Search results for: model reduction
20834 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.Keywords: rotordynamic, finite element model, timoshenko beam, 3D solid elements, Guyan reduction method
Procedia PDF Downloads 27420833 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition
Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi
Abstract:
In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data
Procedia PDF Downloads 40520832 Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing
Authors: Khaled Salah
Abstract:
Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools.Keywords: genetic algorithm, simulated annealing, model reduction, transfer function
Procedia PDF Downloads 14420831 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB: Technical University of Ostrava
Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík
Abstract:
The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB–Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.Keywords: blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction
Procedia PDF Downloads 67720830 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm
Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma
Abstract:
In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.Keywords: balanced truncation, clustering, dominant pole, Hankel norm, model reduction
Procedia PDF Downloads 60020829 The Reduction of CO2 Emissions Level in Malaysian Transportation Sector: An Optimization Approach
Authors: Siti Indati Mustapa, Hussain Ali Bekhet
Abstract:
Transportation sector represents more than 40% of total energy consumption in Malaysia. This sector is a major user of fossils based fuels, and it is increasingly being highlighted as the sector which contributes least to CO2 emission reduction targets. Considering this fact, this paper attempts to investigate the problem of reducing CO2 emission using linear programming approach. An optimization model which is used to investigate the optimal level of CO2 emission reduction in the road transport sector is presented. In this paper, scenarios have been used to demonstrate the emission reduction model: (1) utilising alternative fuel scenario, (2) improving fuel efficiency scenario, (3) removing fuel subsidy scenario, (4) reducing demand travel, (5) optimal scenario. This study finds that fuel balancing can contribute to the reduction of the amount of CO2 emission by up to 3%. Beyond 3% emission reductions, more stringent measures that include fuel switching, fuel efficiency improvement, demand travel reduction and combination of mitigation measures have to be employed. The model revealed that the CO2 emission reduction in the road transportation can be reduced by 38.3% in the optimal scenario.Keywords: CO2 emission, fuel consumption, optimization, linear programming, transportation sector, Malaysia
Procedia PDF Downloads 42620828 Microkinetic Modelling of NO Reduction on Pt Catalysts
Authors: Vishnu S. Prasad, Preeti Aghalayam
Abstract:
The major harmful automobile exhausts are nitric oxide (NO) and unburned hydrocarbon (HC). Reduction of NO using unburned fuel HC as a reductant is the technique used in hydrocarbon-selective catalytic reduction (HC-SCR). In this work, we study the microkinetic modelling of NO reduction using propene as a reductant on Pt catalysts. The selectivity of NO reduction to N2O is detected in some ranges of operating conditions, whereas the effect of inlet O2% causes a number of changes in the feasible regimes of operation.Keywords: microkinetic modelling, NOx, platinum on alumina catalysts, selective catalytic reduction
Procedia PDF Downloads 46120827 Investigation on the Kinetic Mechanism of the Reduction of Fe₂O₃/CoO-Decorated Carbon Xerogel
Authors: Mohammad Reza Ghaani, Michele Catti
Abstract:
The reduction of CoO/Fe₂O₃ oxides supported on carbon xerogels was studied to elucidate the effect of nano-size distribution of the catalyst in carbon matrices. Resorcinol formaldehyde xerogels were synthesized, impregnated with iron and cobalt nitrates, and subsequently heated to obtain the oxides. The mechanism of oxide reduction to metal was investigated by in-situ synchrotron X-ray diffraction in dynamic, non-isothermal conditions. Kinetic profiles of the reactions were obtained by plotting the diffraction intensities of selected Bragg peaks vs. temperature. The extracted Temperature-Programmed-Reduction (TPR) diagrams were analyzed by appropriate kinetic models, leading to best results with the Avrami-Erofeev model for all reduction reactions considered. The activation energies for the two-step reduction of iron oxide were 65 and 37 kJmol⁻¹, respectively. The average value for the reduction of CoO to Co was found to be around 21 kJ mol⁻¹. Such results may contribute to develop efficient and inexpensive non-noble metal-based catalysts in element form, e.g., Fe, Co, via heterogenization of metal complexes on mesoporous supports.Keywords: non-isothermal kinetics, carbon aerogel, in-situ synchrotron X-ray diffraction, reduction mechanisms
Procedia PDF Downloads 24520826 Bipolar Reduction and Lithic Miniaturization: Experimental Results and Archaeological Implications
Authors: Justin Pargeter, Metin Eren
Abstract:
Lithic miniaturization, the systematic production and use of small tools from small cores, was a consequential development in Pleistocene lithic technology. The bipolar reduction is an important, but often overlooked and misidentified, strategy for lithic miniaturization. This experiment addresses the role of axial bipolar reduction in processes of lithic miniaturization. The experiments answer two questions: what benefits does axial bipolar reduction provide, and can we distinguish axial bipolar reduction from freehand reduction? Our experiments demonstrate the numerous advantages of bipolar reduction in contexts of lithic miniaturization. Bipolar reduction produces more cutting edge per gram and is more economical than freehand reduction. Our cutting edge to mass values exceeds even those obtained with pressure blade production on high-quality obsidian. The experimental results show that bipolar reduction produces cutting edge quicker and is more efficient than freehand reduction. We show that bipolar reduction can be distinguished from freehand reduction with a high degree of confidence using the quantitative criteria in these experiments. These observations overturn long-held perceptions about bipolar reduction. We conclude by discussing the role of bipolar reduction in lithic miniaturization and Stone Age economics more broadly.Keywords: lithic miniaturization, bipolar reduction, late Pleistocene, Southern Africa
Procedia PDF Downloads 72120825 Aerodynamic Devices Development for Model Aircraft Control and Wind-Driven Bicycle
Authors: Yuta Moriyama, Tsuyoshi Yamazaki, Etsuo Morishita
Abstract:
Several aerodynamic devices currently attract engineers and research students. The plasma actuator is one of them, and it is very effective to control the flow. The actuator recovers a separated flow to an attached one. The actuator is also inversely applied to a spoiler. The model aircraft might be controlled by this actuator. We develop a model aircraft with the plasma actuator. Another interesting device is the Wells turbine which rotates in one direction. The present authors propose a bicycle with the Wells turbine in the wheels. Power reduction is measured when the turbine is driven by an electric motor at the exit of a wind tunnel. Several Watts power reduction might be possible. This means that the torque of the bike can be augmented by the turbine in the cross wind. These devices are tested in the wind tunnel with a three-component balance and the aerodynamic forces and moment are obtained. In this paper, we introduce these devices and their aerodynamic characteristics. The control force and moment of the plasma actuator are clarified and the power reduction of the bicycle is quantified.Keywords: aerodynamics, model aircraft, plasma actuator, Wells turbine
Procedia PDF Downloads 24920824 The Role of Speed Reduction Model in Urban Highways Tunnels Accidents
Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi
Abstract:
According to the increasing travel demand in cities, bridges and tunnels are viewed as one of the fundamental components of cities transportation systems. Normally, due to geometric constraints forms in the tunnels, the considered speed in the tunnels is lower than the speed in connected highways. Therefore, drivers tend to reduce the speed near the entrance of the tunnels. In this paper, the effect of speed reduction on accident happened in the entrance of the tunnels has been discussed. The relation between accidents frequency and the parameters of speed, traffic volume and time of the accident in the mentioned tunnel has been analyzed and the mathematical model has been proposed.Keywords: urban highway, accident, tunnel, mathematical model
Procedia PDF Downloads 47320823 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH
Authors: Barzin Rajabloo, Martin Desilets
Abstract:
First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.Keywords: carbon dioxide, electrochemical reduction, methanol, modeling
Procedia PDF Downloads 11020822 Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System
Authors: Kumaresh Selvakumar, Man Young Kim
Abstract:
Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time.Keywords: convection-diffusion controlled model, lagrangian particle tracking, selective catalytic reduction, thermolysis
Procedia PDF Downloads 40920821 Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction
Authors: Nasser Ghassembaglou, Armin Rahmatfam, Faramarz Ranjbar
Abstract:
Using of cold EGR method with variable venturi and turbocharger has a very significant affection on the reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percents of EGR and for determining of optimum temperature of exhausted gases, growth of efficiency, reduction of weight, reduction of dimension and expenditures, and reduction of sediment and optimum performance by using gas oil which has significant amounts of brimstone are investigated and optimized.Keywords: cold EGR, NOX, cooler, gas oil
Procedia PDF Downloads 49520820 QCARNet: Networks for Quality-Adaptive Compression Artifact
Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho
Abstract:
We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.Keywords: compression artifact reduction, deblocking, image denoising, image restoration
Procedia PDF Downloads 14420819 Weighted G2 Multi-Degree Reduction of Bezier Curves
Authors: Salisu ibrahim, Abdalla Rababah
Abstract:
In this research, we use Weighted G2-Multi-degree reduction of Bezier curve of degree n to a Bezier curve of degree m, m < n. The degree reduction of Bezier curves is used to represent a given Bezier curve of n by a Bezier curve of degree m, m < n. Exact degree reduction is not possible, and degree reduction is approximate process in nature. We derive a weighted degree reducing method that is geometrically continuous at the end points. Different norms will be considered, several error minimizations will be given. The proposed methods produce error function that are less than the errors of existing methods.Keywords: Bezier curves, multiple degree reduction, geometric continuity, error function
Procedia PDF Downloads 48620818 Numerical Analysis of Flow in the Gap between a Simplified Tractor-Trailer Model and Cross Vortex Trap Device
Authors: Terrance Charles, Zhiyin Yang, Yiling Lu
Abstract:
Heavy trucks are aerodynamically inefficient due to their un-streamlined body shapes, leading to more than of 60% engine power being required to overcome the aerodynamics drag at 60 m/hr. There are many aerodynamics drag reduction devices developed and this paper presents a study on a drag reduction device called Cross Vortex Trap Device (CVTD) deployed in the gap between the tractor and the trailer of a simplified tractor-trailer model. Numerical simulations have been carried out at Reynolds number 0.51×106 based on inlet flow velocity and height of the trailer using the Reynolds-Averaged Navier-Stokes (RANS) approach. Three different configurations of CVTD have been studied, ranging from single to three slabs, equally spaced on the front face of the trailer. Flow field around three different configurations of trap device have been analysed and presented. The results show that a maximum of 12.25% drag reduction can be achieved when a triple vortex trap device is used. Detailed flow field analysis along with pressure contours are presented to elucidate the drag reduction mechanisms of CVTD and why the triple vortex trap configuration produces the maximum drag reduction among the three configurations tested.Keywords: aerodynamic drag, cross vortex trap device, truck, Reynolds-Averaged Navier-Stokes, RANS
Procedia PDF Downloads 13920817 An Analytical Study on the Vibration Reduction Method of Railway Station Using TPU
Authors: Jinho Hur, Minjung Shin, Heekyu Kim
Abstract:
In many places, new railway constructions in the city are being used to build a viaduct station to take advantage of the space below the line, for difficulty of securing railway site and disconnections of areas. The space under the viaduct has limited to use by noise and vibration. In order to use it for various purposes, reducing noise and vibration is required. The vibration reduction method for new structures is recently developed enough to use as accommodation, but the reduction method for existing structures is still far-off. In this study, it suggests vibration reduction method by filling vibration reduction material to column members which is path of structure-bone-noise from trains run. Because most of railroad stations are reinforced concrete structures. It compares vibration reduction of station applied the method and original station by FEM analysis. As a result, reduction of vibration acceleration level in bandwidth 15~30Hz can be reduced. Therefore, using this method for viaduct railroad station, vibration of station is expected to be reduced.Keywords: structure borne noise, TPU, viaduct rail station, vibration reduction method
Procedia PDF Downloads 54520816 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications
Authors: Chee Sun Won
Abstract:
This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication
Procedia PDF Downloads 42120815 Settlement Performance of Soft Clay Reinforced with Granular Columns
Authors: Muneerah Jeludin, V. Sivakumar
Abstract:
Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction.Keywords: ground improvement, model test, reinforced soil, settlement
Procedia PDF Downloads 46720814 Importance of Islamic Microfinance for Poverty Reduction: Evidence from Ethiopia Islamic Microfinance Institutions
Authors: Anwar Adem Shikur, Erhan Akkas
Abstract:
Purpose: This study investigates the impact of Islamic microfinance services on poverty alleviation in Ethiopia. Methodology: Employing a binary logistic regression model, this research analyzes the relationship between poverty reduction and a range of variables—income, education, household size, age, and savings—among clients of Islamic microfinance services. Data was collected through a semi-structured questionnaire administered to a purposive sample and complemented by semi-structured interviews with senior officials from Islamic microfinance institutions. Findings: The study reveals that income, education, household size, and age of clients are primary determinants of poverty reduction within the context of Islamic microfinance services in Ethiopia. Practical Implications: The findings offer valuable insights for policymakers and government agencies seeking to enhance the livelihoods of Islamic microfinance clients and reduce poverty. Originality/Value: This research contributes to the existing literature by elucidating the specific mechanisms through which income, education, household size, and age influence poverty reduction among clients of Islamic microfinance services in Ethiopia. Furthermore, it provides a novel perspective on the role of Islamic microfinance in the country, including its challenges and opportunities. Social Implications: The study underscores the imperative for governments and institutions to prioritize financial inclusion as a means of addressing poverty and inequality across all socioeconomic strata.Keywords: microfinance, binary logistic model, poverty reduction, Ethiopia.
Procedia PDF Downloads 4420813 Analysis on Greenhouse Gas Emissions Potential by Deploying the Green Cars in Korean Road Transport Sector
Authors: Sungjun Hong, Yanghon Chung, Nyunbae Park, Sangyong Park
Abstract:
South Korea, as the 7th largest greenhouse gas emitting country in 2011, announced that the national reduction target of greenhouse gas emissions was 30% based on BAU (Business As Usual) by 2020. And the reduction rate of the transport sector is 34.3% which is the highest figure among all sectors. This paper attempts to analyze the environmental effect on deploying the green cars in Korean road transport sector. In order to calculate the greenhouse gas emissions, the LEAP model is applied in this study.Keywords: green car, greenhouse gas, LEAP model, road transport sector
Procedia PDF Downloads 61720812 Linear MIMO Model Identification Using an Extended Kalman Filter
Authors: Matthew C. Best
Abstract:
Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems.Keywords: system identification, Kalman filter, linear model, MIMO, model order reduction
Procedia PDF Downloads 59820811 Drag Reduction of Base Bleed at Various Flight Conditions
Authors: Man Chul Jeong, Hyoung Jin Lee, Sang Yoon Lee, Ji Hyun Park, Min Wook Chang, In-Seuck Jeung
Abstract:
This study focus on the drag reduction effect of the base bleed at supersonic flow. Base bleed is the method which bleeds the gas on the tail of the flight vehicle and reduces the base drag, which occupies over 50% of the total drag in any flight speed. Thus base bleed can reduce the total drag significantly, and enhance the total flight range. Drag reduction ratio of the base bleed is strongly related to the mass flow rate of the bleeding gas. Thus selecting appropriate mass flow rate is important. However, since the flight vehicle has various flight speed, same mass flow rate of the base bleed can have different drag reduction effect during the flight. Thus, this study investigates the effect of the drag reduction depending on the flight speed by numerical analysis using STAR-CCM+. The analysis model is 155mm diameter projectile with boat-tailed shape base. Angle of the boat-tail is chosen previously for minimum drag coefficient. Numerical analysis is conducted for Mach 2 and Mach 3, with various mass flow rate, or the injection parameter I, of the bleeding gas and the temperature of the bleeding gas, is fixed to 300K. The results showed that I=0.025 has the minimum drag at Mach 2, and I=0.014 has the minimum drag at Mach 3. Thus as the Mach number is higher, the lower mass flow rate of the base bleed has more effect on drag reduction.Keywords: base bleed, supersonic, drag reduction, recirculation
Procedia PDF Downloads 41820810 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion
Authors: J. H. Park, R. H. Hwang, K. B. Yi
Abstract:
Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method
Procedia PDF Downloads 21220809 Response Reduction Factor for Earthquake Resistant Design of Special Moment Resisting Frames
Authors: Rohan V. Ambekar, Shrirang N. Tande
Abstract:
The present study estimates the seismic response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall using static nonlinear (pushover) analysis. Calculation of response reduction factor (R) is done as per the new formulation of response reduction factor (R) given by Applied Technology Council (ATC)-19 which is the product of strength factor (Rs), ductility factor (Rµ) and redundancy factor (RR). The analysis revealed that these three factors affect the actual value of response reduction factor (R) and therefore they must be taken into consideration while determining the appropriate response reduction factor to be used during the seismic design process. The actual values required for determination of response reduction factor (R) is worked out on the basis of pushover curve which is a plot of base shear verses roof displacement. Finally, the calculated values of response reduction factor (R) of reinforced concrete special moment resisting frame (SMRF) with and without shear wall are compared with the codal values.Keywords: response reduction factor, ductility ratio, base shear, special moment resisting frames
Procedia PDF Downloads 49120808 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can
Abstract:
This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum
Procedia PDF Downloads 34320807 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva
Abstract:
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx
Procedia PDF Downloads 21720806 Model Order Reduction of Complex Airframes Using Component Mode Synthesis for Dynamic Aeroelasticity Load Analysis
Authors: Paul V. Thomas, Mostafa S. A. Elsayed, Denis Walch
Abstract:
Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defined in the certification requirements. It is computationally prohibitive to use a Global Finite Element Model (GFEM) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of Component Mode Synthesis (CMS) method for the generation of high fidelity Reduced Order Model (ROM) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with an aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of the same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads Modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.Keywords: component mode synthesis, craig bampton reduction method, dynamic aeroelasticity analysis, model order reduction
Procedia PDF Downloads 21220805 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations
Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman
Abstract:
CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.Keywords: slow steaming, carbon emission, maritime logistics, sustainability, green supply chain
Procedia PDF Downloads 460