Search results for: glass structure and properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15400

Search results for: glass structure and properties

15400 Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates

Authors: Hireni R. Mankodi, D. J. Chudasama

Abstract:

The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.

Keywords: preform, non-crimp structure, laminates, bi-axial, multiaxial

Procedia PDF Downloads 493
15399 An Investigation of Raw Material Effects on Nano SiC Based Foam Glass Production

Authors: Aylin Sahin, Yasemin Kilic, Abdulkadir Sari, Burcu Duymaz, Mustafa Kara

Abstract:

Foam glass is an innovative material which composed of glass and carbon/carbonate based minerals; and has incomparable properties like light weight, high thermal insulation and cellular structure with sufficient rigidity. In the present study, the effects of the glass type and mineral addition on the foam glass properties were investigated. Nano sized SiC was fixed as foaming agent at the whole of the samples, mixed glass waste and sheet glass were selectively used as glass sources; finally Al₂O₃ was optionally used as mineral additive. These raw material powders were mixed homogenously, pressed at same pressure and sintered at same schedule. Finally, obtained samples were characterized based on the required properties of foam glass material, and optimum results were determined. At the end of the study, 0.049 W/mK thermal conductivity, 72 % porosity, and 0.21 kg/cm² apparent density with 2.41 MPa compressive strength values were achieved with using nano sized SiC, sheet glass and Al₂O₃ mineral additive. It can be said that the foam glass materials can be preferred as an alternative insulation material rather than polymeric based conventional insulation materials because of supplying high thermal insulation properties without containing unhealthy chemicals and burn risks.

Keywords: foam glass, foaming, silicon carbide, waste glass

Procedia PDF Downloads 365
15398 An Investigation of Foam Glass Production from Sheet Glass Waste and SiC Foaming Agent

Authors: Aylin Sahin, Recep Artir, Mustafa Kara

Abstract:

Foam glass is a remarkable material with having incomparable properties like low weight, rigidity, high thermal insulation capacity and porous structure. In this study, foam glass production was investigated with using glass powder from sheet glass waste and SiC powder as foaming agent. Effects of SiC powders and sintering temperatures on foaming process were examined. It was seen that volume expansions (%), cellular structures and pore diameters of obtained foam glass samples were highly depending on composition ratios and sintering temperature. The study showed that various foam glass samples having with homogenous closed porosity, low weight and low thermal conductivity were achieved by optimizing composition ratios and sintering temperatures.

Keywords: foam glass, foaming, waste glass, silicon carbide

Procedia PDF Downloads 385
15397 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study

Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala

Abstract:

Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.

Keywords: photonic, heavy-metal oxide, glass, crystallization

Procedia PDF Downloads 144
15396 Crystallization in the TeO2 - Ta2O5 - Bi2O3 System: From Glass to Anti-Glass to Transparent Ceramic

Authors: Hasnaa Benchorfi

Abstract:

The Tellurite glasses exhibit interesting properties, notably their low melting point (700-900°C), high refractive index (≈2), high transparency in the infrared region (up to 5−6 μm), interesting linear and non-linear optical properties and high rare earth ions solubility. These properties give tellurite glasses a great interest in various optical applications. Transparent ceramics present advantages compared to glasses, such as improved mechanical, thermal and optical properties. But, the elaboration process of these ceramics requires complex sintering conditions. The full crystallization of glass into transparent ceramics is an alternative to circumvent the technical challenges related to the ceramics obtained by conventional processing. In this work, a crystallization study of a specific glass composition in the system TeO2-Ta2O5-Bi2O3 shows structural transitions from the glass to the stabilization of an unreported anti-glass phase to a transparent ceramic upon heating. An anti-glass is a material with a cationic long-range order and a disordered anion sublattice. Thus, the X-ray diffraction patterns show sharp peaks, while the Raman bands are broad and similar to those of the parent glass. The structure and microstructure of the anti-glass and corresponding ceramic were characterized by Powder X-Ray Diffraction, Electron Back Scattered Diffraction, Transmission Electron Microscopy and Raman spectroscopy. The optical properties of the Er3+-doped samples are also discussed.

Keywords: glass, congruent crystallization, anti-glass, glass-ceramic, optics

Procedia PDF Downloads 79
15395 Influence of Recycled Glass Content on the Properties of Concrete and Mortar

Authors: Bourmatte Nadjoua, Houari Hacène

Abstract:

The effect of replacement of fine aggregates with recycled glass on the fresh and hardened properties of concrete and mortar is studied. Percentages of replacement are 0–25% and 50% of aggregates with fine waste glass to produce concrete and percentage of replacement of 100% to produce mortar. As a result of the conducted study, the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures were decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. Mortar based on glass shows a compressive strength with 50% lower than that of control mortar.

Keywords: compressive strength, concrete, mortar, recycled glass

Procedia PDF Downloads 447
15394 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates

Authors: Gavin Gengan, Hsein Kew

Abstract:

Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concrete

Keywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic

Procedia PDF Downloads 208
15393 The Role of Nano Glass Flakes on Morphology, Dynamic-Mechanical Properties and Crystallization Behavior of Poly (Ethylene Terephthalate)

Authors: Fatemeh Alsadat Miri, Morteza Ehsani, Hossein Ali Khonakdar, Behjat Kavyani

Abstract:

This paper studies the effect of nano glass flakes on morphology, dynamic-mechanical properties, and crystallization behavior of poly (ethylene terephthalate) (PET). The concentration of nano glass flakes was varied from 0.5, 1, 2, and 3% wt of the total formulation. Scanning electron microscopy (SEM) micrographs showed the poor distribution of nano-glass flake particles in PET, as well as low adhesion of particles to the polymer matrix. According to differential scanning calorimetry (DSC), the crystallization rate and crystallization temperature of PET were increased by the addition of nano glass flakes. The crystallization rate of PET was increased from 31.41% to 34.25% by the incorporation of 1%wt of nano glass flakes. Based on the results of the dynamic-mechanical analysis, the storage modulus of PET gets increased by adding nano glass flakes, especially below glass transition temperature (Tg). The glass transition of PET did not change remarkably with the addition of nano glass flakes. Moreover, the use of nano glass flakes reduced the impact strength of PET.

Keywords: PET, nano glass flakes, morphology, crystallization

Procedia PDF Downloads 127
15392 Effect of Volume Fraction of Fibre on the Mechanical Properties of Nanoclay Reinforced E-Glass-Epoxy Composites

Authors: K. Krushnamurty, D. Rasmitha, I. Srikanth, K. Ramji, Ch. Subrahmanyam

Abstract:

E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers.

Keywords: e-glass-epoxy composite laminates, fiber volume fraction, e-glass fiber, mechanical properties, delamination

Procedia PDF Downloads 342
15391 Studies on Mechanical Properties of Concrete and Mortar Containing Waste Glass Aggregate

Authors: Nadjoua Bourmatte, Hacène Houari

Abstract:

Glass has been indispensable to men’s life due to its properties, including pliability to take any shape with ease, bright surface, resistance to abrasion, reasonable safety and durability. Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The object of this research work is to study the effect of using recycled glass waste, as a partial replacement of fine aggregate, on the fresh and hardened properties of concrete. Recycled glass was used to replace fine aggregate in proportions of 0%, 25% and 50%. We could observe that the Glass waste aggregates are lighter than natural aggregates and they show a very low water absorption. The experimental results showed that the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. The standard sand was substituted with aggregates based on glass waste for manufacturing mortars, Mortar based on glass shows a compressive strength and low bending with a 1/2 ratio with control mortar strength.

Keywords: concrete, environment, glass waste, recycling

Procedia PDF Downloads 232
15390 The Effect of the Incorporation of Glass Powder into Cement Sorel

Authors: Rim Zgueb, Noureddine Yacoubi

Abstract:

The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement.

Keywords: cement sorel, photothermal deflection technique, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 425
15389 Investigation on the Thermal Properties of Magnesium Oxychloride Cement Prepared with Glass Powder

Authors: Rim Zgueb, Noureddine Yacoubi

Abstract:

The objective of this study was to investigate the thermal property of magnesium oxychloride cement (MOC) using glass powder as a substitute. Glass powder by proportion 0%, 5%, 10%, 15% and 20% of cement’s weight was added to specimens. At the end of a drying time of 28 days, thermal properties, compressive strength and bulk density of samples were determined. Thermal property is measured by Photothermal Deflection Technique by comparing the experimental of normalized amplitude and the phase curves of the photothermal signal to the corresponding theoretical ones. The findings indicate that incorporation of glass powder decreases the thermal properties of MOC.

Keywords: magnesium oxychloride cement (MOC), phototharmal deflection technique, thermal properties, Ddensity

Procedia PDF Downloads 353
15388 Physical Properties of Alkali Resistant-Glass Fibers in Continuous Fiber Spinning Conditions

Authors: Ji-Sun Lee, Soong-Keun Hyun, Jin-Ho Kim

Abstract:

In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt% zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured, and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

Keywords: glass composition, fiber diameter, continuous filament fiber, continuous spinning, physical properties

Procedia PDF Downloads 317
15387 Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles

Authors: Sonjida Mustafia

Abstract:

Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature.

Keywords: rice husk ash, waste glass, glass-ceramic, modulus of rupture, glossiness, linear shrinkage, micro-structure

Procedia PDF Downloads 93
15386 Glass and Polypropylene Combinations for Thermoplastic Preforms

Authors: Hireni Mankodi

Abstract:

The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates.

Keywords: thermoplastic, preform, laminates, hybrid yarn, glass

Procedia PDF Downloads 580
15385 Development of a Robust Procedure for Generating Structural Models of Calcium Aluminosilicate Glass Surfaces

Authors: S. Perera, T. R. Walsh, M. Solvang

Abstract:

The structure-property relationships of calcium aluminosilicate (CAS) glass surfaces are of scientific and technological interest regarding dissolution phenomena. Molecular dynamics (MD) simulations can provide atomic-scale insights into the structure and properties of the CAS interfaces in vacuo as the first step to conducting computational dissolution studies on CAS surfaces. However, one limitation to date is that although the bulk properties of CAS glasses have been well studied by MD simulation, corresponding efforts on CAS surface properties are relatively few in number (both theoretical and experimental). Here, a systematic computational protocol to create CAS surfaces in vacuo is developed by evaluating the sensitivity of the resultant surface structure with respect to different factors. Factors such as the relative thickness of the surface layer, the relative thickness of the bulk region, the cooling rate, and the annealing schedule (time and temperature) are explored. Structural features such as ring size distribution, defect concentrations (five-coordinated aluminium (AlV), non-bridging oxygen (NBO), and tri-cluster oxygen (TBO)), and linkage distribution are identified as significant features in dissolution studies.

Keywords: MD simulation, CAS glasses, surface structure, structure-property, CAS interface

Procedia PDF Downloads 98
15384 Physical Properties and Elastic Studies of Fluoroaluminate Glasses Based on Alkali

Authors: C. Benhamideche

Abstract:

Fluoroaluminate glasses have been reported as the earliest heavy metal fluoride glasses. By comparison with flurozirconate glasses, they offer a set of similar optical features, but also some differences in their elastic and chemical properties. In practice they have been less developed because their stability against devitrification is smaller than that of the most stable fluoroziconates. The purpose of this study was to investigate glass formation in systems AlF3-YF3-PbF2-MgF2-MF2 (M= Li, Na, K). Synthesis was implemented at room atmosphere using the ammonium fluoride processing. After fining, the liquid was into a preheated brass mold, then annealed below the glass transition temperature for several hours. The samples were polished for optical measurements. Glass formation has been investigated in a systematic way, using pseudo ternary systems in order to allow parameters to vary at the same time. We have chosen the most stable glass compositions for the determination of the physical properties. These properties including characteristic temperatures, density and proprieties elastic. Glass stability increases in multicomponent glasses. Bulk samples have been prepared for physical characterization. These glasses have a potential interest for passive optical fibers because they are less sensitive to water attack than ZBLAN glass, mechanically stronger. It is expected they could have a larger damage threshold for laser power transmission.

Keywords: fluoride glass, aluminium fluoride, thermal properties, density, proprieties elastic

Procedia PDF Downloads 241
15383 Chlorine Pretreatment Effect on Mechanical Properties of Optical Fiber Glass

Authors: Abhinav Srivastava, Hima Harode, Chandan Kumar Saha

Abstract:

The principal ingredient of an optical fiber is quartz glass. The quality of the optical fiber decreases if impure foreign substances are attached to its preform surface. If residual strain inside a preform is significant, it cracks with a small impact during drawing or transporting. Furthermore, damages and unevenness on the surface of an optical fiber base material break the fiber during drawing. The present work signifies that chlorine pre-treatment enhances mechanical properties of the optical fiber glass. FTIR (Fourier-Transform Infrared Spectroscopy) results show that chlorine gas chemically modifies the structure of silica clad; chlorine is known to soften glass. Metallic impurities on the preform surface likely formed volatile metal chlorides due to chlorine pretreatment at elevated temperature. The chlorine also acts as a drying agent, and therefore the preform surface is anticipated to be water deficient and supposedly avoids particle adhesion on the glass surface. The Weibull analysis of long length tensile strength demarcates a substantial shift in its knee. The higher dynamic fatigue n-value also indicated surface crack healing.

Keywords: mechanical strength, optical fiber glass, FTIR, Weibull analysis

Procedia PDF Downloads 176
15382 Lithium Oxide Effect on the Thermal and Physical Properties of the Ternary System Glasses (Li2O3-B2O3-Al2O3)

Authors: D. Aboutaleb, B. Safi

Abstract:

The borate glasses are known by their structural characterized by existence of unit’s structural composed by triangles and tetrahedrons boron in different configurations depending on the percentage of B2O3 in the glass chemical composition. In this paper, effect of lithium oxide addition on the thermal and physical properties of an alumina borate glass, was investigated. It was found that the boron abnormality has a significant effect in the change of glass properties according to the addition rate of lithium oxide.

Keywords: borate glasses, triangles and tetrahedrons boron, lithium oxide, boron anomaly, thermal properties, physical properties

Procedia PDF Downloads 359
15381 The Effect of Mechanical Stress on the Magnetic Structure and Properties of Ferromagnetic Microwires in Glass Insulation

Authors: N. N. Orlova, A. S. Aronin, Yu. P. Kabanov, S. I. Bozhko, V. S. Gornakov

Abstract:

We have investigated the change of the magnetic structure and the hysteresis properties of iron-based microwires after decreasing levels of internal mechanical stresses. The magnetic structure was investigated by the method of magneto-optical indicator film and the method of magnetic force microscopy. The hysteresis properties were studied by the vibrating sample magnetometer. The stresses were decreased by removing the glass coat and/or by low-temperature isothermal annealing. Previously, the authors carried out experimentally investigation of the magnetic structure of Fe-based microwire using these methods. According to the obtained results the domain structure of a microwire with a positive magnetostriction is composed of the inner cylindrical domains with the magnetization along the wire axis and the surface layer of the ring shape domains with the radial direction of magnetization. Surface ring domains with opposite magnetization direction (i.e., to the axis or from the axis) alternate with each other. For the first time the size of magnetic domains was determined experimentally. In this study it was found that in the iron-based microwires the value of the coercive force can be reduce more than twice by decreasing levels of internal mechanical stresses. Decrease of the internal stress value by the relaxation annealing influence on the magnetic structure. So in the as-prepared microwires observed local deviations of the magnetization of the magnetic core domains from the axis of the wire. After low-temperature annealing the local deviations of magnetization is not observed.

Keywords: amorphous microwire, magnetic structure, internal stress, hysteresis properties, ferromagnetic

Procedia PDF Downloads 569
15380 Preparation and Analysis of Enhanced Glass Fiber Reinforced Plastics with Al Base Alloy

Authors: M. R. Ashok, S. Srivatsan, S. Vignesh

Abstract:

Common replacement for glass in composites is the Glass Fiber Reinforced Plastics (GFRP). The GFRP has its own advantages for being a good alternative. The purpose of this research is to find a suitable enhancement for the commonly used composite Glass Fiber Reinforced Plastics (GFRP). The goal is to enhance the material properties of the composite by providing a suitable matrix with Al base. The various mechanical tests are performed to analyze and compare the improvement in the mechanical properties of the composite. As a result, this material can be used as an alternative for the commonly used GFRP in various fields with increased effectiveness in its functioning.

Keywords: alloy based composites, composite materials, glass fiber reinforced plastics, sSuper composites

Procedia PDF Downloads 334
15379 Influence of Stacking Sequence on Properties of Sheep-Wool/Glass Reinforced Epoxy Hybrid Composites

Authors: G. B. Manjunatha

Abstract:

Natural fibers have been considerable demand in recent years due to their ecofriendly and renewable nature. The advantages of low density, acceptable specific properties, better thermal and insulate properties with low cost.In the present study, hybrid composite associating Sheep wool fiber and glass fiber reinforced with epoxy were developed and investigated the effect of stacking sequence on physical and chemical properties. The hybrid composite was designed for engineering applications as an alternative material to glass fiber composites. The hybrid composite laminates were fabricated by using hand lay-up technique at total fiber volume fraction of 60% (Sheep wool fiber 30% and Glass fiber 30%) and 40% reinforcement. The specimen preparation and testing were conducted as per American Society for Testing and Materials (ASTM) standards. Three different stacking are used. The result shows that tensile and bending tests of sequence of glass fiber between sheep wool fiber have high strength and maximum bending compared to other sequence of composites. At the same time better moisture and chemical absorption were observed.

Keywords: hybrid composites, mechanical properties, polymer composites, stacking sequence

Procedia PDF Downloads 155
15378 Structural and Leaching Properties of Irradiated Lead Commercial Glass by Using XRD, Ultrasonic, UV-VIS and AAS Technique

Authors: N. H. Alias, S. A. Aziz, Y. Abdullah, H. M. Kamari, S. Sani, M. P. Ismail, N. U. Saidin, N. A. A. Salim, N. E. E. Abdullah

Abstract:

Gamma (γ) irradiation study has been investigated on the 6 rectangular shape of the standard X-Ray lead glass with 5/16” thick, providing 2.00 mm lead shielding value; at selected Sievert doses (C1; 0, C2; 0.07, C3; 0.035, C4; 0.07, C5; 0.105 and C6; 0.14) by using (XRD) X-ray Diffraction techniques, ultrasonic and (UV-VIS) Ultraviolet-Visible Spectroscopy. Concentration of lead in 0.5 N acid nitric (HNO3) environments is then studied by means of Atomic Absorption Spectroscopy (AAS) as to observe the glass corrosion behavior after irradiation at room temperature. This type of commercial glass is commonly used as radiation shielding glass in medical application.

Keywords: gamma irradiation, lead glass, leaching, structural

Procedia PDF Downloads 433
15377 Synergetic Effects of Water and Sulfur Dioxide Treatments on Wear of Soda Lime Silicate Glass

Authors: Qian Qiao, Tongjin Xiao, Hongtu He, Jiaxin Yu

Abstract:

This study is focused on the synergetic effects of water and sulfur dioxide treatments (SO₂ treatments) on the mechanochemical wear of SLS glass. It is found that the wear behavior of SLS glass in humid air is very sensitive to the water and SO₂ treatment environments based on the wear test using a ball-on-flat reciprocation tribometer. When SLS glass is treated with SO₂-without, the presence of water, the wear resistance of SLS glass in humid air becomes significantly higher compared to the pristine glass. However, when SLS glass is treated with SO₂ with the presence of water, the wear resistance of SLS glass decreases remarkably with increasing in the relative humidity (RH) from 0% to 90%. Further analyses indicate that when sodium ions are leached out of SLS glass surface via the water and SO₂ treatments, the mechanochemical properties of SLS glass surface become different depending on the RH. At lower humidity, the nano hardness of the Na⁺-leached surface is higher, and it can contribute to the enhanced wear resistance of SLS glass. In contrast, at higher humidity conditions, the SLS glass surface is more hydrophilic, and substantial wear debris can be found inside the wear track of SLS glass. Those phenomena suggest that adhesive wear and abrasive wear dominate the wear mechanism of SLS glass in humid air, causing the decreased wear resistance of SLS glass with increasing the RH. These results may not only provide a deep understanding of the wear mechanism of SLS glass but also helpful for operation process of functional and engineering glasses.

Keywords: soda lime silicate glass, wear, water, SO₂

Procedia PDF Downloads 176
15376 Investigating Optical Properties of Unsaturated Polyurethane Matrix and Its Glass Fiber Composite Under Extreme Temperatures

Authors: Saad Ahmed, Sanjeev Khannaa

Abstract:

Glass fiber reinforced polymers are widely used in structural systems as load-bearing elements at both high and low temperatures. This investigation presents the evaluation of glass fiber reinforced unsaturated polyurethane under harsh conditions of changing temperature and moisture content. This study Explores how these parameters affect the optical properties of the polymer matrix and the composite. Using the hand layup method, the polyurethane resin was modified by E-glass fibers (15 vol. %) to manufacture fiber-reinforced composite. This work includes the preparation of glass-like polyurethane resin sheets and estimates all light transmittance properties at high and very low temperatures and wet conditions. All-optical properties were retested to evaluate the level of improvement or failure. The results found that when comprising reinforced composite fiber to the unreinforced specimens, the reinforced composite shows a fair optical property at high temperatures and good performance at low temperatures.

Keywords: unsaturated polyurethane, extreme temperatures, light transmittance, haze number

Procedia PDF Downloads 144
15375 Enhanced Dimensional Stability of Rigid PVC Foams Using Glass Fibers

Authors: Nidal H. Abu-Zahra, Murtatha M. Jamel, Parisa Khoshnoud, Subhashini Gunashekar

Abstract:

Two types of glass fibers having different lengths (1/16" and 1/32") were added into rigid PVC foams to enhance the dimensional stability of extruded rigid Polyvinyl Chloride (PVC) foam at different concentrations (0-20 phr) using a single screw profile extruder. PVC foam-glass fiber composites (PVC-GF) were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Overall, foam composites which were prepared with longer glass fibers exhibit better mechanical and thermal properties than those prepared with shorter glass fibers due to higher interlocking between the fibers and the foam cells, which result in better load distribution in the matrix.

Keywords: polyvinyl chloride, PVC foam, PVC composites, polymer composites, glass fiber composites, reinforced polymers

Procedia PDF Downloads 396
15374 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 157
15373 Studies on Physico-Chemical Properties of Indium Sulfide Films Deposited under Different Deposition Conditions by Chemical Bath Deposition

Authors: S. B. Bansode, V. G. Wagh, R. S. Kapadnis, S. S. Kale, M. Pathan Habib

Abstract:

Indium sulfide films have been deposited using chemical bath deposition onto glass and indium tin oxide coated glass substrates. The influences of different deposition parameters viz. substrate and pH have been studied. The films were characterized by different techniques with respect to their crystal structure, surface morphology and compositional property by means of X-ray diffraction, scanning electron microscopy, Energy dispersive spectroscopy and optical absorption. X-ray diffraction studies revealed that amorphous nature of the films. The scanning electron microscopy of as deposited indium sulfide film on ITO coated glass substrate shows random orientation of grains where as those on glass substrates show dumbbell shape. Optical absorption study revealed that band gap varies from 2.29 to 2.79 eV for the deposited film.

Keywords: chemical bath deposition, optical properties, structural property, Indium sulfide

Procedia PDF Downloads 478
15372 Effect of BaO-Bi₂O₃-P₂O₅ Glass Additive on Structural and Dielectric Properties of BaTiO₃ Ceramics

Authors: El Mehdi Haily, Lahcen Bih, Mohammed Azrour, Bouchaib Manoun

Abstract:

The effects of xBi₂O₃-yBaO-zP₂O₅ (BBP) glass addition on the sintering, structural, and dielectric properties of BaTiO₃ ceramic (BT) are studied. The BT ceramic was synthesized by the conventional solid-state reaction method while the glasses BaO-Bi₂O₃-P₂O₅ (BBP) were elaborated by melting and quenching process. Different composites BT-xBBP were formed by mixing the BBP glasses with BT ceramic. For each glass composition, where the ratio (x:y:z) is maintained constant, we have developed three composites with different glass weight percentage (x = 2.5, 5, and 7.5 wt %). Addition of the glass helps in better sintering at lower temperatures with the presence of liquid phase at the respective sintering temperatures. The results showed that the sintering temperature decreased from more than 1300°C to 900°C. Density measurements of the composites are performed using the standard Archimedean method with water as medium liquid. It is found that their density and molar volume decrease and increase with glass content, respectively. Raman spectroscopy is used to characterize their structural approach. This technique has allowed the identification of different structural units of phosphate and the characteristic vibration modes of the BT. The electrical properties of the composite samples are carried out by impedance spectroscopy in the frequency range of 10 Hz to 1 MHz under various temperatures from 300 to 473 K. The obtained results show that their dielectric properties depend both on the content of the glass in the composite and the Bi/P ratio in the glasses.

Keywords: phosphate, glasses, composite, Raman spectroscopy, dielectric properties

Procedia PDF Downloads 163
15371 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network

Authors: Sharad Shrivastava, Arun Jalan

Abstract:

In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.

Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network

Procedia PDF Downloads 437