Search results for: statistical databases
4774 Assessment of Image Databases Used for Human Skin Detection Methods
Authors: Saleh Alshehri
Abstract:
Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.Keywords: image databases, image processing, pattern recognition, neural networks
Procedia PDF Downloads 2724773 Perceptions of Academic Staff on the Influences of Librarians and Working Colleagues Towards the Awareness and Use of Electronic Databases in Umaru Musa Yar’adua University, Katsina
Authors: Lawal Kado
Abstract:
This paper investigates the perceptions of academic staff at Umaru Musa Yar’adua University regarding the influences of librarians and working colleagues on the awareness and use of electronic databases. The study aims to provide insights into the effectiveness of these influences and suggest strategies to improve the usage of electronic databases. Research aim: The aim of this study is to determine the perceptions of academic staff on the influence of librarians and working colleagues towards the awareness and use of electronic databases in Umaru Musa Yar’adua University, Katsina. Methodology: The study adopts a quantitative method and survey research design. The survey questionnaire is distributed to 110 respondents selected through simple random sampling from a population of 523 academic staff. The collected data is analyzed using the Statistical Package for Social Sciences (SPSS) version 23. Findings: The study reveals a high level of general awareness of electronic databases in the university, largely influenced by librarians and colleagues. Librarians have played a crucial role in making academic staff aware of the available databases. The sources of information for awareness include colleagues, social media, e-mails from the library, and internet searching. Theoretical importance: This study contributes to the literature by examining the perceptions of academic staff, which can inform policymakers and stakeholders in developing strategies to maximize the use of electronic databases. Data collection and analysis procedures: The data is collected through a survey questionnaire that utilizes the Likert scaling technique. The closed-ended questions are analyzed using SPSS 23. Question addressed: The paper addresses the question of how librarians and working colleagues influence the awareness and use of electronic databases among academic staff. Conclusion: The study concludes that the influence of librarians and working colleagues significantly contributes to the awareness and use of electronic databases among academic staff. The paper recommends the establishment of dedicated departments or units for marketing library resources to further promote the usage of electronic databases.Keywords: awareness, electronic databases, academic staff, unified theory of acceptance and use of technology, social influence
Procedia PDF Downloads 924772 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection
Procedia PDF Downloads 4574771 Enhance Security in XML Databases: XLog File for Severity-Aware Trust-Based Access Control
Authors: A: Asmawi, L. S. Affendey, N. I. Udzir, R. Mahmod
Abstract:
The topic of enhancing security in XML databases is important as it includes protecting sensitive data and providing a secure environment to users. In order to improve security and provide dynamic access control for XML databases, we presented XLog file to calculate user trust values by recording users’ bad transaction, errors and query severities. Severity-aware trust-based access control for XML databases manages the access policy depending on users' trust values and prevents unauthorized processes, malicious transactions and insider threats. Privileges are automatically modified and adjusted over time depending on user behaviour and query severity. Logging in database is an important process and is used for recovery and security purposes. In this paper, the Xlog file is presented as a dynamic and temporary log file for XML databases to enhance the level of security.Keywords: XML database, trust-based access control, severity-aware, trust values, log file
Procedia PDF Downloads 3004770 Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers
Authors: F. Berna Benli, Özgür Keskin
Abstract:
Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied.Keywords: fuzzy number, λ-levelwise statistical cluster points, λ-levelwise statistical convergence, λ-levelwise statistical limit points, λ-statistical cluster points, λ-statistical convergence, λ-statistical limit points
Procedia PDF Downloads 4784769 Comparison between RILM, JSTOR, and WorldCat Used to Search for Secondary Literature
Authors: Stacy Jarvis
Abstract:
Databases such as JSTOR, RILM and WorldCat have been the main source and storage of literature in the music orb. The Reference Index to Music Literature is a bibliographic database of over 2.6 million citations to writings about music from over 70 countries. The Research Institute produces RILM for the Study of Music at the University of Buffalo. JSTOR is an e-library of academic journals, books, and primary sources. Database JSTOR helps scholars find, utilise, and build upon a vast range of literature through a powerful teaching and research platform. Another database, WorldCat, is the world's biggest library catalogue, assisting scholars in finding library materials online. An evaluation of these databases in the music sphere is conducted by looking into the description and intended use and finding similarities and differences among them. Through comparison, it is found that these aim to serve different purposes, though they have the same goal of providing and storing literature. Also, since each database has different parts of literature that it majors on, the intended use of the three databases is evaluated. This can be found in the description, scope, and intended uses section. These areas are crucial to the research as it addresses the functional or literature differences among the three databases. It is also found that these databases have different quantitative potentials. This is determined by addressing the year each database began collecting literature and the number of articles, periodicals, albums, conference proceedings, music, dissertations, digital media, essays collections, journal articles, monographs, online resources, reviews, and reference materials that can be found in each one of them. This can be found in the sections- description, scope and intended uses and the importance of the database in identifying literature on different topics. To compare the delivery of services to the users, the importance of databases in identifying literature on different topics is also addressed in the section -the importance of databases in identifying literature on different topics. Even though these databases are used in research, they all have disadvantages and advantages. This is addressed in the sections on advantages and disadvantages. This will be significant in determining which of the three is the best. Also, it will help address how the shortcomings of one database can be addressed by utilising two databases together while conducting research. It is addressed in the section- a combination of RILM and JSTOR. All this information revolves around the idea that a huge amount of quantitative and qualitative data can be found in the presented databases on music and digital content; however, each of the given databases has a different construction and material features contributing to the musical scholarship in its way.Keywords: RILM, JSTOR, WorldCat, database, literature, research
Procedia PDF Downloads 834768 As a Little-Known Side a Passionate Statistician: Florence Nightingale
Authors: Gülcan Taşkıran, Ayla Bayık Temel
Abstract:
Background: Florence Nightingale, the modern founder of the nursing, is most famous for her role as a nurse. But not so much known about her contributions as a mathematician and statistician. Aim: In this conceptual article it is aimed to examine Florence Nightingale's statistics education, how she used her passion for statistics and applied statistical data in nursing care and her scientific contributions to statistical science. Design: Literature review method was used in the study. The databases of Istanbul University Library Search Engine, Turkish Medical Directory, Thesis Scanning Center of Higher Education Council, PubMed, Google Scholar, EBSCO Host, Web of Science were scanned to reach the studies. The keywords 'statistics' and 'Florence Nightingale' have been used in Turkish and English while being screened. As a result of the screening, totally 41 studies were examined from the national and international literature. Results: Florence Nightingale has interested in mathematics and statistics at her early ages and has received various training in these subjects. Lessons learned by Nightingale in a cultured family environment, her talent in mathematics and numbers, and her religious beliefs played a crucial role in the direction of the statistics. She was influenced by Quetelet's ideas in the formation of the statistical philosophy and received support from William Farr in her statistical studies. During the Crimean War, she applied statistical knowledge to nursing care, developed many statistical methods and graphics, so that she made revolutionary reforms in the health field. Conclusions: Nightingale's interest in statistics, her broad vision, the statistical ideas fused with religious beliefs, the innovative graphics she has developed and the extraordinary statistical projects that she carried out has been influential on the basis of her professional achievements. Florence Nightingale has also become a model for women in statistics. Today, using and teaching of statistics and research in nursing care practices and education programs continues with the light she gave.Keywords: Crimean war, Florence Nightingale, nursing, statistics
Procedia PDF Downloads 2934767 A Method for Reduction of Association Rules in Data Mining
Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa
Abstract:
The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.Keywords: data mining, association rules, rules reduction, artificial intelligence
Procedia PDF Downloads 1624766 Examining Statistical Monitoring Approach against Traditional Monitoring Techniques in Detecting Data Anomalies during Conduct of Clinical Trials
Authors: Sheikh Omar Sillah
Abstract:
Introduction: Monitoring is an important means of ensuring the smooth implementation and quality of clinical trials. For many years, traditional site monitoring approaches have been critical in detecting data errors but not optimal in identifying fabricated and implanted data as well as non-random data distributions that may significantly invalidate study results. The objective of this paper was to provide recommendations based on best statistical monitoring practices for detecting data-integrity issues suggestive of fabrication and implantation early in the study conduct to allow implementation of meaningful corrective and preventive actions. Methodology: Electronic bibliographic databases (Medline, Embase, PubMed, Scopus, and Web of Science) were used for the literature search, and both qualitative and quantitative studies were sought. Search results were uploaded into Eppi-Reviewer Software, and only publications written in the English language from 2012 were included in the review. Gray literature not considered to present reproducible methods was excluded. Results: A total of 18 peer-reviewed publications were included in the review. The publications demonstrated that traditional site monitoring techniques are not efficient in detecting data anomalies. By specifying project-specific parameters such as laboratory reference range values, visit schedules, etc., with appropriate interactive data monitoring, statistical monitoring can offer early signals of data anomalies to study teams. The review further revealed that statistical monitoring is useful to identify unusual data patterns that might be revealing issues that could impact data integrity or may potentially impact study participants' safety. However, subjective measures may not be good candidates for statistical monitoring. Conclusion: The statistical monitoring approach requires a combination of education, training, and experience sufficient to implement its principles in detecting data anomalies for the statistical aspects of a clinical trial.Keywords: statistical monitoring, data anomalies, clinical trials, traditional monitoring
Procedia PDF Downloads 794765 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm
Procedia PDF Downloads 4284764 Building an Integrated Relational Database from Swiss Nutrition National Survey and Swiss Health Datasets for Data Mining Purposes
Authors: Ilona Mewes, Helena Jenzer, Farshideh Einsele
Abstract:
Objective: The objective of the study was to integrate two big databases from Swiss nutrition national survey (menuCH) and Swiss health national survey 2012 for data mining purposes. Each database has a demographic base data. An integrated Swiss database is built to later discover critical food consumption patterns linked with lifestyle diseases known to be strongly tied with food consumption. Design: Swiss nutrition national survey (menuCH) with approx. 2000 respondents from two different surveys, one by Phone and the other by questionnaire along with Swiss health national survey 2012 with 21500 respondents were pre-processed, cleaned and finally integrated to a unique relational database. Results: The result of this study is an integrated relational database from the Swiss nutritional and health databases.Keywords: health informatics, data mining, nutritional and health databases, nutritional and chronical databases
Procedia PDF Downloads 1124763 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data
Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah
Abstract:
At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.Keywords: Semantic Web, linked open data, database, statistic
Procedia PDF Downloads 1764762 Students' Statistical Reasoning and Attitudes towards Statistics in Blended Learning, E-Learning and On-Campus Learning
Authors: Petros Roussos
Abstract:
The present study focused on students' statistical reasoning related to Null Hypothesis Statistical Testing and p-values. Its objective was to test the hypothesis that neither the place (classroom, at a distance, online) nor the medium that actually supports the learning (ICT, internet, books) has an effect on understanding of statistical concepts. In addition, it was expected that students' attitudes towards statistics would not predict understanding of statistical concepts. The sample consisted of 385 undergraduate and postgraduate students from six state and private universities (five in Greece and one in Cyprus). Students were administered two questionnaires: a) the Greek version of the Survey of Attitudes Toward Statistics, and b) a short instrument which measures students' understanding of statistical significance and p-values. Results suggest that attitudes towards statistics do not predict students' understanding of statistical concepts, whereas the medium did not have an effect.Keywords: attitudes towards statistics, blended learning, e-learning, statistical reasoning
Procedia PDF Downloads 3104761 Utilization of CD-ROM Database as a Storage and Retrieval System by Students of Nasarawa State University Keffi
Authors: Suleiman Musa
Abstract:
The utilization of CD-ROM as a storage and retrieval system by Nasarawa State University Keffi (NSUK) Library is crucial in preserving and dissemination of information to students and staff. This study investigated the utilization of CD-ROM Database storage and retrieval system by students of NUSK. Data was generated using structure questionnaire. One thousand and fifty two (1052) respondents were randomly selected among post-graduate and under-graduate students. Eight hundred and ten (810) questionnaires were returned, but only five hundred and ninety three (593) questionnaires were well completed and useful. The study found that post-graduate students use CD-ROM Databases more often than the under-graduate students in NSUK. The result of the study revealed that knowledge about CD-ROM Database 33.22% got it through library staff. 29.69% use CD-ROM once a month. Large number of users 45.70% purposely uses CD-ROM Databases for study and research. In fact, lack of users’ orientation amount to 58.35% of problems faced, while 31.20% lack of trained staff make it more difficult for utilization of CD-ROM Database. Major numbers of users 38.28% are neither satisfied nor dissatisfied, while a good number of them 27.99% are satisfied. Then 1.52% is highly dissatisfied but could not give reasons why. However, to ensure effective utilization of CD-ROM Database storage and retrieval system by students of NSUK, the following recommendations are made: effort should be made to encourage under-graduate in using CD-ROM Database. The institution should conduct orientation/induction course for students on CD-ROM Databases in the library. There is need for NSUK to produce in house databases on their CD-ROM for easy access by users.Keywords: utilization, CD-ROM databases, storage, retrieval, students
Procedia PDF Downloads 4464760 Cleaning of Scientific References in Large Patent Databases Using Rule-Based Scoring and Clustering
Authors: Emiel Caron
Abstract:
Patent databases contain patent related data, organized in a relational data model, and are used to produce various patent statistics. These databases store raw data about scientific references cited by patents. For example, Patstat holds references to tens of millions of scientific journal publications and conference proceedings. These references might be used to connect patent databases with bibliographic databases, e.g. to study to the relation between science, technology, and innovation in various domains. Problematic in such studies is the low data quality of the references, i.e. they are often ambiguous, unstructured, and incomplete. Moreover, a complete bibliographic reference is stored in only one attribute. Therefore, a computerized cleaning and disambiguation method for large patent databases is developed in this work. The method uses rule-based scoring and clustering. The rules are based on bibliographic metadata, retrieved from the raw data by regular expressions, and are transparent and adaptable. The rules in combination with string similarity measures are used to detect pairs of records that are potential duplicates. Due to the scoring, different rules can be combined, to join scientific references, i.e. the rules reinforce each other. The scores are based on expert knowledge and initial method evaluation. After the scoring, pairs of scientific references that are above a certain threshold, are clustered by means of single-linkage clustering algorithm to form connected components. The method is designed to disambiguate all the scientific references in the Patstat database. The performance evaluation of the clustering method, on a large golden set with highly cited papers, shows on average a 99% precision and a 95% recall. The method is therefore accurate but careful, i.e. it weighs precision over recall. Consequently, separate clusters of high precision are sometimes formed, when there is not enough evidence for connecting scientific references, e.g. in the case of missing year and journal information for a reference. The clusters produced by the method can be used to directly link the Patstat database with bibliographic databases as the Web of Science or Scopus.Keywords: clustering, data cleaning, data disambiguation, data mining, patent analysis, scientometrics
Procedia PDF Downloads 1944759 Recommender System Based on Mining Graph Databases for Data-Intensive Applications
Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi
Abstract:
In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.Keywords: graph databases, NLP, recommendation systems, similarity metrics
Procedia PDF Downloads 1054758 Choosing an Optimal Epsilon for Differentially Private Arrhythmia Analysis
Authors: Arin Ghazarian, Cyril Rakovski
Abstract:
Differential privacy has become the leading technique to protect the privacy of individuals in a database while allowing useful analysis to be done and the results to be shared. It puts a guarantee on the amount of privacy loss in the worst-case scenario. Differential privacy is not a toggle between full privacy and zero privacy. It controls the tradeoff between the accuracy of the results and the privacy loss using a single key parameter calledKeywords: arrhythmia, cardiology, differential privacy, ECG, epsilon, medi-cal data, privacy preserving analytics, statistical databases
Procedia PDF Downloads 1534757 A Novel Framework for User-Friendly Ontology-Mediated Access to Relational Databases
Authors: Efthymios Chondrogiannis, Vassiliki Andronikou, Efstathios Karanastasis, Theodora Varvarigou
Abstract:
A large amount of data is typically stored in relational databases (DB). The latter can efficiently handle user queries which intend to elicit the appropriate information from data sources. However, direct access and use of this data requires the end users to have an adequate technical background, while they should also cope with the internal data structure and values presented. Consequently the information retrieval is a quite difficult process even for IT or DB experts, taking into account the limited contributions of relational databases from the conceptual point of view. Ontologies enable users to formally describe a domain of knowledge in terms of concepts and relations among them and hence they can be used for unambiguously specifying the information captured by the relational database. However, accessing information residing in a database using ontologies is feasible, provided that the users are keen on using semantic web technologies. For enabling users form different disciplines to retrieve the appropriate data, the design of a Graphical User Interface is necessary. In this work, we will present an interactive, ontology-based, semantically enable web tool that can be used for information retrieval purposes. The tool is totally based on the ontological representation of underlying database schema while it provides a user friendly environment through which the users can graphically form and execute their queries.Keywords: ontologies, relational databases, SPARQL, web interface
Procedia PDF Downloads 2724756 Statistical Convergence for the Approximation of Linear Positive Operators
Authors: Neha Bhardwaj
Abstract:
In this paper, we consider positive linear operators and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. Also, we compute the corresponding rate of A-statistical convergence for the linear positive operators.Keywords: Poisson distribution, Voronovskaya, modulus of continuity, a-statistical convergence
Procedia PDF Downloads 3334755 South African Students' Statistical Literacy in the Conceptual Understanding about Measures of Central Tendency after Completing Their High School Studies
Authors: Lukanda Kalobo
Abstract:
In South Africa, the High School Mathematics Curriculum provides teachers with specific aims and skills to be developed which involves the understanding about the measures of central tendency. The exploration begins with the definitions of statistical literacy, measurement of central tendency and a discussion on why statistical literacy is essential today. It furthermore discusses the statistical literacy basics involved in understanding the concepts of measures of central tendency. The statistical literacy test on the measures of central tendency, was used to collect data which was administered to 78 first year students direct from high schools. The results indicated that students seemed to have forgotten about the statistical literacy in understanding the concepts of measure of central tendency after completing their high school study. The authors present inferences regarding the alignment between statistical literacy and the understanding of the concepts about the measures of central tendency, leading to the conclusion that there is a need to provide in-service and pre-service training.Keywords: conceptual understanding, mean, median, mode, statistical literacy
Procedia PDF Downloads 3064754 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 3464753 Meta-Review of Scholarly Publications on Biosensors: A Bibliometric Study
Authors: Nasrine Olson
Abstract:
With over 70,000 scholarly publications on the topic of biosensors, an overview of the field has become a challenge. To facilitate, there are currently over 700 expert-reviews of publications on biosensors and related topics. This study focuses on these review papers in order to provide a Meta-Review of the area. This paper provides a statistical analysis and overview of biosensor-related review papers. Comprehensive searches are conducted in the Web of Science, and PubMed databases and the resulting empirical material are analyzed using bibliometric methods and tools. The study finds that the biosensor-related review papers can be categorized in five related subgroups, broadly denoted by (i) properties of materials and particles, (ii) analysis and indicators, (iii) diagnostics, (iv) pollutant and analytical devices, and (v) treatment/ application. For an easy and clear access to the findings visualization of clusters and networks of connections are presented. The study includes a temporal dimension and identifies the trends over the years with an emphasis on the most recent developments. This paper provides useful insights for those who wish to form a better understanding of the research trends in the area of biosensors.Keywords: bibliometrics, biosensors, meta-review, statistical analysis, trends visualization
Procedia PDF Downloads 2194752 Database Playlists: Croatia's Popular Music in the Mirror of Collective Memory
Authors: Diana Grguric, Robert Svetlacic, Vladimir Simovic
Abstract:
Scientific research analytically explores database playlists by studying the memory culture through Croatian popular radio music. The research is based on the scientific analysis of databases developed on the basis of the playlist of ten Croatian radio stations. The most recent Croatian song on Statehood Day 2008-2013 is analyzed in order to gain insight into their (memory) potential in terms of storing, interpreting and presenting a national identity. The research starts with the general assumption that popular music is an efficient identifier, transmitter, and promoter of national identity. The aim of the scientific research of the database was to analytically reveal specific titles of Croatian popular songs that participate in marking memories and analyzing their symbolic capital to gain insight into the popular music experience of the past and to develop a new method of scientifically based analysis of specific databases.Keywords: specific databases, popular radio music, collective memory, national identity
Procedia PDF Downloads 3574751 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013
Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran
Abstract:
Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka
Procedia PDF Downloads 4794750 Characteristic Function in Estimation of Probability Distribution Moments
Authors: Vladimir S. Timofeev
Abstract:
In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.Keywords: characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation
Procedia PDF Downloads 5064749 Statistical Description of Counterpoise Effective Length Based on Regressive Formulas
Authors: Petar Sarajcev, Josip Vasilj, Damir Jakus
Abstract:
This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.Keywords: counterpoise, grounding conductor, effective length, lightning, Monte Carlo method, statistical distribution
Procedia PDF Downloads 4284748 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models
Authors: Jihye Jeon
Abstract:
This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon
Procedia PDF Downloads 6584747 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 3714746 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 664745 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases
Authors: Suglo Tohari Luri
Abstract:
Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.Keywords: data, engine, intelligence, customer, neo4j, database
Procedia PDF Downloads 194