Search results for: NLO material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6701

Search results for: NLO material

6431 Exploring Electroactive Polymers for Dynamic Data Physicalization

Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel

Abstract:

Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.

Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization

Procedia PDF Downloads 103
6430 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials

Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia

Abstract:

Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.

Keywords: mining waste, geopolymer, construction material, alkaline activation

Procedia PDF Downloads 103
6429 Effect of Cryogenic Treatment on Hybrid Natural Fiber Reinforced Polymer Composites

Authors: B. Vinod, L. J. Sudev

Abstract:

Natural fibers as reinforcement in polymer matrix material are gaining lot of attention in recent years. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites are gaining importance. These materials need to possess good mechanical and physical properties at cryogenic temperatures to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 405
6428 Material Failure Process Simulation by Improved Finite Elements with Embedded Discontinuities

Authors: Gelacio Juárez-Luna, Gustavo Ayala, Jaime Retama-Velasco

Abstract:

This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface. To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.

Keywords: variational formulation, strong discontinuity, embedded discontinuities, strain localization

Procedia PDF Downloads 787
6427 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock

Abstract:

This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing.

Keywords: soft soil stabilisation, waste materials, fineness, unconfined compressive strength

Procedia PDF Downloads 272
6426 Effect of Soil and Material Characteristics on Safety of Concrete Structures Including SSI

Authors: A. E. Kurtoglu, A. Cevik, M. Bilgehan

Abstract:

In this parametric study, effect of soil and material characteristics on safety of structures is investigated. The soil parameters such as shear strength, unit weight; geometrical parameters of the structure such as foundation depth and height of building; and material properties such as weight of concrete were selected as input parameters. A real accelerogram of 1989 El-Centro earthquake recorded by the USGS in Imperial Valley is used for this study. It is contained in the standard Strong Motion CD-ROM (SMC) format, which can be recognized and interpreted by FEM software used. The soil-structure interaction model subjected to above-mentioned earthquake was analyzed for 729 cases. Effect of input parameters on safety factor of the soil-structure system was then investigated and the interaction between the input and output parameters is presented in graphical form. Findings showed that all input parameters have significant effects on factor of safety results.

Keywords: factor of safety, finite element method, safety of structures, soil structure interaction

Procedia PDF Downloads 512
6425 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature

Authors: B. Vinod, L. Jsudev

Abstract:

Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 342
6424 Appraising the Evolution of Architecture as the Representation of Material Culture: The Nigerian Digest

Authors: Ikenna Emmanuel Idoko

Abstract:

Evolution and evolutionary processes are phenomena that have come to stay in the fabrics of the universal living, hence expressions such as universal evolution. These evolutions in the universe cut across all facets of human accomplishments, which architecture is a part of. There is a notion in political sciences that politics and the act of politicking are local, meaning that politics and political processes are unique and peculiar to a people, all dependent on their sociocultural makeup. The notion is also applicable in architecture because the architecture of a people is mostly dependent on several factors such as climatic conditions, material availability, socio-cultural beliefs and religious inclinations. Stemming from the cultural dimension, it is of course common knowledge that every society is driven by its own unique culture. The fusion of architecture and culture creates the actual uniqueness which underlines the “archi-cultural” representation of a people’s material culture. This paper is aimed at appraising architectural evolution as it affects the representation of the material culture of a people. For effective systemization of the aim, various spectacular kinds of literature were reviewed, coupled with the visitation and study of existing buildings in Nigeria to properly understand the live peculiarity in the architecture of the selected area. Since architecture needs a lot of pictorial pieces of evidence, pictures and graphical representations were extensively utilized, and channelled to aid a better understanding of the study. Amongst all, an important part of this paper is that it adds to the body of existing knowledge in the Arts and Humanities by speaking extensively to the tenets of cultural representation on buildings. Similarly, the field of architecture, specifically, traditional architecture, would be gaining some extra knowledge owing to the study of some important almost-neglected or forgotten architectural elements of various traditional buildings.

Keywords: evolution, architecture, material, culture

Procedia PDF Downloads 62
6423 Assessment of the Performance of Fly Ash Based Geo-Polymer Concrete under Sulphate and Acid Attack

Authors: Talakokula Visalakshi

Abstract:

Concrete is the most commonly used construction material across the globe, its usage is second only to water. It is prepared using ordinary Portland cement whose production contributes to 5-8% of total carbon emission in the world. On the other hand the fly ash by product from the power plants is produced in huge quantities is termed as waste and disposed in landfills. In order to address the above issues mentioned, it is essential that other forms of binding material must be developed in place of cement to make concrete. The geo polymer concrete is one such alternative developed by Davidovits in 1980’s. Geopolymer do not form calcium-silicate hydrates for matrix formation and strength but undergo polycondensation of silica and alumina precursors to attain structural strength. Its setting mechanism depends upon polymerization rather than hydration. As a result it is able to achieve its strength in 3-5 days whereas concrete requires about a month to do the same. The objective of this research is to assess the performance of geopolymer concrete under sulphate and acid attack. The assessment is done based on the experiments conducted on geopolymer concrete. The expected outcomes include that if geopolymer concrete is more durable than normal concrete, then it could be a competitive replacement option of concrete and can lead to significant reduction of carbon foot print and have a positive impact on the environment. Fly ash based geopolymer concrete offers an opportunity to completely remove the cement content from concrete thereby making the concrete a greener and future construction material.

Keywords: fly ash, geo polymer, geopolymer concrete, construction material

Procedia PDF Downloads 491
6422 Ingenious Use of Hypo Sludge in M25 Concrete

Authors: Abhinandan Singh Gill

Abstract:

Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.

Keywords: concrete, sludge waste, hypo sludge, supplementary cementitious material

Procedia PDF Downloads 314
6421 Static Relaxation of Glass Fiber Reinforced Pipes

Authors: Mohammed Y. Abdellah, Mohamed K. Hassan, A. F. Mohamed, Shadi M. Munshi, A. M. Hashem

Abstract:

Pips made from glass fiber reinforced polymer has competitive role in petroleum industry. The need of evaluating the mechanical behavior of (GRP) pipes is essential objects. Stress relaxation illustrates how polymers relieve stress under constant strain. Static relaxation test is carried out at room temperature. The material gives poor static relaxation strength, two loading cycles have been observed for the tested specimen.

Keywords: GRP, sandwich composite material, static relaxation, stress relief

Procedia PDF Downloads 628
6420 Mechanical Behavior of 16NC6 Steel Hardened by Burnishing

Authors: Litim Tarek, Taamallah Ouahiba

Abstract:

This work relates to the physico-geometrical aspect of the surface layers of 16NC6 steel having undergone the burnishing treatment by hard steel ball. The results show that the optimal effects of burnishing are closely linked to the shape and the material of the active part of the device as well as to the surface plastic deformation ability of the material to be treated. Thus the roughness is improved by more than 70%, and the consolidation rate is increased by 30%. In addition, modeling of the rational traction curves provides a work hardening coefficient of up to 0.3 in the presence of burnishing.

Keywords: 16NC6 steel, burnishing, hardening, roughness

Procedia PDF Downloads 167
6419 Use of Geosynthetics as Reinforcement Elements in Unpaved Tertiary Roads

Authors: Vivian A. Galindo, Maria C. Galvis, Jaime R. Obando, Alvaro Guarin

Abstract:

In Colombia, most of the roads of the national tertiary road network are unpaved roads with granular rolling surface. These are very important ways of guaranteeing the mobility of people, products, and inputs from the agricultural sector from the most remote areas to urban centers; however, it has not paid much attention to the search for alternatives to avoid the occurrence of deteriorations that occur shortly after its commissioning. In recent years, geosynthetics have been used satisfactorily to reinforce unpaved roads on soft soils, with geotextiles and geogrids being the most widely used. The interaction of the geogrid and the aggregate minimizes the lateral movement of the aggregate particles and increases the load capacity of the material, which leads to a better distribution of the vertical stresses, consequently reducing the vertical deformations in the subgrade. Taking into account the above, the research aimed at the mechanical behavior of the granular material, used in unpaved roads with and without the presence of geogrids, from the development of laboratory tests through the loaded wheel tester (LWT). For comparison purposes, the reinforced conditions and traffic conditions to which this type of material can be accessed in practice were simulated. In total four types of geogrids, were tested with granular material; this means that five test sets, the reinforced material and the non-reinforced control sample were evaluated. The results of the numbers of load cycles and depth rutting supported by each test body showed the influence of the properties of the reinforcement on the mechanical behavior of the assembly and the significant increases in the number of load cycles of the reinforced specimens in relation to those without reinforcement.

Keywords: geosynthetics, load wheel tester LWT, tertiary roads, unpaved road, vertical deformation

Procedia PDF Downloads 252
6418 Mesoporous Material Nanofibers by Electrospinning

Authors: Sh. Sohrabnezhad, A. Jafarzadeh

Abstract:

In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.

Keywords: electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques

Procedia PDF Downloads 252
6417 Experimental and Numerical Studies of Droplet Formation

Authors: Khaled Al-Badani, James Ren, Lisa Li, David Allanson

Abstract:

Droplet formation is an important process in many engineering systems and manufacturing procedures, which includes welding, biotechnologies, 3D printing, biochemical, biomedical fields and many more. The volume and the characteristics of droplet formation are generally depended on various material properties, microfluidics and fluid mechanics considerations. Hence, a detailed investigation of this process, with the aid of numerical computational tools, are essential for future design optimization and process controls of many engineering systems. This will also improve the understanding of changes in the properties and the structures of materials, during the formation of the droplet, which is important for new material developments to achieve different functions, pending the requirements of the application. For example, the shape of the formed droplet is critical for the function of some final products, such as the welding nugget during Capacitor Discharge Welding process, or PLA 3D printing, etc. Although, most academic journals on droplet formation, focused on issued with material transfer rate, surface tension and residual stresses, the general emphasis on the characteristics of droplet shape has been overlooked. The proposed work for this project will examine theoretical methodologies, experimental techniques, and numerical modelling, using ANSYS FLUENT, to critically analyse and highlight optimization methods regarding the formation of pendant droplet. The project will also compare results from published data with experimental and numerical work, concerning the effects of key material parameters on the droplet shape. These effects include changes in heating/cooling rates, solidification/melting progression and separation/break-up times. From these tests, a set of objectives is prepared, with an intention of improving quality, stability and productivity in modelling metal welding and 3D printing.

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 289
6416 The Analysis Fleet Operational Performance as an Indicator of Load and Haul Productivity

Authors: Linet Melisa Daubanes, Nhleko Monique Chiloane

Abstract:

The shovel-truck system is the most prevalent material handling system used in surface mining operations. Material handling entails the loading and hauling of material from production areas to dumping areas. The material handling process has operational delays that have a negative impact on the productivity of the load and haul fleet. Factors that may contribute to operational delays include shovel-truck mismatch, haul routes, machine breakdowns, extreme weather conditions, etc. The aim of this paper is to investigate factors that contribute to operational delays affecting the productivity of the load and haul fleet at the mine. Productivity is the measure of the effectiveness of producing products from a given quantity of units, the ratio of output to inputs. Productivity can be improved by producing more outputs with the same or fewer units and/or introducing better working methods etc. Several key performance indicators (KPI) for the evaluation of productivity will be discussed in this study. These KPIs include but are not limited to hauling conditions, bucket fill factor, cycle time, and utilization. The research methodology of this study is a combination of on-site time studies and observations. Productivity can be optimized by managing the factors that affect the operational performance of the haulage fleet.

Keywords: cycle time, fleet performance, load and haul, surface mining

Procedia PDF Downloads 203
6415 Synthesis of Amorphous Nanosilica Anode Material from Philippine Waste Rice Hull for Lithium Battery Application

Authors: Emie A. Salamangkit-Mirasol, Rinlee Butch M. Cervera

Abstract:

Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull. In addition, initial electrode performance of the synthesized samples as an anode material in Lithium Battery have been investigated.

Keywords: agricultural waste, anode material, nanosilica, rice hull

Procedia PDF Downloads 285
6414 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis

Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar

Abstract:

Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.

Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives

Procedia PDF Downloads 459
6413 Dielectric Study of Lead-Free Double Perovskite Structured Polycrystalline BaFe0.5Nb0.5O3 Material

Authors: Vijay Khopkar, Balaram Sahoo

Abstract:

Material with high value of dielectric constant has application in the electronics devices. Existing lead based materials have issues such as toxicity and problem with synthesis procedure. Double perovskite structured barium iron niobate (BaFe0.5Nb0.5O3, BFN) is the lead-free material, showing a high value of dielectric constant. Origin of high value of the dielectric constant in BFN is not clear. We studied the dielectric behavior of polycrystalline BFN sample over wide temperature and frequency range. A BFN sample synthesis by conventional solid states reaction method and phase pure dens pellet was used for dielectric study. The SEM and TEM study shows the presence of grain and grain boundary region. The dielectric measurement was done between frequency range of 40 Hz to 5 MHz and temperature between 20 K to 500 K. At 500 K temperature and lower frequency, there observed high value of dielectric constant which decreases with increase in frequency. The dipolar relaxation follows non-Debye type polarization with relaxation straight of 3560 at room temperature (300 K). Activation energy calculated from the dielectric and modulus formalism found to be 17.26 meV and 2.74 meV corresponds to the energy required for the motion of Fe3+ and Nb5+ ions within the oxygen octahedra. Our study shows that BFN is the order disorder type ferroelectric material.

Keywords: barium iron niobate, dielectric, ferroelectric, non-Debye

Procedia PDF Downloads 140
6412 Reduce, Reuse and Recycle: Grand Challenges in Construction Recovery Process

Authors: Abioye A. Oyenuga, Rao Bhamidiarri

Abstract:

Hurling a successful Construction and Demolition Waste (C&DW) recycling operation around the globe is a challenge today, predominantly because secondary materials markets are yet to be integrated. Reducing, Reusing and recycling of (C&DW) have been employed over the years, and various techniques have been investigated. However, the economic and environmental viability of its application seems limited. This paper discusses the costs and benefits in using secondary materials and focus on investigating reuse and recycling process for five major types of construction materials: concrete, metal, wood, cardboard/paper, and plasterboard. Data obtained from demolition specialist and contractors are considered and evaluated. With the date source, the research paper found that construction material recovery process fully incorporate the 3R’s process and shows how energy recovery by means of 3R's principles can be evaluated. This scrutiny leads to the empathy of grand challenges in construction material recovery process. Recommendations to deepen material recovery process are also discussed.

Keywords: construction and demolition waste (C&DW), 3R concept, recycling, reuse, waste management, UK

Procedia PDF Downloads 431
6411 Optimizing Design Parameters for Efficient Saturated Steam Production in Fire Tube Boilers: A Cost-Effective Approach

Authors: Yoftahe Nigussie Worku

Abstract:

This research focuses on advancing fire tube boiler technology by systematically optimizing design parameters to achieve efficient saturated steam production. The main objective is to design a high-performance boiler with a production capacity of 2000kg/h at a 12-bar design pressure while minimizing costs. The methodology employs iterative analysis, utilizing relevant formulas, and considers material selection and production methods. The study successfully results in a boiler operating at 85.25% efficiency, with a fuel consumption rate of 140.37kg/hr and a heat output of 1610kW. Theoretical importance lies in balancing efficiency, safety considerations, and cost minimization. The research addresses key questions on parameter optimization, material choices, and safety-efficiency balance, contributing valuable insights to fire tube boiler design.

Keywords: safety consideration, efficiency, production methods, material selection

Procedia PDF Downloads 69
6410 The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate

Authors: Bonsoo Koo, Seong Shin Hong, Byung Kwon Lee

Abstract:

Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.

Keywords: floor impact sound, thermoplastic poly urethane, ethylene vinyl acetate, heavyweight impact sound

Procedia PDF Downloads 407
6409 Artificial Nesting in Birds at UVAS-Ravi Campus: Punjab-Pakistan

Authors: Fatima Chaudhary, Rehan Ul Haq

Abstract:

Spatial and anthropogenic factors influencing nest-site selection in birds need to be identified for effective conservative practices. Environmental attributes such as food availability, predator density, previous reproductive success, etc., provide information regarding the site's quality. An artificial nest box experiment was carried out to evaluate the effect of various factors on nest-site selection, as it is hard to assess the natural cavities. The experiment was conducted whereby half of the boxes were filled with old nest material. Artificial nest boxes created with different materials and different sizes and colors were installed at different heights. A total of 14 out of 60 nest boxes were occupied and four of them faced predation. The birds explored a total of 32 out of 60 nests, whereas anthropogenic factors destroyed 25 out of 60 nests. Birds chose empty nest boxes at higher rates however, there was no obvious avoidance of sites having high ectoparasites load due to old nest material. It is also possible that the preference towards the artificial nest boxes may differ from year to year because of several climatic factors and the age of old nest material affecting the parasite's survival. These variables may fluctuate from one season to another. Considering these factors, nest-site selection experiments concerning the effectiveness of artificial nest boxes should be carried out over several successive seasons. This topic may stimulate further studies, which could lead to a fully understanding the birds' evolutionary ecology. Precise information on these factors influencing nest-site selection can be essential from an economic point of view as well.

Keywords: artificial nesting, nest box, old nest material, birds

Procedia PDF Downloads 98
6408 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications

Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage

Abstract:

Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.

Keywords: thermoplastic elastomer, natural rubber, high density polyethylene, roofing material

Procedia PDF Downloads 132
6407 The Use of Alternative Material to Fabric in Stage Costume

Authors: Melahat Çevik

Abstract:

The discovery of fabric has a quite old historical perspective because of veiling, heating and shelter needs of human. Since the days which fashion has a say, this situation has pasted beyond needs and has become status symbols. For the theater art drama which tell people by people, in the concern of reflecting daily life there will be such regards also we may see alternative products to artistically reshaped fabric. The stage is determined in the consensus of costume designer and director. Costume Designer does the research, taking into account the alternative products. Approaching nature as inventor, discovering products, shapes the work because in this work, cost is considerable. All types of fabric will be used but also new materials which are not presented to clothing industry yet are of great importance. In the discovery of new materials there priorities of the costume designer. In the scene everything should be determined in the axis of actor. The material discussed should have positive qualities which allow the performer to move and invigorate him or her in terms of physical and also should be positive in terms of health. This point must be approached in a more precise in high action plays and the obtained material should be tested before the presentation process.

Keywords: fabric, stage design, alternative materials, clothing industry

Procedia PDF Downloads 578
6406 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can

Abstract:

This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.

Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum

Procedia PDF Downloads 343
6405 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

Authors: Yu T. Tsai, Jin H. Huang

Abstract:

In this paper, the specific sound transmission loss (TL) of the laminated composite plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

Keywords: sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties

Procedia PDF Downloads 391
6404 Different Processing Methods to Obtain a Carbon Composite Element for Cycling

Authors: Maria Fonseca, Ana Branco, Joao Graca, Rui Mendes, Pedro Mimoso

Abstract:

The present work is focused on the production of a carbon composite element for cycling through different techniques, namely, blow-molding and high-pressure resin transfer injection (HP-RTM). The main objective of this work is to compare both processes to produce carbon composite elements for the cycling industry. It is well known that the carbon composite components for cycling are produced mainly through blow-molding; however, this technique depends strongly on manual labour, resulting in a time-consuming production process. Comparatively, HP-RTM offers a more automated process which should lead to higher production rates. Nevertheless, a comparison of the elements produced through both techniques must be done, in order to assess if the final products comply with the required standards of the industry. The main difference between said techniques lies in the used material. Blow-moulding uses carbon prepreg (carbon fibres pre-impregnated with a resin system), and the material is laid up by hand, piece by piece, on a mould or on a hard male. After that, the material is cured at a high temperature. On the other hand, in the HP-RTM technique, dry carbon fibres are placed on a mould, and then resin is injected at high pressure. After some research regarding the best material systems (prepregs and braids) and suppliers, an element was designed (similar to a handlebar) to be constructed. The next step was to perform FEM simulations in order to determine what the best layup of the composite material was. The simulations were done for the prepreg material, and the obtained layup was transposed to the braids. The selected material was a prepreg with T700 carbon fibre (24K) and an epoxy resin system, for the blow-molding technique. For HP-RTM, carbon fibre elastic UD tubes and ± 45º braids were used, with both 3K and 6K filaments per tow, and the resin system was an epoxy as well. After the simulations for the prepreg material, the optimized layup was: [45°, -45°,45°, -45°,0°,0°]. For HP-RTM, the transposed layup was [ ± 45° (6k); 0° (6k); partial ± 45° (6k); partial ± 45° (6k); ± 45° (3k); ± 45° (3k)]. The mechanical tests showed that both elements can withstand the maximum load (in this case, 1000 N); however, the one produced through blow-molding can support higher loads (≈1300N against 1100N from HP-RTM). In what concerns to the fibre volume fraction (FVF), the HP-RTM element has a slightly higher value ( > 61% compared to 59% of the blow-molding technique). The optical microscopy has shown that both elements have a low void content. In conclusion, the elements produced using HP-RTM can compare to the ones produced through blow-molding, both in mechanical testing and in the visual aspect. Nevertheless, there is still space for improvement in the HP-RTM elements since the layup of the braids, and UD tubes could be optimized.

Keywords: HP-RTM, carbon composites, cycling, FEM

Procedia PDF Downloads 136
6403 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys

Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune

Abstract:

In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.

Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis

Procedia PDF Downloads 332
6402 Fabrication of Porous Materials for the Removal of Lead from Waste Water

Authors: Marcia Silva, Jayme Kolarik, Brennon Garthwait, William Lee, Hai-Feng Zhang

Abstract:

Adsorption of lead by a natural porous material was studied to establish a baseline for the removal of heavy metals from drinking and waste water. Samples were examined under different conditions such as solution pH, solution concentration, solution temperature, and exposure time. New materials with potentially enhanced adsorption properties were developed by functionalizing the surface of the natural porous material to fabricate graphene based coated and sulfide based treated porous material. The functionalized materials were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Raman, Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Solution pH effect on removal efficiency has been investigated in acidic (pH = 4), neutral (pH = 6) and basic (pH = 10) pH levels. All adsorbent materials showed highest adsorption capacities at neutral pH levels. Batch experiment was employed to assess the efficacy for the removal of lead with the sorption kinetics and the adsorption isotherms being determined for the natural and treated porous materials. The addition of graphene-based and sulfide-based materials increased the lead removal capacity of the natural clean porous material. Theoretical calculations confirmed pseudo-second order model as kinetic mechanism for lead adsorption for all adsorbents.

Keywords: heavy metals, ion exchange, adsorption, water remediation

Procedia PDF Downloads 251