilliant Black

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water pollution control. The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N,Pt) co-doped TiO₂ photocatalyts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. SEM/ EDX, TEM, XRD, XPS, TGA, FTIR, RS, PL and UV-Vis were used to characterize the prepared nanomaterials. The synthesized photocatalysts exhibited lower band gap energies as compared to the commercial TiO₂ revealing a shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180 min reaction time with initial concentration of 50 ppm BB solution. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The co-doped N,Pt also exhibited pseudo-first order kinetic behaviour with half-life and rate constant of 0.37 min 0.1984 min⁻¹ and respectively. N doped TiO₂ and N,Pt co-doped TiO₂ exhibited enhanced photocatalytic performances for the removal of BB from water.

Keywords: N, Pt co-doped TiO₂, dendrimer, photodegradation, visible-light

Procedia PDF Downloads 168
9191 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 124
9190 The Risk of Ground Movements After Digging Two Parallel Vertical Tunnel in Urban

Authors: Djelloul Chafia, Demagh Rafik, Kareche Toufik

Abstract:

Human activities, made without precautions, accelerate the degradation of the soil structure and reduces its resistance. Operations, such as tunnel construction may exercise an influence more or less permanent on the grounds which surrounded them, these structures alter soil it is necessary to predict their impacts by suitable measures. This research is a numerical analysis that deals the risks and effects due to the weakening of the soil after digging two parallel vertical circular tunnels in urban areas, and suggests forecasting techniques based essentially on the organization of underground space. The simulations are performed using the finite-difference code FLAC in a two-dimensional case and with an elasto-plastic behavior of the soil.

Keywords: sol, weakening, degradation, prevention, tunnel

Procedia PDF Downloads 557