Search results for: salicylate probe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 443

Search results for: salicylate probe

443 Spectrophotometric Determination of Photohydroxylated Products of Humic Acid in the Presence of Salicylate Probe

Authors: Julide Hizal Yucesoy, Batuhan Yardimci, Aysem Arda, Resat Apak

Abstract:

Humic substances produce reactive oxygene species such as hydroxyl, phenoxy and superoxide radicals by oxidizing in a wide pH and reduction potential range. Hydroxyl radicals, produced by reducing agents such as antioxidants and/or peroxides, attack on salicylate probe, and form 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate and 2,5-dihydroxybenzoate species. These species are quantitatively determined by using HPLC Method. Humic substances undergo photodegradation by UV radiation. As a result of their antioxidant properties, they produce hydroxyl radicals. In the presence of salicylate probe, these hydroxyl radicals react with salicylate molecules to form hydroxylated products (dihidroxybenzoate isomers). In this study, humic acid was photodegraded in a photoreactor at 254 nm (400W), formed hydroxyl radicals were caught by salicylate probe. The total concentration of hydroxylated salicylate species was measured by using spectrophotometric CUPRAC Method. And also, using results of time dependent experiments, kinetic of photohydroxylation was determined at different pHs. This method has been applied for the first time to measure the concentration of hydroxylated products. It allows to achieve the results easier than HPLC Method.

Keywords: CUPRAC method, humic acid, photohydroxylation, salicylate probe

Procedia PDF Downloads 206
442 Potential Impact of Sodium Salicylate Nanoemulsion on Expression of Nephrin in Nephrotoxic Experimental Rat

Authors: Nadia A. Mohamed, Zakaria El-Khayat, Wagdy K. B. Khalil, Mehrez E. El-Naggar

Abstract:

Drug nephrotoxicity is still a problem for patients who have taken drugs for elongated periods or permanently. Ultrasound-assisted sol−gel method was used to prepare hollow structured poroussilica nanoemulsion loaded with sodium salicylate as a model drug. The work was extended to achieve the target of the current work via investigating the protective role of this nanoemulsion model as anti-inflammatory drug or ginger for its antioxidant effect against cisplatin-induced nephrotoxicity in male albino rats. The results clarify that the nanoemulsion model was synthesized using ultrasonic assisted with small size and well stabilization as proved by TEM and DLS analysis. Additionally, blood urea nitrogen (BUN), Serum creatinine (SC) and Urinary total protein (UTP) were increased, and the level of creatinine clearance (Crcl) was decreased. All those were met with disorders in oxidative stress and downregulation in the expression of the nephrin gene. Also, histopathological changes of the kidney tissue were observed. These changes back to normal by treatment with silica nanoparticles loaded sodium salicylate (Si-Sc-NPs), ginger or both. Conclusions oil/water nanoemulsion of (Si-Sc NPs) and ginger showed a protective and promising preventive strategy against nephrotoxicity due to their antioxidant and anti-inflammatory effects, and that offers a new approach in attenuating drug induced nephrotoxicity.

Keywords: sodium salicylate nanoencapsulation, nephrin mRNA, drug nephrotoxicity, cisplatin, experimental rats

Procedia PDF Downloads 201
441 Degradation of Amitriptyline Hydrochloride, Methyl Salicylate and 2-Phenoxyethanol in Water Systems by the Combination UV/Cl2

Authors: F. Javier Benitez, Francisco J. Real, Juan Luis Acero, Francisco Casas

Abstract:

Three emerging contaminants (amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol) frequently found in waste-waters were selected to be individually degraded in ultra-pure water by the combined advanced oxidation process constituted by UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: amitriptyline hydrochloride > methyl salicylate > 2-phenoxyethanol. A later kinetic study was carried out and focused on the specific evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. A comparison between the rate constant values among photochemical experiments without and with the presence of Cl2 reveals a clear increase in the oxidation efficiency of the combined process with respect to the photochemical reaction alone. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water (ultrapure water, surface water from a reservoir, and two secondary effluents) was also performed by the same combination UV/Cl2 under more realistic operating conditions. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/S2O82- and UV/H2O2 AOPs. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested.

Keywords: emerging contaminants, UV/chlorine advanced oxidation process, amitriptyline, methyl salicylate, 2-phenoxyethanol, chlorination, photolysis

Procedia PDF Downloads 333
440 Added Value of 3D Ultrasound Image Guided Hepatic Interventions by X Matrix Technology

Authors: Ahmed Abdel Sattar Khalil, Hazem Omar

Abstract:

Background: Image-guided hepatic interventions are integral to the management of infective and neoplastic liver lesions. Over the past decades, 2D ultrasound was used for guidance of hepatic interventions; with the recent advances in ultrasound technology, 3D ultrasound was used to guide hepatic interventions. The aim of this study was to illustrate the added value of 3D image guided hepatic interventions by x matrix technology. Patients and Methods: This prospective study was performed on 100 patients who were divided into two groups; group A included 50 patients who were managed by 2D ultrasonography probe guidance, and group B included 50 patients who were managed by 3D X matrix ultrasonography probe guidance. Thermal ablation was done for 70 patients, 40 RFA (20 by the 2D probe and 20 by the 3D x matrix probe), and 30 MWA (15 by the 2D probe and 15 by the 3D x matrix probe). Chemical ablation (PEI) was done on 20 patients (10 by the 2D probe and 10 by the 3D x matrix probe). Drainage of hepatic collections and biopsy from undiagnosed hepatic focal lesions was done on 10 patients (5 by the 2D probe and 5 by the 3D x matrix probe). Results: The efficacy of ultrasonography-guided hepatic interventions by 3D x matrix probe was higher than the 2D probe but not significantly higher, with a p-value of 0.705, 0.5428 for RFA, MWA respectively, 0.5312 for PEI, 0.2918 for drainage of hepatic collections and biopsy. The complications related to the use of the 3D X matrix probe were significantly lower than the 2D probe, with a p-value of 0.003. The timing of the procedure was shorter by the usage of 3D x matrix probe in comparison to the 2D probe with a p-value of 0.08,0.34 for RFA and PEI and significantly shorter for MWA, and drainage of hepatic collection, biopsy with a P-value of 0.02,0.001 respectively. Conclusions: 3D ultrasonography-guided hepatic interventions by  x matrix probe have better efficacy, less complication, and shorter time of procedure than the 2D ultrasonography-guided hepatic interventions.

Keywords: 3D, X matrix, 2D, ultrasonography, MWA, RFA, PEI, drainage of hepatic collections, biopsy

Procedia PDF Downloads 95
439 Nanofocusing of Surface Plasmon Polaritons by Partially Metal- Coated Dielectric Conical Probe: Optimal Asymmetric Distance

Authors: Ngo Thi Thu, Kazuo Tanaka, Masahiro Tanaka, Dao Ngoc Chien

Abstract:

Nanometric superfocusing of optical intensity near the tip of partially metal- coated dielectric conical probe of the convergent surface plasmon polariton wave is investigated by the volume integral equation method. It is possible to perform nanofocusing using this probe by using both linearly and radially polarized Gaussian beams as the incident waves. Strongly localized and enhanced optical near-fields can be created on the tip of this probe for the cases of both incident Gaussian beams. However the intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip.

Keywords: waveguide, surface plasmons, electromagnetic theory

Procedia PDF Downloads 477
438 Bismuth-Inhibitory Effects on Bacteria and Stimulation of Fungal Growth In vitro

Authors: Sulaiman B. Ali Alharbi, Bassam H. Mashat, Naif Abdullah Al-Harbi, Milton Wainwright, Abeer S. Aloufi, Sulamain Alnaimat

Abstract:

Bismuth salicylate was found to inhibit the growth of a range of bacteria and yeast, Candida albican. In general the growth of bacteria did not result in the increase in bismuth solubilisation, in contrast, bismuth solubilisation increased following the growth of C. albicans. A significant increase in the biomass (dry weight) of Aspergillus niger and Aspergillus oryzae occurred in vitro when these fungi were grown in the presence of bismuth salicylate. Biomass increase occurred over a range of bismuth compound additions, which in the case of A. oryzae was associated with the increase in the solubilisation of the insoluble bismuth compounds.

Keywords: bacterial inhibition, fungal growth stimulation, medical uses of bismuth, yeast inhibition

Procedia PDF Downloads 341
437 Mind-Wandering and Attention: Evidence from Behavioral and Subjective Perspective

Authors: Riya Mishra, Trayambak Tiwari, Anju Lata Singh, I. L. Singh, Tara Singh

Abstract:

Decrement in vigilance task performance echoes impediment in effortful attention; here attention fluctuated in the realm of external and internal milieu of a person. To examine this fluctuation across time period, we employed two experiments of vigilance task with variation in thought probing rate, which was embedded in the task. The thought probe varies in terms of <2 minute per thought probe and <4 minute per thought probe during vigilance task. A 2x4 repeated measure factorial design was used. 15 individuals participated in this study with an age range of 20-26 years. It was found that thought probing rate has a negative trend with vigilance task performance whereas the subjective measures of mind-wandering have a positive relation with thought probe rate.

Keywords: criterion response, mental status, mind-wandering, thought probe, vigilance

Procedia PDF Downloads 423
436 The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe

Authors: J. Kloypayan, W. Pimpakan

Abstract:

The pipe taper thread measurement and uncertainty normally used the four-wire probe according to the JIS B 0262. Besides, according to the EA-10/10 standard, the pipe thread could be measured using the three-wire probe. This research proposed to use the three-wire probe measuring the pitch diameter of the pipe taper thread. The measuring accessory component was designed and made, then, assembled to one side of the ULM 828 CiM machine. Therefore, this machine could be used to measure and calibrate both the pipe thread and the pipe taper thread. The equations and the expanded uncertainty for pitch diameter measurement were formulated. After the experiment, the results showed that the pipe taper thread had the pitch diameter equal to 19.165 mm and the expanded uncertainty equal to 1.88µm. Then, the experiment results were compared to the results from the National Institute of Metrology Thailand. The equivalence ratio from the comparison showed that both results were related. Thus, the proposed method of using the three-wire probe measured the pitch diameter of the pipe taper thread was acceptable.

Keywords: pipe taper thread, three-wire probe, measure and calibration, the universal length measuring machine

Procedia PDF Downloads 406
435 Development of Ultrasounf Probe Holder for Automatic Scanning Asymmetric Reflector

Authors: Nabilah Ibrahim, Hafiz Mohd Zaini, Wan Fatin Liyana Mutalib

Abstract:

Ultrasound equipment or machine is capable to scan in two dimensional (2D) areas. However there are some limitations occur during scanning an object. The problem will occur when scanning process that involving the asymmetric object. In this project, the ultrasound probe holder for asymmetric reflector scanning in 3D image is proposed to make easier for scanning the phantom or object that has asymmetric shape. Initially, the constructed asymmetric phantom that construct will be used in 2D scanning. Next, the asymmetric phantom will be interfaced by the movement of ultrasound probe holder using the Arduino software. After that, the performance of the ultrasound probe holder will be evaluated by using the various asymmetric reflector or phantom in constructing a 3D image

Keywords: ultrasound 3D images, axial and lateral resolution, asymmetric reflector, Arduino software

Procedia PDF Downloads 560
434 Photophysics and Rotational Relaxation Dynamics of 6-Methoxyquinoline Fluorophore in Cationic Alkyltrimethylammonium Bromide Micelles

Authors: Tej Varma Y, Debi D. Pant

Abstract:

Photophysics and rotational dynamics of the fluorescent probe, 6-methoxyquinoline (6MQ) with cationic surfactant, alkyltrimethylammonium bromide (nTAB) micelle solutions have been investigated (n = 12, 14 and 16). Absorption and emission peaks of the dye have been observed to shift at concentrations around critical micellar concentration (cmc) of nTAB compared to that of bulk solutions suggesting probe is in a lower polar environment. The probe senses changes in polarity (ET (30)) brought about by variation of surfactant chain length concentration and is invariably solubilized in the aqueous interface or palisade layer. The order of change in polarity observed was DTAB > CTAB > TTAB. The binding constant study shows that the probe binds strongest with TTAB (is of the order TTAB > CTAB > DTAB) due to deeper penetration into the micelle. The anisotropy decay for the probe in all the nTAB micelles studied have been rationalized based on a two-step model consisting of fast-restricted rotation of the probe and slow lateral diffusion of the probe in the micelle that is coupled to the overall rotation of the micelle. Fluorescence lifetime measurements of probe in the cationic micelles demonstrate the close proximity of the 6MQ to the Br - counterions. The fluorescence lifetimes of TTAB and DTAB are much shorter than in CTAB. These results indicate that 6MQ resides to a substantial degree in the head group region of the micelles. All the changes observed in the steady state fluorescence, microenvironment, fluorescence lifetimes, fluorescence anisotropy, and other calculations are in agreement with each other suggesting binding of the cationic surfactant with the neutral dye molecule.

Keywords: photophysics, chain length, ntaB, micelles

Procedia PDF Downloads 636
433 Investigation of Several New Ionic Liquids’ Behaviour during ²¹⁰PB/²¹⁰BI Cherenkov Counting in Waters

Authors: Nataša Todorović, Jovana Nikolov, Ivana Stojković, Milan Vraneš, Jovana Panić, Slobodan Gadžurić

Abstract:

The detection of ²¹⁰Pb levels in aquatic environments evokes interest in various scientific studies. Its precise determination is important not only for the radiological assessment of drinking waters but also ²¹⁰Pb, and ²¹⁰Po distribution in the marine environment are significant for the assessment of the removal rates of particles from the ocean and particle fluxes during transport along the coast, as well as particulate organic carbon export in the upper ocean. Measurement techniques for ²¹⁰Pb determination, gamma spectrometry, alpha spectrometry, or liquid scintillation counting (LSC) are either time-consuming or demand expensive equipment or complicated chemical pre-treatments. However, one other possibility is to measure ²¹⁰Pb on an LS counter if it is in equilibrium with its progeny ²¹⁰Bi - through the Cherenkov counting method. It is unaffected by the chemical quenching and assumes easy sample preparation but has the drawback of lower counting efficiencies than standard LSC methods, typically from 10% up to 20%. The aim of the presented research in this paper is to investigate the possible increment of detection efficiency of Cherenkov counting during ²¹⁰Pb/²¹⁰Bi detection on an LS counter Quantulus 1220. Considering naturally low levels of ²¹⁰Pb in aqueous samples, the addition of ionic liquids to the counting vials with the analysed samples has the benefit of detection limit’s decrement during ²¹⁰Pb quantification. Our results demonstrated that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient in Cherenkov counting efficiency increment than the previously explored 2-hydroxypropan-1-amminium salicylate. Consequently, the impact of a few other ionic liquids that were synthesized with the same cation group (1-butyl-3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate, and 1-butyl-3-methylimidazolium 4-hydroxybenzoate) was explored in order to test their potential influence on Cherenkov counting efficiency. It was confirmed that, among the explored ones, only ionic liquids in the form of salicylates exhibit a wavelength shifting effect. Namely, the addition of small amounts (around 0.8 g) of 1-butyl-3-methylimidazolium salicylate increases the detection efficiency from 16% to >70%, consequently reducing the detection threshold by more than four times. Moreover, the addition of ionic liquids could find application in the quantification of other radionuclides besides ²¹⁰Pb/²¹⁰Bi via Cherenkov counting method.

Keywords: liquid scintillation counting, ionic liquids, Cherenkov counting, ²¹⁰PB/²¹⁰BI in water

Procedia PDF Downloads 102
432 A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito

Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja

Abstract:

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul.

Keywords: dengue, magnetic nanoparticles, mosquito, nanobiosensor

Procedia PDF Downloads 366
431 Reliability of Swine Estrous Detector Probe in Dairy Cattle Breeding

Authors: O. O. Leigh, L. C. Agbugba, A. O. Oyewunmi, A. E. Ibiam, A. Hassan

Abstract:

Accuracy of insemination timing is a key determinant of high pregnancy rates in livestock breeding stations. The estrous detector probes are a recent introduction into the Nigerian livestock farming sector. Many of these probes are species-labeled and they measure changes in the vaginal mucus resistivity (VMR) during the stages of the estrous cycle. With respect to size and shaft conformation, the Draminski® swine estrous detector probe (sEDP) is quite similar to the bovine estrous detector probe. We investigated the reliability of the sEDP at insemination time on two farms designated as FM A and FM B. Cows (Bunaji, n=20 per farm) were evaluated for VMR at 16th h post standard OvSynch protocol, with concurrent insemination on FM B only. The difference in the mean VMR between FM A (221 ± 24.36) Ohms and FM B (254 ± 35.59) Ohms was not significant (p > 0.05). Sixteen cows (80%) at FM B were later (day 70) confirmed pregnant via rectal palpation and calved at term. These findings suggest consistency in VMR evaluated with sEDP at insemination as well as a high predictability for VMR associated with good pregnancy rates in dairy cattle. We conclude that Draminski® swine estrous detector probe is reliable in determining time of insemination in cattle breeding stations.

Keywords: dairy cattle, insemination, swine estrous probe, vaginal mucus resistivity

Procedia PDF Downloads 124
430 Formulation and in vitro Evaluation of Transdermal Delivery of Articaine

Authors: Dinakaran Venkatachalam, Paul Chambers, Kavitha Kongara, Preet Singh

Abstract:

The objective of this study is to formulate different topical preparations containing articaine and to investigate their permeation through goat skin. Initially, articaine and its hydrochloride salt were compared for in vitro permeation using Franz cell model. Goat skin samples were collected after euthanizing male goat kids purchased from the dairy goat farmers. Subcutaneous fat was removed and the skin was mounted on the donor chamber (orifice area 1.00 cm²) and drugs were applied onto the epidermis. Phosphate buffer saline (pH 7.4) was used to maintain sink condition in the receptor chamber (8 ml) of the Franz cell. Samples (0.4 ml) were collected at various intervals over 24 hours after each sampling equal volume of PBS was replaced in the receptor chamber. Articaine in the collected samples were quantified using LC/MS. The results suggested that articaine free base permeates better than its hydrochloride salt through goat skin. This study results support the fact that local anesthetics in its base form are lipophilic and thus penetrates faster through cell membranes than their salts. Later, articaine free base was formulated either using ethanol and octyl salicylate or dimethyl sulfoxide (DMSO) as penetration enhancers and was compared for in vitro permeation. The transdermal flux of articaine in the formulation containing DMSO was approximately 3.8 times higher than that of the formulation containing ethanol and octyl salicylate. Further studies to evaluate the local anesthetic efficacy of the topical formulation containing articaine for dermal anesthesia in animals have been planned.

Keywords: articaine, dermal anesthesia, local anesthetic, transdermal

Procedia PDF Downloads 237
429 Evaluation of Soil Thermal-Entropy Properties with a Single-Probe Heat-Pulse Technique

Authors: Abdull Halim Abdull, Nasiman Sapari, Mohammad Haikal Asyraf Bin Anuar

Abstract:

Although soil thermal properties are required in many areas to improve oil recovery, they are seldom measured on a routine basis. Reasons for this are unclear, but may be related to a lack of suitable instrumentation and entropy theory. We integrate single probe thermal gradient for the radial conduction of a short-duration heat pulse away from a single electrode source, and compared it with the theory for an instantaneously heated line source. By measuring the temperature response at a short distance from the line source, and applying short-duration heat-pulse theory, we can extract all the entropy properties, the thermal diffusivity, heat capacity, and conductivity, from a single heat-pulse measurement. Results of initial experiments carried out on air-dry sand and clay materials indicate that this heat-pulse method yields soil thermal properties that compare well with thermal properties measured by single electrode.

Keywords: entropy, single probe thermal gradient, soil thermal, probe heat

Procedia PDF Downloads 446
428 A Dual-Polarized Wideband Probe for Near-Field Antenna Measurement

Authors: K. S. Sruthi

Abstract:

Antennas are one of the most important parts of a communication chain. They are used for both communication and calibration purposes. New developments in probe technologies have enabled near-field probes with much larger bandwidth. The objective of this paper is to design, simulate and fabricate a dual polarized wide band inverted quad ridged shape horn antenna which can be used as measurement probe for near field measurements. The inverted quad-ridged horn antenna probe not only provides measurement in the much wider range but also provides dual-polarization measurement thus enabling antenna developers to measure UWB, UHF, VHF antennas more precisely and at lower cost. The antenna is designed to meet the characteristics such as high gain, light weight, linearly polarized with suppressed side lobes for near-field measurement applications. The proposed antenna is simulated with commercially available packages such as Ansoft HFSS. The antenna gives a moderate gain over operating range while delivering a wide bandwidth.

Keywords: near-field antenna measurement, inverted quad-ridge horn antenna, wideband Antennas, dual polarized antennas, ansoft HFSS

Procedia PDF Downloads 425
427 A Numerical Investigation of Total Temperature Probes Measurement Performance

Authors: Erdem Meriç

Abstract:

Measuring total temperature of air flow accurately is a very important requirement in the development phases of many industrial products, including gas turbines and rockets. Thermocouples are very practical devices to measure temperature in such cases, but in high speed and high temperature flows, the temperature of thermocouple junction may deviate considerably from real flow total temperature due to the effects of heat transfer mechanisms of convection, conduction, and radiation. To avoid errors in total temperature measurement, special probe designs which are experimentally characterized are used. In this study, a validation case which is an experimental characterization of a specific class of total temperature probes is selected from the literature to develop a numerical conjugate heat transfer analysis methodology to study the total temperature probe flow field and solid temperature distribution. Validated conjugate heat transfer methodology is used to investigate flow structures inside and around the probe and effects of probe design parameters like the ratio between inlet and outlet hole areas and prob tip geometry on measurement accuracy. Lastly, a thermal model is constructed to account for errors in total temperature measurement for a specific class of probes in different operating conditions. Outcomes of this work can guide experimentalists to design a very accurate total temperature probe and quantify the possible error for their specific case.

Keywords: conjugate heat transfer, recovery factor, thermocouples, total temperature probes

Procedia PDF Downloads 133
426 Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation

Authors: De-Shin Liu, Po-Chun Wen, Zhen-Wei Zhuang, Hsueh-Chih Liu, Pei-Chen Huang

Abstract:

Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application.

Keywords: wafer probing test, vertical probe, probe mark, mechanical response, FEA simulation

Procedia PDF Downloads 56
425 The Hydrotrope-Mediated, Low-Temperature, Aqueous Dissolution of Maize Starch

Authors: Jeroen Vinkx, Jan A. Delcour, Bart Goderis

Abstract:

Complete aqueous dissolution of starch is notoriously difficult. A high-temperature autoclaving process is necessary, followed by cooling the solution below its boiling point. The cooled solution is inherently unstable over time. Gelation and retrogradation processes, along with aggregation-induced by undissolved starch remnants, result in starch precipitation. We recently observed the spontaneous gelatinization of native maize starch (MS) in aqueous sodium salicylate (NaSal) solutions at room temperature. A hydrotropic mode of solubilization is hypothesized. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) of starch dispersions in NaSal solution were used to demonstrate the room temperature gelatinization of MS at different concentrations of MS and NaSal. The DSC gelatinization peak shifts to lower temperatures, and the gelatinization enthalpy decreases with increasing NaSal concentration. POM images confirm the same trend through the disappearance of the ‘Maltese cross’ interference pattern of starch granules. The minimal NaSal concentration to induce complete room temperature dissolution of MS was found to be around 15-20 wt%. The MS content of the dispersion has little influence on the amount of NaSal needed to dissolve it. The effect of the NaSal solution on the MS molecular weight was checked with HPSEC. It is speculated that, because of its amphiphilic character, NaSal enhances the solubility of MS in water by association with the more hydrophobic MS moieties, much like urea, which has also been used to enhance starch dissolution in alkaline aqueous media. As such small molecules do not tend to form micelles in water, they are called hydrotropes rather than surfactants. A minimal hydrotrope concentration (MHC) is necessary for the hydrotropes to structure themselves in water, resulting in a higher solubility of MS. This is the case for the system MS/NaSal/H₂O. Further investigations into the putative hydrotropic dissolution mechanism are necessary.

Keywords: hydrotrope, dissolution, maize starch, sodium salicylate, gelatinization

Procedia PDF Downloads 187
424 Formulation and Evaluation of Piroxicam Hydrotropic Starch Gel

Authors: Mohammed Ghazwani, Shyma Ali Alshahrani, Zahra Abdu Yousef, Taif Torki Asiri, Ghofran Abdur Rahman, Asma Ali Alshahrani, Umme Hani

Abstract:

Background and introduction: Piroxicam is a nonsteroidal anti-inflammatory drug characterized by low solubility-high permeability used to reduce pain, swelling, and joint stiffness from arthritis. Hydrotropes are a class of compounds that normally increase the aqueous solubility of insoluble solutes. Aim: The objective of the present research study was to formulate and optimize Piroxicam hydrotropic starch gel using sodium salicylate, sodium benzoate as hydrotropic salts, and potato starch for topical application. Materials and methods: The prepared Piroxicam hydrotropic starch gel was characterized for various physicochemical parameters like drug content estimation, pH, tube extrudability, and spreadability; all the prepared formulations were subjected to in-vitro diffusion studies for six hours in 100 ml phosphate buffer (pH 7.4) and determined gel strength. Results: All formulations were found to be white opaque in appearance and have good homogeneity. The pH of formulations was found to be between 6.9-7.9. Drug content ranged from 96.8%-99.4.5%. Spreadability plays an important role in patient compliance and helps in the uniform application of gel to the skin as gels should spread easily; F4 showed a spreadability of 2.4cm highest among all other formulations. In in vitro diffusion studies, extrudability and gel strength were good with F4 in comparison with other formulations; hence F4 was selected as the optimized formulation. Conclusion: Isolated potato starch was successfully employed to prepare the gel. Hydrotropic salt sodium salicylate increased the solubility of Piroxicam and resulted in a stable gel, whereas the gel prepared using sodium benzoate changed its color after one week of preparation from white to light yellowish. Hydrotropic potato starch gel proposed a suitable vehicle for the topical delivery of Piroxicam.

Keywords: Piroxicam, potato starch, hydrotropic salts, hydrotropic starch gel

Procedia PDF Downloads 145
423 Enhanced Calibration Map for a Four-Hole Probe for Measuring High Flow Angles

Authors: Jafar Mortadha, Imran Qureshi

Abstract:

This research explains and compares the modern techniques used for measuring the flow angles of a flowing fluid with the traditional technique of using multi-hole pressure probes. In particular, the focus of the study is on four-hole probes, which offer great reliability and benefits in several applications where the use of modern measurement techniques is either inconvenient or impractical. Due to modern advancements in manufacturing, small multi-hole pressure probes can be made with high precision, which eliminates the need for calibrating every manufactured probe. This study aims to improve the range of calibration maps for a four-hole probe to allow high flow angles to be measured accurately. The research methodology comprises a literature review of the successful calibration definitions that have been implemented on five-hole probes. These definitions are then adapted and applied on a four-hole probe using a set of raw pressures data. A comparison of the different definitions will be carried out in Matlab and the results will be analyzed to determine the best calibration definition. Taking simplicity of implementation into account as well as the reliability of flow angles estimation, an adapted technique from a research paper written in 2002 offered the most promising outcome. Consequently, the method is seen as a good enhancement for four-hole probes and it can substitute for the existing calibration definitions that offer less accuracy.

Keywords: calibration definitions, calibration maps, flow measurement techniques, four-hole probes, multi-hole pressure probes

Procedia PDF Downloads 295
422 Quantum Localization of Vibrational Mirror in Cavity Optomechanics

Authors: Madiha Tariq, Hena Rabbani

Abstract:

Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.

Keywords: dynamical localization, cavity optomechanics, Hamiltonian chaos, probe field

Procedia PDF Downloads 150
421 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT

Procedia PDF Downloads 343
420 Annealing of the Contact between Graphene and Metal: Electrical and Raman Study

Authors: A. Sakavičius, A. Lukša, V. Nargelienė, V. Bukauskas, G. Astromskas, A. Šetkus

Abstract:

We investigate the influence of annealing on the properties of a contact between graphene and metal (Au and Ni), using circular transmission line model (CTLM) contact geometry. Kelvin probe force microscopy (KPFM) and Raman spectroscopy are applied for characterization of the surface and interface properties. Annealing causes a decrease of the metal-graphene contact resistance for both Ni and Au.

Keywords: Au/Graphene contacts, graphene, Kelvin force probe microscopy, NiC/Graphene contacts, Ni/Graphene contacts, Raman spectroscopy

Procedia PDF Downloads 317
419 Development of Automatic Laser Scanning Measurement Instrument

Authors: Chien-Hung Liu, Yu-Fen Chen

Abstract:

This study used triangular laser probe and three-axial direction mobile platform for surface measurement, programmed it and applied it to real-time analytic statistics of different measured data. This structure was used to design a system integration program: using triangular laser probe for scattering or reflection non-contact measurement, transferring the captured signals to the computer through RS-232, and using RS-485 to control the three-axis platform for a wide range of measurement. The data captured by the laser probe are formed into a 3D surface. This study constructed an optical measurement application program in the concept of visual programming language. First, the signals are transmitted to the computer through RS-232/RS-485, and then the signals are stored and recorded in graphic interface timely. This programming concept analyzes various messages, and makes proper presentation graphs and data processing to provide the users with friendly graphic interfaces and data processing state monitoring, and identifies whether the present data are normal in graphic concept. The major functions of the measurement system developed by this study are thickness measurement, SPC, surface smoothness analysis, and analytical calculation of trend line. A result report can be made and printed promptly. This study measured different heights and surfaces successfully, performed on-line data analysis and processing effectively, and developed a man-machine interface for users to operate.

Keywords: laser probe, non-contact measurement, triangulation measurement principle, statistical process control, labVIEW

Procedia PDF Downloads 360
418 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma

Authors: Rajat Dhawan, Hitendra K. Malik

Abstract:

Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.

Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness

Procedia PDF Downloads 131
417 AFM Probe Sensor Designed for Cellular Membrane Components

Authors: Sarmiza Stanca, Wolfgang Fritzsche, Christoph Krafft, Jürgen Popp

Abstract:

Independent of the cell type a thin layer of a few nanometers thickness surrounds the cell interior as the cellular membrane. The transport of ions and molecules through the membrane is achieved in a very precise way by pores. Understanding the process of opening and closing the pores due to an electrochemical gradient across the membrane requires knowledge of the pore constitutive proteins. Recent reports prove the access to the molecular level of the cellular membrane by atomic force microscopy (AFM). This technique also permits an electrochemical study in the immediate vicinity of the tip. Specific molecules can be electrochemically localized in the natural cellular membrane. Our work aims to recognize the protein domains of the pores using an AFM probe as a miniaturized amperometric sensor, and to follow the protein behavior while changing the applied potential. The intensity of the current produced between the surface and the AFM probe is amplified and detected simultaneously with the surface imaging. The AFM probe plays the role of the working electrode and the substrate, a conductive glass on which the cells are grown, represent the counter electrode. For a better control of the electric potential on the probe, a third electrode Ag/AgCl wire is mounted in the circuit as a reference electrode. The working potential is applied between the electrodes with a programmable source and the current intensity in the circuit is recorded with a multimeter. The applied potential considers the overpotential at the electrode surface and the potential drop due to the current flow through the system. The reported method permits a high resolved electrochemical study of the protein domains on the living cell membrane. The amperometric map identifies areas of different current intensities on the pore depending on the applied potential. The reproducibility of this method is limited by the tip shape, the uncontrollable capacitance, which occurs at the apex and a potential local charge separation.

Keywords: AFM, sensor, membrane, pores, proteins

Procedia PDF Downloads 307
416 DNA-Based Gold Nanoprobe Biosensor to Detect Pork Contaminant

Authors: Rizka Ardhiyana, Liesbetini Haditjaroko, Sri Mulijani, Reki Ashadi Wicaksono, Raafqi Ranasasmita

Abstract:

Designing a sensitive, specific and easy to use method to detect pork contamination in the food industry remains a major challenge. In the current study, we developed a sensitive thiol-bond AuNP-Probe biosensor that will change color when detecting pork DNA in the Cytochrome B region. The interaction between the biosensors and DNA sample is measured by spectrophotometer at 540 nm. The biosensor is made by reducing gold with trisodium citrate to produce gold nanoparticle with 39.05 nm diameter. The AuNP-Probe biosensor (gold nanoprobe) achieved 16.04 ng DNA/µl limit of detection and 53.48 ng DNA/µl limit of quantification. The linearity (R2) between color absorbance changes and DNA concentration is 0.9916. The biosensor has a good specificty as it does not cross-react with DNA of chicken and beef. To verify specificity towards the target sequence, PCR was tested to the target sequence and reacted to the PCR product with the biosensor. The PCR DNA isolate resulted in a 2.7 fold higher absorbance compared to pork-DNA isolate alone (without PCR). The sensitivity and specificity of the method show the promising application of the thiol-bond AuNP biosensor in pork-detection.

Keywords: biosensor, DNA probe, gold nanoparticle (AuNP), pork meat, qPCR

Procedia PDF Downloads 359
415 Modular Probe for Basic Monitoring of Water and Air Quality

Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez

Abstract:

A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.

Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality

Procedia PDF Downloads 103
414 Albumin-Induced Turn-on Fluorescence in Molecular Engineered Fluorescent Probe for Biomedical Application

Authors: Raja Chinnappan, Huda Alanazi, Shanmugam Easwaramoorthi, Tanveer Mir, Balamurugan Kanagasabai, Ahmed Yaqinuddin, Sandhanasamy Devanesan, Mohamad S. AlSalhi

Abstract:

Serum albumin (SA) is a highly rich water-soluble protein in plasma. It is known to maintain the living organisms' health and help to maintain the proper liver function, kidney function, and plasma osmolality in the body. Low levels of serum albumin are an indication of liver failure and chronic hepatitis. Therefore, it is important to have a low-cost, accurate and rapid method. In this study, we designed a fluorescent probe, triphenylamine rhodanine-3-acetic acid (mRA), which triggers the fluorescence signal upon binding with serum albumin (SA). mRA is a bifunctional molecule with twisted intramolecular charge transfer (TICT)-induced emission characteristics. An aqueous solution of mRA has an insignificant fluorescence signal; however, when mRA binds to SA, it undergoes TICT and turns on the fluorescence emission. A SA dose-dependent fluorescence signal was performed, and the limit of detection was found to be less than ng/mL. The specific binding of SA was tested from the cross-reactivity study using similar structural or functional proteins.

Keywords: serum albumin, fluorescent sensing probe, liver diseases, twisted intramolecular charge transfer

Procedia PDF Downloads 17