Search results for: degradation kinetics
2308 Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam
Authors: Juan C. Domínguez, Belén Del Saz-Orozco, María V. Alonso, Mercedes Oliet, Francisco Rodríguez
Abstract:
In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam, 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement, and 82.1, 106.9, and 124.4 kJ. mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (< 1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement.Keywords: kinetics, lignin, phenolic foam, thermal degradation
Procedia PDF Downloads 4882307 Effect of Blanching and Drying Methods on the Degradation Kinetics and Color Stability of Radish (Raphanus sativus) Leaves
Authors: K. Radha Krishnan, Mirajul Alom
Abstract:
Dehydrated powder prepared from fresh radish (Raphanus sativus) leaves were investigated for the color stability by different drying methods (tray, sun and solar). The effect of blanching conditions, drying methods as well as drying temperatures (50 – 90°C) were considered for studying the color degradation kinetics of chlorophyll in the dehydrated powder. The hunter color parameters (L*, a*, b*) and total color difference (TCD) were determined in order to investigate the color degradation kinetics of chlorophyll. Blanching conditions, drying method and drying temperature influenced the changes in L*, a*, b* and TCD values. The changes in color values during processing were described by a first order kinetic model. The temperature dependence of chlorophyll degradation was adequately modeled by Arrhenius equation. To predict the losses in green color, a mathematical model was developed from the steady state kinetic parameters. The results from this study indicated the protective effect of blanching conditions on the color stability of dehydrated radish powder.Keywords: chlorophyll, color stability, degradation kinetics, drying
Procedia PDF Downloads 4012306 Thermal Degradation Kinetics of Field-Dried and Pelletized Switchgrass
Authors: Karen E. Supan
Abstract:
Thermal degradation kinetics of switchgrass (Panicum virgatum) from the field, as well as in a pellet form, are presented. Thermogravimetric analysis tests were performed at heating rates of 10-40 K min⁻¹ in an inert atmosphere. The activation energy and the pre-exponential factor were calculated using the Ozawa/Flynn/Wall method as suggested by the ASTM Standard Test Method for Decomposition Kinetics by Thermogravimetry. Four stages were seen in the degradation: dehydration, active pyrolysis of hemicellulose, active pyrolysis of cellulose, and passive pyrolysis. The derivative mass loss peak for active pyrolysis of cellulose in the field-dried sample was much higher than the pelletized. The range of activation energy in the 0.15 – 0.70 conversion interval was 191 – 242 kJ mol⁻¹ for the field-dried and 130-192 kJ mol⁻¹ for the pellets. The highest activation energies were achieved at 0.50 conversion and were 242 kJ mol⁻¹ and 192 kJ mol⁻¹ for the field-dried and pellets, respectively. The thermal degradation and activation energies were comparable to switchgrass and other biomass reported in the literature.Keywords: biomass, switchgrass, thermal degradation, thermogravimetric analysis
Procedia PDF Downloads 1162305 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation
Authors: E. A. Krasikov
Abstract:
Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.Keywords: degradation, radiation, steel, wave-like kinetics
Procedia PDF Downloads 3042304 Heterogeneous and Homogeneous Photocatalytic Degradation of Acid Orange 10 in Aqueous Solution
Authors: Merouani Djilali Redha, F. Abdelmalek, A. A. Addou
Abstract:
Advanced oxidation processes (AOPs) utilizing Homogenous photocatalysis (Fenton and photo-Fenton reactions), and Heterogeneous photocatalyse (TiO2 and ZnO) were investigated for the degradation of commercial azo dye ‘Orange G’ wastewater. Fenton and photo-Fenton experimental conditions were: Hydrogen peroxide concentration (10-2 M), Ferrous ions concentration (5.10-4 M), pH (2.8 – 3), UV lamp power (6 watt). Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The optimum catalyst loading was found 2.0 g.L-1 in our case for both catalysts TiO2 and ZnO. A comparative study of the photocatalytic degradation showed that these two catalysts have a comparable reactivity; it follows a pseudo-first-order kinetics. The degradation trends followed the order: UV365/Fenton > UV365/TiO2 > Solar Fenton > Solar TiO2 > Fenton ~UV365/ZnO. Among AOPs, processes using Fenton type reagent are relatively cheap and easy to operate and maintain. Moreover, UV365/Fenton process has been shown as effective in the treatment of OG dye. Dye was degraded following second-order kinetics. The rate constants was 0,041 .10+6 L.M-1.min-1. The degradation was followed by spectrophotometric method, chemical oxygen demand (COD) measures and high performance liquid chromatography analyses (HPLC). Some aromatic and aliphatic degradation compounds were identified. Degradation of Orange G by UV Fenton mechanism was also proposed.Keywords: AOPs, homogeneous catalysis, heterogeneous catalysis, acid orange 10, hydroxyl radical
Procedia PDF Downloads 4102303 Degradation Study of Food Colorants by SingletOxygen
Authors: A. T. Toci, M. V. B. Zanoni
Abstract:
The advanced oxidation processes have been defined as destructive technologies treatment of wastewater. These involve the formation of powerful oxidizing agents (usually hydroxyl radical .OH) capable of reacting with organic compounds present in wastewater, transforming damaging substances in CO2 and H2O (mineralization) or other innocuous products. However, the photochemical degradation with singlet oxygen has been little explored as oxidative pathway for the treatment of effluents containing food colorants. The molecular oxygen is an effective suppressor of organic molecules in the triplet excited state. One of the possible results of the physical withdrawal is the formation of singlet oxygen. Studies with singlet oxygen (1O2) show an high reactivity of the excited state of the molecule with olefins, aromatic hydrocarbons and a number of other organic and inorganic compounds. Its reactivity is about 2500 times larger than the oxygen in the ground state. Thus, in this work, it was studied the degradation of some dyes used in food industry (tartrazine, sunset yellow, erythrosine and carmoisine) by singlet oxygen. The sensitizer used for generating the 1O2 was methylene blue, which has a quantum yield generation of 0.50. Samples were prepared in water at a concentration of 5 ppm and irradiated with a sunlight simulator (Newport brand, model no. 67005) by consecutive 8h. The absorption spectra of UV-Vis molecules were made each hour irradiation. The degradation kinetics for each dye was determined using the maximum length of each dye absorption. The analysis by UV-Vis revealed that the processes were very efficient for the colorants sunset yellow and carmoisine. Both presented degradation kinetics of order zero with degradation constants 0.416 and 0.104, respectively. In the case of sunset yellow degradation reached 53% after 7h irradiation, Demonstrating the process efficiency. The erithrosine presented during the period irradiated a oscillating degradation kinetics, which requires further study. In the other hand, tartrazine was stable in the presence of 1O2. The investigation of the dyes degradation products owned degradation by 1O2 are underway, the techniques used for this are MS and NMR. The results of this study will enable the application of the cleanest methods for the treatment of industrial effluents, as there are other non-toxic and polluting molecules to generate 1O2.Keywords: food colourants, singlet oxygen, degradation, wastewater, oxidative
Procedia PDF Downloads 3972302 Microbial Removal of Polycyclic Aromatic Hydrocarbons from Petroleum Refinery Sludge: A Consortial Approach
Authors: Dheepshika Kodieswaran
Abstract:
The persisting problem in the world that continuously impose our planet at risk is the increasing amounts of recalcitrant. One such issue is the disposal of the Petroleum Refinery Sludge (PRS) which constitutes hydrocarbons that are hazardous to terrestrial and aquatic life. The comparatively safe approach to handling these wastes is by microbial degradation, while the other chemical and physical methods are either expensive and/or produce secondary pollutants. The bacterial and algal systems have different pathways for the degradation of hydrocarbons, and their growth rates vary. This study shows how different bacterial and microalgal strains degrade the polyaromatic hydrocarbon PAHs individually and their symbiotic influence on degradation as well. In this system, the metabolites and gaseous exchange help each other in growth. This method using also aids in the accumulation of lipids in microalgal cells and from which bio-oils can also be extracted. The bacterial strains used in this experiment are reported to be indigenous strains isolated from PRS. The target PAH studied were anthracene and pyrene for a period of 28 days. The PAH degradation kinetics best fitted the Gompertz model, and the order of the kinetics, rate constants, and half-life was determined.Keywords: petroleum refinery sludge, co-culturing, polycyclic hydrocarbons, microalgal-bacterial consortia
Procedia PDF Downloads 1052301 Insight into the Physical Ageing of Poly(Butylene Succinate)
Authors: I. Georgousopoulou, S. Vouyiouka, C. Papaspyrides
Abstract:
The hydrolytic degradation of poly(butylene succinate) (PBS) was investigated when exposed to different humidity-temperature environments. To this direction different PBS grades were submitted to hydrolysis runs. Results indicated that the increment of hydrolysis temperature and relative humidity induced significant decrease in the molecular weight and thermal properties of the bioplastic. Τhe derived data can be considered to construct degradation kinetics based on carboxyl content variation versus time.Keywords: hydrolytic degradation, physical ageing, poly(butylene succinate), polyester
Procedia PDF Downloads 2842300 Heterogeneous Catalytic Ozonation of Diethyl Phthalate
Authors: Chedly Tizaoui, Hussain Mohammed, Lobna Mansouri, Nidal Hilal, Latifa Bousselmi
Abstract:
The degradation of diethyl phthalate (DEP) was studied using heterogeneous catalytic ozonation. Activated carbon was used as a catalyst. The degradation of DEP with ozone alone was slow while catalytic ozonation increased degradation rates. Second-order reaction kinetics was used to describe the experimental data, and the corresponding rate constant values were 1.19 and 3.94 M-1.s-1 for ozone and ozone/activated carbon respectively.Keywords: ozone, heterogeneous catalytic ozonation, diethyl phthalate, endocrine disrupting chemicals
Procedia PDF Downloads 3482299 Sono- and Photocatalytic Degradation of Indigocarmine in Water Using ZnO
Authors: V. Veena, Suguna Yesodharan, E. P. Yesodharan
Abstract:
Two Advanced Oxidation Processes (AOP) i.e., sono- and photo-catalysis mediated by semiconductor oxide catalyst, ZnO has been found effective for the removal of trace amounts of the toxic dye pollutant Indigocarmine (IC) from water. The effect of various reaction parameters such as concentration of the dye, catalyst dosage, temperature, pH, dissolved oxygen etc. as well as the addition of oxidisers and presence of salts in water on the rate of degradation has been evaluated and optimised. The degradation follows variable kinetics depending on the concentration of the substrate, the order of reaction varying from 1 to 0 with increase in concentration. The reaction proceeds through a number of intermediates and many of them have been identified using GCMS technique. The intermediates do not affect the rate of degradation significantly. The influence of anions such as chloride, sulphate, fluoride, carbonate, bicarbonate, phosphate etc. on the degradation of IC is not consistent and does not follow any predictable pattern. Phosphates and fluorides inhibit the degradation while chloride, sulphate, carbonate and bicarbonate enhance. Adsorption studies of the dye in the absence as well as presence of these anions show that there may not be any direct correlation between the adsorption of the dye on the catalyst and the degradation. Oxidants such as hydrogen peroxide and persulphate enhance the degradation though the combined effect and it is less than the cumulative effect of individual components. COD measurements show that the degradation proceeds to complete mineralisation. The results will be presented and probable mechanism for the degradation will be discussed.Keywords: AOP, COD, indigocarmine, photocatalysis, sonocatalysis
Procedia PDF Downloads 3362298 Effect of Doping Ag and N on the Photo-Catalytic Activity of ZnO/CuO Nanocomposite for Degradation of Methyl Orange under UV and Visible Radiation
Authors: O. P. Yadav
Abstract:
Nano-size Ag-N co-doped ZnO/CuO composite photo-catalyst has been synthesized by chemical method and characterized using XRD, TEM, FTIR, AAS and UV-Vis spectroscopic techniques. Photo-catalytic activity of as-synthesized nanomaterial has been studied using degradation of methyl orange as a probe under UV as well as visible radiations. Ag-N co-doped ZnO/CuO composite showed higher photo-catalytic activity than Ag- or N-doped ZnO and undoped ZnO-CuO composite photo-catalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, pH and substrate initial concentration on degradation of methyl orange have also been studied. Photo-catalytic degradation of methyl orange follows pseudo first order kinetics.Keywords: degradation, nanocomposite, photocatalyst, spectroscopy, XRD
Procedia PDF Downloads 4972297 Radiation Annealing of Radiation Embrittlement of the Reactor Pressure Vessel
Authors: E. A. Krasikov
Abstract:
Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore – nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance, this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion, controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore, flux effect manifestation depends on fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis, at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result, oscillation arises that in turn leads to enhanced data scatter.Keywords: annealing, embrittlement, radiation, RPV steel
Procedia PDF Downloads 3412296 Effect of the pH on the Degradation Kinetics of Biodegradable Mg-0.8Ca Orthopedic Implants
Authors: A. Mohamed, A. El-Aziz
Abstract:
The pH of the body plays a great role in the degradation kinetics of biodegradable Mg-Ca orthopedic implants. At the location of fracture, the pH of the body becomes no longer neutral which draws the attention towards studying a range of different pH values of the body fluid. In this study, the pH of Hank’s balanced salt solution (HBSS) was modified by phosphate buffers into an aggressive acidic pH 1.8, a slightly acidic pH 5.3 and an alkaline pH 8.1. The biodegradation of Mg-0.8Ca implant was tested in those three different media using immersion test and electrochemical polarization means. It was proposed that the degradation rate has increased with decreasing the pH of HBSS. The immersion test revealed weight gain for all the samples followed by weight loss as the immersion time increased. The highest weight gain was pronounced for the acidic pH 1.8 and the least weight gain was observed for the alkaline pH 8.1. This was in agreement with the electrochemical polarization test results where the degradation rate was found to be high (7.29 ± 2.2 mm/year) in the aggressive acidic solution of pH 1.8 and relatively minimum (0.31 ± 0.06 mm/year) in the alkaline medium of pH 8.1. Furthermore, it was confirmed that the pH of HBSS has reached a steady state of an alkaline pH (~pH 11) at the end of the two-month immersion period regardless of the initial pH of the solution. Finally, the corrosion products formed on the samples’ surface were investigated by SEM, EDX and XRD analyses that revealed the formation of magnesium and calcium phosphates with different morphologies according to the pH.Keywords: biodegradable, electrochemical polarization means, orthopedics, immersion test, simulated body fluid
Procedia PDF Downloads 1232295 Modelling Kinetics of Colour Degradation in American Pokeweed (Phytolacca americana) Extract Concentration
Authors: Seyed-Ahmad Shahidi, Salemeh Kazemzadeh, Mehdi Sharifi Soltani, Azade Ghorbani-HasanSaraei
Abstract:
The kinetics of colour changes of American Pokeweed extract, due to concentration by various heating methods was studied. Three different heating/evaporation processes were employed for production of American Pokeweed extract concentrate. The American Pokeweed extract was concentrated to a final 40 °Brix from an initial °Brix of 4 by microwave heating, rotary vacuum evaporator and evaporating at atmospheric pressure. The final American Pokeweed extract concentration of 40 °Brix was achieved in 188, 216 and 320 min by using microwave, rotary vacuum and atmospheric heating processes, respectively. The colour change during concentration processes was investigated. Total colour differences, Hunter L, a and b parameters were used to estimate the extent of colour loss. All Hunter colour parameters decreased with time. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. All models were found to describe the L, a and b-data adequately. Results indicated that variation in TCD followed both first-order and combined kinetics models. This model implied that the colour formation and pigment destruction occurred during concentration processes of American Pokeweed extract.Keywords: American pokeweed, colour, concentration, kinetics
Procedia PDF Downloads 4982294 Solar Photocatalysis of Methyl Orange Using Multi-Ion Doped TiO2 Catalysts
Authors: Victor R. Thulari, John Akach, Haleden Chiririwa, Aoyi Ochieng
Abstract:
Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 °C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO2. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO2 and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO2. Varieties of laboratory prepared TiO2 catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO2. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst.Keywords: degradation, kinetics, methyl orange, photocatalysis
Procedia PDF Downloads 3362293 Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals
Authors: C. C. Lin, S. C. Kan, C. W. Yeh, C. I Chen, C. J. Shieh, Y. C. Liu
Abstract:
In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol.Keywords: lipid-deprived residuals of microalgae, cellulosome, cellulose, reducing sugars, kinetics
Procedia PDF Downloads 4022292 Kinetic and Mechanistic Study on the Degradation of Typical Pharmaceutical and Personal Care Products in Water by Using Carbon Nanodots/C₃N₄ Composite and Ultrasonic Irradiation
Authors: Miao Yang
Abstract:
PPCPs (pharmaceutical and personal care products) in water, as an environmental pollutant, becomes an issue of increasing concern. Therefore, the techniques for degradation of PPCPs has been a hotspot in water pollution control field. Since there are several disadvantages for common degradation techniques of PPCPs, such as low degradation efficiency for certain PPCPs (ibuprofen and Carbamazepine) this proposal will adopt a combined technique by using CDs (carbon nanodots)/C₃N₄ composite and ultrasonic irradiation to mitigate or overcome these shortages. There is a significant scientific problem that the mechanism including PPCPs, major reactants, and interfacial active sites is not clear yet in the study of PPCPs degradation. This work aims to solve this problem by using both theoretical and experimental methodologies. Firstly, optimized parameters will be obtained by evaluating the kinetics and oxidation efficiency under different conditions. The competition between H₂O₂ and PPCPs with HO• will be elucidated, after which the degradation mechanism of PPCPs by the synergy of CDs/C₃N₄ composite and ultrasonic irradiation will be proposed. Finally, a sonolysis-adsorption-catalysis coupling mechanism will be established which is the theoretical basis and technical support for developing new efficient degradation techniques for PPCPs in the future.Keywords: carbon nanodots/C₃N₄, pharmaceutical and personal care products, ultrasonic irradiation, hydroxyl radical, heterogeneous catalysis
Procedia PDF Downloads 1802291 Multistep Thermal Degradation Kinetics: Pyrolysis of CaSO₄-Complex Obtained by Antiscaling Effect of Maleic-Anhydride Polymer
Authors: Yousef M. Al-Roomi, Kaneez Fatema Hussain
Abstract:
This work evaluates the thermal degradation kinetic parameters of CaSO₄-complex isolated after the inhibition effect of maleic-anhydride based polymer (YMR-polymers). Pyrolysis experiments were carried out at four heating rates (5, 10, 15 and 20°C/min). Several analytical model-free methods were used to determine the kinetic parameters, including Friedman, Coats and Redfern, Kissinger, Flynn-Wall-Ozawa and Kissinger-Akahira–Sunose methods. The Criado model fitting method based on real mechanism followed in thermal degradation of the complex has been applied to explain the degradation mechanism of CaSO₄-complex. In addition, a simple dynamic model was proposed over two temperature ranges for successive decomposition of CaSO₄-complex which has a combination of organic and inorganic part (adsorbed polymer + CaSO₄.2H₂O scale). The model developed enabled the assessment of pre-exponential factor (A) and apparent activation-energy (Eₐ) for both stages independently using a mathematical developed expression based on an integral solution. The unique reaction mechanism approach applied in this study showed that (Eₐ₁-160.5 kJ/mole) for organic decomposition (adsorbed polymer stage-I) has been lower than Eₐ₂-388 kJ/mole for the CaSO₄ decomposition (inorganic stage-II). Further adsorbed YMR-antiscalant not only reduced the decomposition temperature of CaSO₄-complex compared to CaSO₄-blank (CaSO₄.2H₂O scales in the absence of YMR-polymer) but also distorted the crystal lattice of the organic complex of CaSO₄ precipitates, destroying their compact and regular crystal structures observed from XRD and SEM studies.Keywords: CaSO₄-complex, maleic-anhydride polymers, thermal degradation kinetics and mechanism, XRD and SEM studies
Procedia PDF Downloads 1192290 Sulfamethoxazole Degradation by Conventional Fenton and Microwave-Assisted Fenton Reaction
Authors: Derradji Chebli, Abdallah Bouguettoucha, Zoubir Manaa, Amrane Abdeltif
Abstract:
Pharmaceutical products, such as sulfamethoxazole (SMX) are rejected in the environment at trace level by human and animals (ng/L to mg/L), in their original form or as byproducts. Antibiotics are toxic contaminants for the aquatic environment, owing to their adverse effects on the aquatic life and humans. Even at low concentrations, they can negatively impact biological water treatment leading to the proliferation of antibiotics-resistant pathogens. It is therefore of major importance to develop efficient methods to limit their presence in the aquatic environment. In this aim, advanced oxidation processes (AOP) appear relevant compared to other methods, since they are based on the production of highly reactive free radicals, and especially ●OH. The objective of this work was to evaluate the degradation of SMX by microwave-assisted Fenton reaction (MW/Fe/H2O2). Hydrogen peroxide and ferrous ions concentrations, as well as the microwave power were optimized. The results showed that the SMX degradation by MW/Fe/H2O2 followed a pseudo-first order kinetic. The treatment of 20 mg/L initial SMX by the Fenton reaction in the presence of microwave showed the positive impact of this latter owing to the higher degradation yields observed in a reduced reaction time if compared to the conventional Fenton reaction, less than 5 min for a total degradation. In addition, increasing microwave power increased the degradation kinetics. Irrespective of the application of microwave, the optimal pH for the Fenton reaction remained 3. Examination of the impact of the ionic strength showed that carbonate and sulfate anions increased the rate of SMX degradation.Keywords: antibiotic, degradation, elimination, fenton, microwave, polluant
Procedia PDF Downloads 3992289 Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/Graphene Nanocomposite
Authors: Bekan Bogale, Tsegaye Girma Asere, Tilahun Yai, Fekadu Melak
Abstract:
Aims: To study photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This, in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been combined with cuprous oxides, resulting in cuprous oxide/graphene nanocomposite as a promising photocatalyst. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of methylene blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using the facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticles (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of photocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as high-performance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye.Keywords: methylene blue, photocatalysis, cuprous oxide, graphene nanocomposite
Procedia PDF Downloads 1892288 Degradation Kinetics of Cardiovascular Implants Employing Full Blood and Extra-Corporeal Circulation Principles: Mimicking the Human Circulation In vitro
Authors: Sara R. Knigge, Sugat R. Tuladhar, Hans-Klaus HöFfler, Tobias Schilling, Tim Kaufeld, Axel Haverich
Abstract:
Tissue engineered (TE) heart valves based on degradable electrospun fiber scaffold represent a promising approach to overcome the known limitations of mechanical or biological prostheses. But the mechanical stress in the high-pressure system of the human circulation is a severe challenge for the delicate materials. Hence, the prediction of the scaffolds` in vivo degradation kinetics must be as accurate as possible to prevent fatal events in future animal or even clinical trials. Therefore, this study investigates whether long-term testing in full blood provides more meaningful results regarding the degradation behavior than conventional tests in simulated body fluids (SBF) or Phosphate Buffered Saline (PBS). Fiber mats were produced from a polycaprolactone (PCL)/tetrafluoroethylene solution by electrospinning. The morphology of the fiber mats was characterized via scanning electron microscopy (SEM). A maximum physiological degradation environment utilizing a test set-up with porcine full blood was established. The set-up consists of a reaction vessel, an oxygenator unit, and a roller pump. The blood parameters (pO2, pCO2, temperature, and pH) were monitored with an online test system. All tests were also carried out in the test circuit with SBF and PBS to compare conventional degradation media with the novel full blood setting. The polymer's degradation is quantified by SEM picture analysis, differential scanning calorimetry (DSC), and Raman spectroscopy. Tensile and cyclic loading tests were performed to evaluate the mechanical integrity of the scaffold. Preliminary results indicate that PCL degraded slower in full blood than in SBF and PBS. The uptake of water is more pronounced in the full blood group. Also, PCL preserved its mechanical integrity longer when degraded in full blood. Protein absorption increased during the degradation process. Red blood cells, platelets, and their aggregates adhered on the PCL. Presumably, the degradation led to a more hydrophilic polymeric surface which promoted the protein adsorption and the blood cell adhesion. Testing degradable implants in full blood allows for developing more reliable scaffold materials in the future. Material tests in small and large animal trials thereby can be focused on testing candidates that have proven to function well in an in-vivo-like setting.Keywords: Electrospun scaffold, full blood degradation test, long-term polymer degradation, tissue engineered aortic heart valve
Procedia PDF Downloads 1502287 Adsorption: A Decision Maker in the Photocatalytic Degradation of Phenol on Co-Catalysts Doped TiO₂
Authors: Dileep Maarisetty, Janaki Komandur, Saroj S. Baral
Abstract:
In the current work, photocatalytic degradation of phenol was carried both in UV and visible light to find the slowest step that is limiting the rate of photo-degradation process. Characterization such as XRD, SEM, FT-IR, TEM, XPS, UV-DRS, PL, BET, UPS, ESR and zeta potential experiments were conducted to assess the credibility of catalysts in boosting the photocatalytic activity. To explore the synergy, TiO₂ was doped with graphene and alumina. The orbital hybridization with alumina doping (mediated by graphene) resulted in higher electron transfer from the conduction band of TiO₂ to alumina surface where oxygen reduction reactions (ORR) occur. Besides, the doping of alumina and graphene introduced defects into Ti lattice and helped in improving the adsorptive properties of modified photo-catalyst. Results showed that these defects promoted the oxygen reduction reactions (ORR) on the catalyst’s surface. ORR activity aims at producing reactive oxygen species (ROS). These ROS species oxidizes the phenol molecules which is adsorbed on the surface of photo-catalysts, thereby driving the photocatalytic reactions. Since mass transfer is considered as rate limiting step, various mathematical models were applied to the experimental data to probe the best fit. By varying the parameters, it was found that intra-particle diffusion was the slowest step in the degradation process. Lagergren model gave the best R² values indicating the nature of rate kinetics. Similarly, different adsorption isotherms were employed and realized that Langmuir isotherm suits the best with tremendous increase in uptake capacity (mg/g) of TiO₂-rGO-Al₂O₃ as compared undoped TiO₂. This further assisted in higher adsorption of phenol molecules. The results obtained from experimental, kinetic modelling and adsorption isotherms; it is concluded that apart from changes in surface, optoelectronic and morphological properties that enhanced the photocatalytic activity, the intra-particle diffusion within the catalyst’s pores serve as rate-limiting step in deciding the fate of photo-catalytic degradation of phenol.Keywords: ORR, phenol degradation, photo-catalyst, rate kinetics
Procedia PDF Downloads 1442286 Pyrolysis of Dursunbey Lignite and Pyrolysis Kinetics
Abstract:
In this study, pyrolysis characteristics of Dursunbey-Balıkesir lignite and its pyrolysis kinetics are examined. The pyrolysis experiments carried out at three different heating rates are performed by using thermogravimetric method. Kinetic parameters are calculated by Coats & Redfern kinetic model and the degree of pyrolysis process is determined for each of the heating rate.Keywords: lignite, thermogravimetric analysis, pyrolysis, kinetics
Procedia PDF Downloads 3672285 Modeling Approach to Better Control Fouling in a Submerged Membrane Bioreactor for Wastewater Treatment: Development of Analytical Expressions in Steady-State Using ASM1
Authors: Benaliouche Hana, Abdessemed Djamal, Meniai Abdessalem, Lesage Geoffroy, Heran Marc
Abstract:
This paper presents a dynamic mathematical model of activated sludge which is able to predict the formation and degradation kinetics of SMP (Soluble microbial products) in membrane bioreactor systems. The model is based on a calibrated version of ASM1 with the theory of production and degradation of SMP. The model was calibrated on the experimental data from MBR (Mathematical modeling Membrane bioreactor) pilot plant. Analytical expressions have been developed, describing the concentrations of the main state variables present in the sludge matrix, with the inclusion of only six additional linear differential equations. The objective is to present a new dynamic mathematical model of activated sludge capable of predicting the formation and degradation kinetics of SMP (UAP and BAP) from the submerged membrane bioreactor (BRMI), operating at low organic load (C / N = 3.5), for two sludge retention times (SRT) fixed at 40 days and 60 days, to study their impact on membrane fouling, The modeling study was carried out under the steady-state condition. Analytical expressions were then validated by comparing their results with those obtained by simulations using GPS-X-Hydromantis software. These equations made it possible, by means of modeling approaches (ASM1), to identify the operating and kinetic parameters and help to predict membrane fouling.Keywords: Activated Sludge Model No. 1 (ASM1), mathematical modeling membrane bioreactor, soluble microbial products, UAP, BAP, Modeling SMP, MBR, heterotrophic biomass
Procedia PDF Downloads 2962284 Thermal Technologies Applications for Soil Remediation
Authors: A. de Folly d’Auris, R. Bagatin, P. Filtri
Abstract:
This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.Keywords: desorption kinetics, hydrocarbons, thermal desorption, thermogravimetric measurements
Procedia PDF Downloads 2952283 Effect of Two Cooking Methods on Kinetics of Polyphenol Content, Flavonoid Content and Color of a Tunisian Meal: Molokheiya (Corchorus olitorius)
Authors: S. Njoumi, L. Ben Haj Said, M. J. Amiot, S. Bellagha
Abstract:
The main objective of this research was to establish the kinetics of variation of total polyphenol content (TPC) and total flavonoid content (TFC) in Tunisian Corchorus olitorius powder and in a traditional home cooked-meal (Molokheiya) when using stewing and stir-frying as cooking methods, but also to compare the effect of these two common cooking practices on water content, TPC, TFC and color. The L*, a* and b* coordinates values of the Molokheiya varied from 24.955±0.039 to 21.301±0.036, from -1.556±0.048 to 0.23±0.026 and from 5.675±0.052 to 6.313±0.103 when using stewing and from 21.328±0.025 to 20.56±0.021, from -1.093± 0.011to 0.121±0.007 and from 5.708±0.020 to 6.263±0.007 when using stir-frying, respectively. TPC and TFC increased during cooking. TPC of Molokheiya varied from 29.852±0.866 mg GAE/100 g to 220.416±0.519 mg GAE/100 g after 150 min of stewing and from 25.257±0.259 mg GAE/100 g to 208.897 ±0.173 mg GAE/100 g using stir-frying method during 150 min. TFC of Molokheiya varied from 48.229±1.47 mg QE/100 g to 843.802±1.841 mg QE/100 g when using stewing and from 37.031± 0.368 mg QE/100 g to 775.312±0.736 mg QE/100 g when using stir-frying. Kinetics followed similar curves in all cases but resulted in different final TPC and TFC. The shape of the kinetics curves suggests zero-order kinetics. The mathematical relations and the numerical approach used to model the kinetics of polyphenol and flavonoid contents in Molokheiya are described.Keywords: Corchorus olitorius, Molokheiya, phenolic compounds, kinetic
Procedia PDF Downloads 3552282 Investigation of Operational Conditions for Treatment of Industrial Wastewater Contaminated with Pesticides Using Electro-Fenton Process
Authors: Mohamed Gar Alalm
Abstract:
This study aims to investigate various operating conditions that affect the performance of the electro-Fenton process for degradation of pesticides. Stainless steel electrodes were utilized in the electro-Fenton cell due to their relatively low cost. The favored conditions of current intensity, pH, iron loading, and pesticide concentration were deeply discussed. Complete removal of pesticide was attained at the optimum conditions. The degradation kinetics were described by pseudo- first-order pattern. In addition, a response surface model was developed to describe the performance of electro-Fenton process under different operational conditions. The model indicated that the coefficient of determination was (R² = 0.995).Keywords: electro-Fenton, stainless steel, pesticide, wastewater
Procedia PDF Downloads 1412281 Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor
Authors: Jatinder Kumar, Ajay Bansal
Abstract:
Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems.Keywords: simulation, computational fluid dynamics (CFD), annular photocatalytic reactor, titanium dioxide
Procedia PDF Downloads 5852280 Determination of in Situ Degradation Kinetics of Some Legumes Waste Unused for Human Consumption
Authors: Şevket Evci, Mehmet Akif Karsli
Abstract:
The aim of this study is to determine nutrient contents, in situ ruminal degradation kinetics and protein fractions of screenings bean (B), chick pea (ChP), red lentil (RL) and green lentil (GL) that is used as residue in grain legume packing industry. For this purpose, four samples of each legumes species-a total of 16 samples, collected from different parts of our country were utilized. Feedstuffs used in the experiment were incubated for 0, 2 4, 8, 12, 24, and 48 hours in the rumen of 3 ruminally cannulated Akkaraman rams as duplicate. The nutrient contents, in situ ruminal dry matter (DM), organic matter (OM) and crude protein (CP) degradabilities and fractions, and escape protein contents were evaluated. The highest OM and CP contents were observed in RL (P<0.05). Chick pea had the highest ether extract (EE) content and EE values were 3.47, 6.72, 2.26, 8.66 % for RL, B, GL and ChP, respectively (P<0.05). Crude fiber (CF), ADF, and NDF contents were the highest in RL and the lowest in ChP. CF values were 24.03, 10.80, 4.09 and 3.57 % for RL, GL, B and ChP (P<0.05). Acid detergent insoluble nitrogen content of samples did not differ. Escape protein content was the highest in RL and the lowest in B (P<0.05). After 48 h incubation, the lowest OM and CP degradabilities were observed in RL. While the highest OM degradability was seen in ChP the highest CP degradability was observed in B (P<0.05). The lowest water soluble OM and CP contents were observed in RL whereas the highest potentially degradable OM and CP contents were seen in B and ChP (P<0.05). Both rate of OM and CP degradations (k-1) did not differ among samples (P>0.05). In conclusion, it was noted that feedstuffs (GL, ChP and B) used in the experiment except RL had a greater ruminal degradibilities of both OM and CP and moreover, had a higher escape protein contents, except B. It was thought that these feedstuffs can be substituted with some of common protein sources used in animal nutrition.Keywords: in situ, nutrient contents, ruminant, subsieve
Procedia PDF Downloads 4812279 Studies on Non-Isothermal Crystallization Kinetics of PP/SEBS-g-MA Blends
Authors: Rishi Sharma, S. N. Maiti
Abstract:
The non-isothermal crystallization kinetics of PP/SEBS-g-MA blends up to 0-50% concentration of copolymer was studied by differential scanning calorimetry at four different cooling rates. Crystallization parameters were analyzed by Avrami and Jeziorny models. Primary and secondary crystallization processes were described by Avrami equation. Avrami model showed that all types of shapes grow from small dimensions during primary crystallization. However, three-dimensional crystal growth was observed during the secondary crystallization process. The crystallization peak and onset temperature decrease, howeverKeywords: crystallization kinetics, non-isothermal, polypropylene, SEBS-g-MA
Procedia PDF Downloads 622