Search results for: choice models
7979 Stability Analysis of Endemic State of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease Virus
Authors: Nurudeen Oluwasola Lasisi, Abdulkareem Afolabi Ibrahim
Abstract:
Newcastle disease is an infection of domestic poultry and other bird species with virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of modeling the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. We do a comparison of Vaccination, linear incident rate, and novel quarantine adjusted incident rate in the models. The dynamics of the models yield disease free and endemic equilibrium states. The effective reproduction numbers of the models are computed in order to measure the relative impact for the individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models, and we found that stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.Keywords: effective reproduction number, endemic state, mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis
Procedia PDF Downloads 2427978 Modeling Curriculum for High School Students to Learn about Electric Circuits
Authors: Meng-Fei Cheng, Wei-Lun Chen, Han-Chang Ma, Chi-Che Tsai
Abstract:
Recent K–12 Taiwan Science Education Curriculum Guideline emphasize the essential role of modeling curriculum in science learning; however, few modeling curricula have been designed and adopted in current science teaching. Therefore, this study aims to develop modeling curriculum on electric circuits to investigate any learning difficulties students have with modeling curriculum and further enhance modeling teaching. This study was conducted with 44 10th-grade students in Central Taiwan. Data collection included a students’ understanding of models in science (SUMS) survey that explored the students' epistemology of scientific models and modeling and a complex circuit problem to investigate the students’ modeling abilities. Data analysis included the following: (1) Paired sample t-tests were used to examine the improvement of students’ modeling abilities and conceptual understanding before and after the curriculum was taught. (2) Paired sample t-tests were also utilized to determine the students’ modeling abilities before and after the modeling activities, and a Pearson correlation was used to understand the relationship between students’ modeling abilities during the activities and on the posttest. (3) ANOVA analysis was used during different stages of the modeling curriculum to investigate the differences between the students’ who developed microscopic models and macroscopic models after the modeling curriculum was taught. (4) Independent sample t-tests were employed to determine whether the students who changed their models had significantly different understandings of scientific models than the students who did not change their models. The results revealed the following: (1) After the modeling curriculum was taught, the students had made significant progress in both their understanding of the science concept and their modeling abilities. In terms of science concepts, this modeling curriculum helped the students overcome the misconception that electric currents reduce after flowing through light bulbs. In terms of modeling abilities, this modeling curriculum helped students employ macroscopic or microscopic models to explain their observed phenomena. (2) Encouraging the students to explain scientific phenomena in different context prompts during the modeling process allowed them to convert their models to microscopic models, but it did not help them continuously employ microscopic models throughout the whole curriculum. The students finally consistently employed microscopic models when they had help visualizing the microscopic models. (3) During the modeling process, the students who revised their own models better understood that models can be changed than the students who did not revise their own models. Also, the students who revised their models to explain different scientific phenomena tended to regard models as explanatory tools. In short, this study explored different strategies to facilitate students’ modeling processes as well as their difficulties with the modeling process. The findings can be used to design and teach modeling curricula and help students enhance their modeling abilities.Keywords: electric circuits, modeling curriculum, science learning, scientific model
Procedia PDF Downloads 4597977 Economic Valuation of Forest Landscape Function Using a Conditional Logit Model
Authors: A. J. Julius, E. Imoagene, O. A. Ganiyu
Abstract:
The purpose of this study is to estimate the economic value of the services and functions rendered by the forest landscape using a conditional logit model. For this study, attributes and levels of forest landscape were chosen; specifically, attributes include topographical forest type, forest type, forest density, recreational factor (side trip, accessibility of valley), and willingness to participate (WTP). Based on these factors, 48 choices sets with balanced and orthogonal form using statistical analysis system (SAS) 9.1 was adopted. The efficiency of the questionnaire was 6.02 (D-Error. 0.1), and choice set and socio-economic variables were analyzed. To reduce the cognitive load of respondents, the 48 choice sets were divided into 4 types in the questionnaire, so that respondents could respond to 12 choice sets, respectively. The study populations were citizens from seven metropolitan cities including Ibadan, Ilorin, Osogbo, etc. and annual WTP per household was asked by using the interview questionnaire, a total of 267 copies were recovered. As a result, Oshogbo had 0.45, and the statistical similarities could not be found except for urban forests, forest density, recreational factor, and level of WTP. Average annual WTP per household for forest landscape was 104,758 Naira (Nigerian currency) based on the outcome from this model, total economic value of the services and functions enjoyed from Nigerian forest landscape has reached approximately 1.6 trillion Naira.Keywords: economic valuation, urban cities, services, forest landscape, logit model, nigeria
Procedia PDF Downloads 1317976 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models
Authors: R. Hellmuth
Abstract:
The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.Keywords: building information modeling, digital factory model, factory planning, maintenance
Procedia PDF Downloads 1097975 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education
Authors: Yoko Yamada, Chizumi Yamada
Abstract:
Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.Keywords: illness narrative, mediation, psychology, model, medical education
Procedia PDF Downloads 4097974 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity
Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien
Abstract:
This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.Keywords: CFD, experimental, mathematical models, parabolic trough, radiation
Procedia PDF Downloads 4217973 Improvement of Process Competitiveness Using Intelligent Reference Models
Authors: Julio Macedo
Abstract:
Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics
Procedia PDF Downloads 867972 Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing
Authors: Mehdi Behbahani, Sebastian Rible, Charles Moulinec, Yvan Fournier, Mike Nicolai, Paolo Crosetto
Abstract:
Computational Fluid Dynamics blood-flow simulations are increasingly used to develop and validate blood-contacting medical devices. This study shows that numerical simulations can provide additional and accurate estimates of relevant hemodynamic indicators (e.g., recirculation zones or wall shear stresses), which may be difficult and expensive to obtain from in-vivo or in-vitro experiments. The most recent FDA (Food and Drug Administration) benchmark consisted of a simplified centrifugal blood pump model that contains fluid flow features as they are commonly found in these devices with a clear focus on highly turbulent phenomena. The FDA centrifugal blood pump study is composed of six test cases with different volumetric flow rates ranging from 2.5 to 7.0 liters per minute, pump speeds, and Reynolds numbers ranging from 210,000 to 293,000. Within the frame of this study different turbulence models were tested including RANS models, e.g. k-omega, k-epsilon and a Reynolds Stress Model (RSM) and, LES. The partitioners Hilbert, METIS, ParMETIS and SCOTCH were used to create an unstructured mesh of 76 million elements and compared in their efficiency. Computations were performed on the JUQUEEN BG/Q architecture applying the highly parallel flow solver Code SATURNE and typically using 32768 or more processors in parallel. Visualisations were performed by means of PARAVIEW. Different turbulence models including all six flow situations could be successfully analysed and validated against analytical considerations and from comparison to other data-bases. It showed that an RSM represents an appropriate choice with respect to modeling high-Reynolds number flow cases. Especially, the Rij-SSG (Speziale, Sarkar, Gatzki) variant turned out to be a good approach. Visualisation of complex flow features could be obtained and the flow situation inside the pump could be characterized.Keywords: blood flow, centrifugal blood pump, high performance computing, scalability, turbulence
Procedia PDF Downloads 3817971 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models
Authors: Suriya
Abstract:
Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar
Procedia PDF Downloads 467970 Statistical Analysis for Overdispersed Medical Count Data
Authors: Y. N. Phang, E. F. Loh
Abstract:
Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling over-dispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling over-dispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling over-dispersed medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling over-dispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian, and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling over-dispersed medical count data when ZIP and ZINB are inadequate.Keywords: zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit
Procedia PDF Downloads 5417969 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models
Authors: Jihye Jeon
Abstract:
This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon
Procedia PDF Downloads 6507968 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones
Authors: Vineesh Amin, Ananya Agrawal
Abstract:
In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling
Procedia PDF Downloads 2087967 Evaluation of Football Forecasting Models: 2021 Brazilian Championship Case Study
Authors: Flavio Cordeiro Fontanella, Asla Medeiros e Sá, Moacyr Alvim Horta Barbosa da Silva
Abstract:
In the present work, we analyse the performance of football results forecasting models. In order to do so, we have performed the data collection from eight different forecasting models during the 2021 Brazilian football season. First, we guide the analysis through visual representations of the data, designed to highlight the most prominent features and enhance the interpretation of differences and similarities between the models. We propose using a 2-simplex triangle to investigate visual patterns from the results forecasting models. Next, we compute the expected points for every team playing in the championship and compare them to the final league standings, revealing interesting contrasts between actual to expected performances. Then, we evaluate forecasts’ accuracy using the Ranked Probability Score (RPS); models comparison accounts for tiny scale differences that may become consistent in time. Finally, we observe that the Wisdom of Crowds principle can be appropriately applied in the context, driving into a discussion of results forecasts usage in practice. This paper’s primary goal is to encourage football forecasts’ performance discussion. We hope to accomplish it by presenting appropriate criteria and easy-to-understand visual representations that can point out the relevant factors of the subject.Keywords: accuracy evaluation, Brazilian championship, football results forecasts, forecasting models, visual analysis
Procedia PDF Downloads 957966 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework
Authors: Ilaria Lucrezia Amerise
Abstract:
Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.Keywords: interval forecasts, time series, electricity prices, reg-SARIMA methods
Procedia PDF Downloads 1307965 Statistical Channel Modeling for Multiple-Input-Multiple-Output Communication System
Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany
Abstract:
The performance of wireless communication systems is affected mainly by the environment of its associated channel, which is characterized by dynamic and unpredictable behavior. In this paper, different statistical earth-satellite channel models are studied with emphasize on two main models, first is the Rice-Log normal model, due to its representation for the environment including shadowing and multi-path components that affect the propagated signal along its path, and a three-state model that take into account different fading conditions (clear area, moderate shadow and heavy shadowing). The provided models are based on AWGN, Rician, Rayleigh, and log-normal distributions were their Probability Density Functions (PDFs) are presented. The transmission system Bit Error Rate (BER), Peak-Average-Power Ratio (PAPR), and the channel capacity vs. fading models are measured and analyzed. These simulations are implemented using MATLAB tool, and the results had shown the performance of transmission system over different channel models.Keywords: fading channels, MIMO communication, RNS scheme, statistical modeling
Procedia PDF Downloads 1477964 Managing Diversity in MNCS: A Literature Review of Existing Strategic Models for Managing Diversity and a Roadmap to Transfer Them to the Subsidiaries
Authors: Debora Gottardello, Mireia Valverde Aparicio, Juan Llopis Taverner
Abstract:
Globalization has given rise to a great diversity in the composition of people in organizations. Diversity management is therefore key to create growth in today’s competitive global marketplace. This work develops a literature review related to the existing models for managing diversity covering the period from 1980 until 2014. Furthermore, it identifies limitations in previous models. More specifically, the literature review reveals that there is a lack of information about how these models can be adapted from the headquarters to the subsidiaries. Therefore, the contribution of this paper is to suggest how the models should be adapted when they are directed to host countries. Our aim is to highlight the limitations of the developed models with regards to the translation of the diversity management practices to the subsidiaries. Accordingly, a model that will enable MNCs to ensure a global strategy is suggested. Taking advantage of the potential incorporated in a culturally diverse work team should be at the top of every international company’s aims. Executives from headquarters need to use different attitudes when transferring diversity practices towards their subsidiaries. Further studies should reassess local practices of diversity management to find out how this universal management model is translated.Keywords: culture diversity, diversity management, human resources management, MNCs, subsidiaries, workforce diversity
Procedia PDF Downloads 2537963 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube
Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash
Abstract:
Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.Keywords: shock wave, blast wave, discrete models, shock tube
Procedia PDF Downloads 3297962 Epidemiological, Clinical, Diagnostic Indicators and Treatment Efficiency of Patients with Immune Thrombocytopenic Purpura Diagnosed in Albania
Authors: Sara Grazhdani, Alma Cili, Arben Ivanaj
Abstract:
Immune Thrombocytopenic Purpura is an autoimmune disease characterized by the destruction of platelets by immune mediators, their deficient production in the red bone marrow and increased splenic sequestration, leading to the appearance of thrombocytopenia and increased risk of hemorrhage. Treatment is indicated in patients with low platelet counts (<30 x 10 9 /L) who present clinically with hemorrhagic events or are at increased risk for hemorrhage. The goal of the treatment remains (I) prevention of hemorrhagic events and deaths resulting from them, (II) reaching an adequate level of the number of platelets, (III) treatment of patients with as few toxic effects as possible. Corticosteroid therapy remains the first choice in the treatment of patients with Primary Immune Thrombocytopenic Purpura. Rituximab (Mabthera) remains the first choice in the second line in the treatment of patients with Immune Thrombocytopenic Purpura, refractory to the use of cortisones.Keywords: ITP, rituximab, prednisolone, relapse
Procedia PDF Downloads 1107961 Investigations into the in situ Enterococcus faecalis Biofilm Removal Efficacies of Passive and Active Sodium Hypochlorite Irrigant Delivered into Lateral Canal of a Simulated Root Canal Model
Authors: Saifalarab A. Mohmmed, Morgana E. Vianna, Jonathan C. Knowles
Abstract:
The issue of apical periodontitis has received considerable critical attention. Bacteria is integrated into communities, attached to surfaces and consequently form biofilm. The biofilm structure provides bacteria with a series protection skills against, antimicrobial agents and enhances pathogenicity (e.g. apical periodontitis). Sodium hypochlorite (NaOCl) has become the irrigant of choice for elimination of bacteria from the root canal system based on its antimicrobial findings. The aim of the study was to investigate the effect of different agitation techniques on the efficacy of 2.5% NaOCl to eliminate the biofilm from the surface of the lateral canal using the residual biofilm, and removal rate of biofilm as outcome measures. The effect of canal complexity (lateral canal) on the efficacy of the irrigation procedure was also assessed. Forty root canal models (n = 10 per group) were manufactured using 3D printing and resin materials. Each model consisted of two halves of an 18 mm length root canal with apical size 30 and taper 0.06, and a lateral canal of 3 mm length, 0.3 mm diameter located at 3 mm from the apical terminus. E. faecalis biofilms were grown on the apical 3 mm and lateral canal of the models for 10 days in Brain Heart Infusion broth. Biofilms were stained using crystal violet for visualisation. The model halves were reassembled, attached to an apparatus and tested under a fluorescence microscope. Syringe and needle irrigation protocol was performed using 9 mL of 2.5% NaOCl irrigant for 60 seconds. The irrigant was either left stagnant in the canal or activated for 30 seconds using manual (gutta-percha), sonic and ultrasonic methods. Images were then captured every second using an external camera. The percentages of residual biofilm were measured using image analysis software. The data were analysed using generalised linear mixed models. The greatest removal was associated with the ultrasonic group (66.76%) followed by sonic (45.49%), manual (43.97%), and passive irrigation group (control) (38.67%) respectively. No marked reduction in the efficiency of NaOCl to remove biofilm was found between the simple and complex anatomy models (p = 0.098). The removal efficacy of NaOCl on the biofilm was limited to the 1 mm level of the lateral canal. The agitation of NaOCl results in better penetration of the irrigant into the lateral canals. Ultrasonic agitation of NaOCl improved the removal of bacterial biofilm.Keywords: 3D printing, biofilm, root canal irrigation, sodium hypochlorite
Procedia PDF Downloads 2267960 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 3627959 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 3877958 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 107957 Leverage Effect for Volatility with Generalized Laplace Error
Authors: Farrukh Javed, Krzysztof Podgórski
Abstract:
We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models
Procedia PDF Downloads 3847956 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization
Authors: Mohamed Othmani, Yassine Khlifi
Abstract:
This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.Keywords: 3d object, optimization, parametrization, polywog wavelets, reconstruction, wavelet networks
Procedia PDF Downloads 2837955 The Motivation of Israeli Arab Students to Study Education and Society at Multicultural College
Authors: Yael Cohen Azaria, Sara Zamir
Abstract:
This study examined what motivated Israeli Arab students to choose to study for a degree in education and society and the influence of this academic choice on them while they were studying. The study follows the qualitative paradigm of data collection and analysis, in a case study of a homogeneous group of Arab students in a Jewish multicultural academic institution. 33 students underwent semi-structured in-depth interviews. Findings show that the choice stemmed from a desire to lead social change within their own society; to imitate an educational role-model and to realize a dream of higher education. Among the female students, this field suits the role of the woman in Arab society. The interviewees claimed that the influence of their studies was that they felt more openness towards others and those who are different; they felt pride and self-confidence in their abilities, and the women mentioned that they felt empowered.Keywords: education, higher education, Israeli Arabs, minorities
Procedia PDF Downloads 3747954 Analyzing Business Model Choices and Sustainable Value Capturing: A Multiple Case Study of Sharing Economy Business Models
Authors: Minttu Laukkanen, Janne Huiskonen
Abstract:
This study investigates the sharing economy business models as examples of the sustainable business models. The aim is to contribute to the limited literature on sharing economy in connection with sustainable business models by explaining sharing economy business models value capturing. Specifically, this research answers the following question: How business model choices affect captured sustainable value? A multiple case study approach is applied in this study. Twenty different successful sharing economy business models focusing on consumer business and covering four main areas, accommodation, mobility, food, and consumer goods, are selected for analysis. The secondary data available on companies’ websites, previous research, reports, and other public documents are used. All twenty cases are analyzed through the sharing economy business model framework and sustainable value analysis framework using qualitative data analysis. This study represents general sharing economy business model value attributes and their specifications, i.e. sustainable value propositions for different stakeholders, and further explains the sustainability impacts of different sharing economy business models through captured and uncaptured value. In conclusion, this study represents how business model choices affect sustainable value capturing through eight business model attributes identified in this study. This paper contributes to the research on sustainable business models and sharing economy by examining how business model choices affect captured sustainable value. This study highlights the importance of careful business model and sustainability impacts analyses including the triple bottom line, multiple stakeholders and value captured and uncaptured perspectives as well as sustainability trade-offs. It is not self-evident that sharing economy business models advance sustainability, and business model choices does matter.Keywords: sharing economy, sustainable business model innovation, sustainable value, value capturing
Procedia PDF Downloads 1717953 Generic Hybrid Models for Two-Dimensional Ultrasonic Guided Wave Problems
Authors: Manoj Reghu, Prabhu Rajagopal, C. V. Krishnamurthy, Krishnan Balasubramaniam
Abstract:
A thorough understanding of guided ultrasonic wave behavior in structures is essential for the application of existing Non Destructive Evaluation (NDE) technologies, as well as for the development of new methods. However, the analysis of guided wave phenomena is challenging because of their complex dispersive and multimodal nature. Although numerical solution procedures have proven to be very useful in this regard, the increasing complexity of features and defects to be considered, as well as the desire to improve the accuracy of inspection often imposes a large computational cost. Hybrid models that combine numerical solutions for wave scattering with faster alternative methods for wave propagation have long been considered as a solution to this problem. However usually such models require modification of the base code of the solution procedure. Here we aim to develop Generic Hybrid models that can be directly applied to any two different solution procedures. With this goal in mind, a Numerical Hybrid model and an Analytical-Numerical Hybrid model has been developed. The concept and implementation of these Hybrid models are discussed in this paper.Keywords: guided ultrasonic waves, Finite Element Method (FEM), Hybrid model
Procedia PDF Downloads 4647952 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units
Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov
Abstract:
The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis
Procedia PDF Downloads 2737951 Computational Models for Accurate Estimation of Joint Forces
Authors: Ibrahim Elnour Abdelrahman Eltayeb
Abstract:
Computational modelling is a method used to investigate joint forces during a movement. It can get high accuracy in the joint forces via subject-specific models. However, the construction of subject-specific models remains time-consuming and expensive. The purpose of this paper was to identify what alterations we can make to generic computational models to get a better estimation of the joint forces. It appraised the impact of these alterations on the accuracy of the estimated joint forces. It found different strategies of alterations: joint model, muscle model, and an optimisation problem. All these alterations affected joint contact force accuracy, so showing the potential for improving the model predictions without involving costly and time-consuming medical images.Keywords: joint force, joint model, optimisation problem, validation
Procedia PDF Downloads 1687950 Simulation of Channel Models for Device-to-Device Application of 5G Urban Microcell Scenario
Authors: H. Zormati, J. Chebil, J. Bel Hadj Tahar
Abstract:
Next generation wireless transmission technology (5G) is expected to support the development of channel models for higher frequency bands, so clarification of high frequency bands is the most important issue in radio propagation research for 5G, multiple urban microcellular measurements have been carried out at 60 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL), the objective is to compare simulation results of some studied channel models with the purpose of testing the performance of each one.Keywords: 5G, channel model, 60GHz channel, millimeter-wave, urban microcell
Procedia PDF Downloads 319