Search results for: aqueous chemical growth (ACG)
11196 Control of Fungal Growth in Sweet Orange and Mango Juices by Justica flava and Afromomum melegueta Extracts
Authors: Adferotimi Banso
Abstract:
A laboratory investigation was conducted to determine the effect of Justica flava and Aframonium melegueta on the growth of Aspergillus niger, Rhizopus stolonifer and Fusarium species in sweet orange and mango juices. Aqueous extract (3%v/v) of Justica flava and Aframonium melegueta reduced the growth of the fungi, a combination of 2% (v/v) each of Justica flava and Aframonium melegueta extracts reduced the growth better. Partial purification of aqueous extracts of Justica flava and Aframonium melegueta showed that ethyl acetate fraction of the extracts exhibited the highest level of inhibition of growth of the test fungi compared with diethyl ether and n-hexane fractions. The results suggest that extracts of Justica flava and Aframonium melegueta may be important substitutes for conventional chemical preservatives in the processing of fruit juices.Keywords: aqueous, fraction, mango, orange, purification, sweet
Procedia PDF Downloads 35011195 Thermodynamics of Water Condensation on an Aqueous Organic-Coated Aerosol Aging via Chemical Mechanism
Authors: Yuri S. Djikaev
Abstract:
A large subset of aqueous aerosols can be initially (immediately upon formation) coated with various organic amphiphilic compounds whereof the hydrophilic moieties are attached to the aqueous aerosol core while the hydrophobic moieties are exposed to the air thus forming a hydrophobic coating thereupon. We study the thermodynamics of water condensation on such an aerosol whereof the hydrophobic organic coating is being concomitantly processed by chemical reactions with atmospheric reactive species. Such processing (chemical aging) enables the initially inert aerosol to serve as a nucleating center for water condensation. The most probable pathway of such aging involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic moieties of surface organics (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on an organic-coated aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous cloud droplets on such aerosols is most likely to occur via Kohler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for their Kohler activation. Numerical results also corroborate previous suggestions that one can neglect some details of aerosol chemical composition in investigating aerosol effects on climate.Keywords: aqueous aerosols, organic coating, chemical aging, cloud condensation nuclei, Kohler activation, cloud droplets
Procedia PDF Downloads 39411194 Hair Regrowth Effect of Herbal Formula on Androgenic Alopecia Rat Model
Authors: Jian-You Wang, Feng Yi Hsu, Chieh-Hsi Wu
Abstract:
Androgenetic alopecia (AGA) is an androgen-dependent disorder caused by excess testosterone in blood capillaries or excess enzyme activity of 5α- reductase in hair follicles. Plants, alone or in combination, have been widely used for hair growth promotion since ancient times in Asia. In this study, the efficacy of a traditional Chinese herbal formula, Shen-Ying-Yang-Zhen-Dan (SYYZD) with different kinds of extract solvents, facilitating hair regrowth in testosterone-induced hair loss have been determined. The study was performed by treating with either 95 % ethanol aqueous extracts, 50% ethanol aqueous extracts or deionized water extracts orally in four-week-old male S.D. rats that experienced hair regrowth interruption induced by testosterone treatment. The 50% ethanol aqueous extracts group showed better hair regrowth promotion activities than either 95% ethanol aqueous extracts or deionized water extracts groups in 14 days treatment. In conclusion, our results suggest that 50% ethanol aqueous SYYZD extracts have hair growth promoting potential and may be beneficial as an alternative medicine for androgenetic alopecia treatment.Keywords: Shen-Ying-Yang-Zhen-Dan, androgenic alopecia, hair loss, hair growth promotion, hair regrowth effect
Procedia PDF Downloads 77711193 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application
Authors: Meera A. Albloushi, Adel B. Gougam
Abstract:
The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery
Procedia PDF Downloads 32211192 The Use of Polar Substituent Groups for Promoting Azo Disperse Dye Solubility and Reactivity for More Economic and Environmental Benign Applications: A Computational Study
Authors: Olaide O. Wahab, Lukman O. Olasunkanmi, Krishna K. Govender, Penny P. Govender
Abstract:
The economic and environmental challenges associated with azo disperse dyes applications are due to poor aqueous solubility and low degradation tendency which stems from low chemical reactivity. Poor aqueous solubility property of this group of dyes necessitates the use of dispersing agents which increase operational costs and also release toxic chemical components into the environment, while their low degradation tendency is due to the high stability of the azo functional group (-N=N-) in their chemical structures. To address these problems, this study investigated theoretically the effects of some polar substituents on the aqueous solubility and reactivity properties of disperse yellow (DY) 119 dye with a view to theoretically develop new azo disperse dyes with improved solubility in water and higher degradation tendency in the environment using DMol³ computational code. All calculations were carried out using the Becke and Perdew version of Volsko-Wilk-Nusair (VWN-BP) level of density functional theory in conjunction with double numerical basis set containing polarization function (DNP). The aqueous solubility determination was achieved with conductor-like screening model for realistic solvation (COSMO-RS) in conjunction with known empirical solubility model, while the reactivity was predicted using frontier molecular orbital calculations. Most of the new derivatives studied showed evidence of higher aqueous solubility and degradation tendency compared to the parent dye. We conclude that these derivatives are promising alternative dyes for more economic and environmental benign dyeing practice and therefore recommend them for synthesis.Keywords: aqueous solubility, azo disperse dye, degradation, disperse yellow 119, DMol³, reactivity
Procedia PDF Downloads 20411191 Application of Synthetic Monomers Grafted Xanthan Gum for Rhodamine B Removal in Aqueous Solution
Authors: T. Moremedi, L. Katata-Seru, S. Sardar, A. Bandyopadhyay, E. Makhado, M. Joseph Hato
Abstract:
The rapid industrialisation and population growth have led to a steady fall in freshwater supplies worldwide. As a result, water systems are affected by modern methods upon use due to secondary contamination. The application of novel adsorbents derived from natural polymer holds a great promise in addressing challenges in water treatment. In this study, the UV irradiation technique was used to prepare acrylamide (AAm) monomer, and acrylic acid (AA) monomer grafted xanthan gum (XG) copolymer. Furthermore, the factors affecting rhodamine B (RhB) adsorption from aqueous media, such as pH, dosage, concentration, and time were also investigated. The FTIR results confirmed the formation of graft copolymer by the strong vibrational bands at 1709 cm-1 and 1612 cm-1 for AA and AAm, respectively. Additionally, more irregular, porous and wrinkled surface observed from SEM of XG-g-AAm/AA indicated copolymerization interaction of monomers. The optimum conditions for removing RhB dye with a maximum adsorption capacity of 313 mg/g at 25 0C from aqueous solution were pH approximately 5, initial dye concentration = 200 ppm, adsorbent dose = 30 mg. Also, the detailed investigation of the isothermal and adsorption kinetics of RhB from aqueous solution showed that the adsorption of the dye followed a Freundlich model (R2 = 0.96333) and pseudo-second-order kinetics. The results further indicated that this absorbent based on XG had the universality to remove dye through the mechanism of chemical adsorption. The outstanding adsorption potential of the grafted copolymer could be used to remove cationic dyes from aqueous solution as a low-cost product.Keywords: xanthan gum, adsorbents, rhodamine B, Freundlich
Procedia PDF Downloads 12711190 Prevention of Biocompounds and Amino Acid Losses in Vernonia amygdalina duringPost Harvest Treatment Using Hot Oil-Aqueous Mixture
Authors: Nneka Nkechi Uchegbu, Temitope Omolayo Fasuan
Abstract:
This study investigated how to reduce bio-compounds and amino acids in V. amygdalina leaf during processing as a functional food ingredient. Fresh V. amygdalina leaf was processed using thermal oil-aqueous mixtures (soybean oil: aqueous and palm oil: aqueous) at 1:40 and 130 (v/v), respectively. Results indicated that the hot soybean oil-aqueous mixture was the most effective in preserving the bio-compounds and amino acids with retention potentials of 80.95% of the bio-compounds at the rate of 90-100%. Hot palm oil-aqueous mixture retained 61.90% of the bio-compounds at the rate of 90-100% and hot aqueous retained 9.52% of the bio-compounds at the same rate. During the debittering process, seven new bio-compounds were formed in the leaves treated with hot soybean oil-aqueous mixture, six in palm oil-aqueous mixture, and only four in hot aqueous leaves. The bio-compounds in the treated leaves have potential functions as antitumor, antioxidants, antihistaminic, anti-ovarian cancer, anti-inflammatory, antiarthritic, hepatoprotective, antihistaminic, haemolytic 5-α reductase inhibitor, nt, immune-stimulant, diuretic, antiandrogenic, and anaemiagenic. Alkaloids and polyphenols were retained at the rate of 81.34-98.50% using oil: aqueous mixture while aqueous recorded the rate of 33.47-41.46%. Most of the essential amino acids were retained at a rate above 90% through the aid of oil. The process is scalable and could be employed for domestic and industrial applications.Keywords: V. amygdalina leaf, bio-compounds, oil-aqueous mixture, amino acids
Procedia PDF Downloads 14611189 Effect of Sodium Chloride in the Recovery of Acetic Acid from Aqueous Solutions
Authors: Aidaoui Ahleme, Hasseine Abdelmalek
Abstract:
Acetic acid is one of the simplest and most widely used carboxylic acids having many important chemical and industrial applications. Total worldwide production of acetic acid is about 6.5 million tonnes per year. A great deal of efforts has been made in developing feasible and economic method for recovery of carboxylic acids. Among them, Liquid-liquid extraction using aqueous two-phase systems (ATPS) has been demonstrated to be a highly efficient separation technique. The study of efficiently separating and recovering Acetic acid from aqueous solutions is an important significance on industry and environmentally sustainable development. Many research groups in different countries are working in this field and some methods are proposed in the literature. In this work, effect of sodium chloride with different content (5%, 10% and 20%) on the liquid-liquid equilibrium data of (water+ acetic acid+ DCM) system is investigated. The addition of the salt in an aqueous solution introduces ionic forces which affect liquid-liquid equilibrium and which influence directly the distribution coefficient of the solute. From the experimental results, it can be concluded that when the percentage of salt increases in the aqueous solution, the equilibrium between phases is modified in favor of the extracted phase.Keywords: acetic acid recovery, aqueous solution, salting-effect, sodium chloride
Procedia PDF Downloads 27011188 Synthesis of Microporous Interconnected Polymeric Foam of Poly (Glycidyl Methacrylate-Co-Divinylbenzene-Co-Butyl Acrylate) by Using Aqueous Foam as a Template
Authors: A. A. Gadgeel, S. T. Mhaske
Abstract:
Hexadecyltrimethylammonium bromide (HTAB) modified nano silica were used as pore stabilizer for the preparation of interconnected macroporous copolymer foam of glycidyl methacrylate (GMA), divinylbenzene (DVB) and tert-butyl acrylate (BA). The polymerization of air infused aqueous foam is carried out through free radical thermal initiator. The porosity of the polymerized foam depends on the concentration of HTAB used to control the hydrophobic and hydrophilic behavior of silica nanoparticle. Modified silica particle results to form closed cell foam with 74% of porosity for 60% of air infusion during aqueous foaming. The preliminary structure of microfoam was observed through optical microscopy, whereas for a better understanding of morphology SEM was used. The proposed route is an eco-friendly route for synthesizing polymeric microporous polymer as compared to other chemical and additive-based routes available.Keywords: air-infused, interconnected microporous, porosity, aqueous foam
Procedia PDF Downloads 12011187 Evaluation of the Effects of Some Medicinal Plants Extracts on Seed
Authors: Areej Ali Baeshen, Hanaa Kamal Galal, Batoul Mohamed Abdullatif
Abstract:
In the present study, the allelopathic effects of Eruca sativa, Mentha peprinta, and Coriandrum sativum aqueous extracts, prepared by 25 gm and 50 gm of fresh leaves dissolved in 100 ml of double distilled water in addition to the crude extract (100%). The final concentrations were 100 %, 50%, 25% and 0% as control. The extracts were tested for their allelopathic effects on seed germination and other growth parameters of Phaseolous vulgaris. Laboratory experiments were conducted in sterilizes Petri dishes with 5 and 10 day time interval for seed germination and 24 h, 48 h and 72 h for radicle length on an average of 25°C. The effects of different concentrations of aqueous extract were compared to distilled water (0%). 25% and 50% aqueous extracts of Eruca sativa and Coriandrum sativum caused a pronounced inhibitory effect on seed germination and the tested growth parameters of the receptor plant. The inhibitory effect was proportional to the concentration of the extract. Mentha peprinta extracts, on the other hand, caused an increase in germination percentage and other growth parameters in Phaseolous vulgaris. Hence, it could be concluded that the aqueous extracts of Eruca sativa and Coriandrum sativum might contain water-soluble allelochemicals, which could inhibit the seed germination and reduce radicle length of Phaseolous vulgaris. Mentha peprinta has beneficial allelopathic effects on the receptor plant.Keywords: Phaseolus vulgaris, Eruca sativa, Mentha peperinta, Coriandrum sativum, medicinal plants, seed germination
Procedia PDF Downloads 40611186 Study of the Adsorption of Metal Ions Ag+ Mg2+, Ni2+ by the Chemical and Electrochemical Polydibenzoether Crown
Authors: Dalila Chouder, Djaafer Benachour
Abstract:
This work concerns the study of the adsorption of metal ions Ag +, Mg +, and Ni2+ in aqueous medium by polydibenzoether-ROWN based on three factors: Temperature, time and concentration. The polydibenzoether crown was synthesized by two means: Chemical and electrochemical. The behavior of the two polymers has been different, and turns out very interesting for chemical polydibenzoether crown has identified conditions. Chemical and électronique polydibenzoether crown have different extraction screw vi property of adsoption of ions fifférents, this study also shows that plyméres doped may have an advantageous electrical conductivity.Keywords: polymerization, electrochemical, conductivity, complexing metal ions
Procedia PDF Downloads 26411185 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms
Authors: Pavlo Selyshchev, Samuel Akintunde
Abstract:
A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics
Procedia PDF Downloads 57011184 An Investigation on the Removal of Synthetic Dyes from Aqueous Solution by a Functional Polymer
Authors: Ali Kara, Asim Olgun, Sevgi Sozugecer, Sahin Ozel, Kubra Nur Yildiz, P. Sevinç, Abdurrahman Kuresh, Guliz Turhan, Duygu Gulgun
Abstract:
The synthetic dyes, one of the most hazardous chemical compound classes, are important potential water pollutions since their presence in water bodies reduces light penetration, precluding the photosynthesis of aqueous flora and causing various diseases. Some the synthetic dyes are highly toxic and/or carcinogenic, and their biodegradation can produce even more toxic aromatic amines. The adsorption procedure is one of the most effective means of removing synthetic dye pollutants, and has been described in a number of previous studies by using the functional polymers. In this study, we investigated the removal of synthetic dyes from aqueous solution by using a functional polymer as an adsorbent material. The effect of initial solution concentration, pH, and contact time on the adsorption capacity of the adsorbent were studied in details. The results showed that functional polymer has a potential to be used as cost-effective and efficient adsorbent for the treatment of aqueous solutions from textile industries.Keywords: functional polymers, synhetic dyes, adsorption, physicochemical parameters
Procedia PDF Downloads 18211183 Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production
Authors: Reda Abdel-Aziz
Abstract:
Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment.Keywords: agricultural waste, compost, chemical fertilizers, corn production, environment
Procedia PDF Downloads 31811182 Surface Integration Effect on Mechanical and Piezoelectric Properties of ZnO
Authors: A. Khan, M. Hussain, S. Afgun
Abstract:
In the present work, the effect of the surface integration on the piezoelectric properties of zinc oxide (ZnO) nanorods has been investigated. ZnO nanorods were grown by using aqueous chemical growth method on two samples of graphene coated pet plastic substrate. First substrate’s surface was integrated with ZnO nanoparticles while the other substrate was used without ZnO nanoparticles. Various important parameters were analyzed, the growth density and morphological analysis were taken into account through surface scanning electron microscopy; it was observed that the growth density of nanorods on the integrated surface was much higher than the nonintegrated substrate. The crystal quality of growth orientation was analyzed by X-ray diffraction technique. Mechanical stability of ZnO nanorods on an integrated substrate was more appropriate than the nonintegrated substrate. The generated amount of piezoelectric potential from the integrated substrate was two times higher than the nonintegrated substrate. This shows that the layer of nanoparticles plays a crucial role in the enhancement of piezoelectric potential. Besides this, it also improves the performance of fabricated devices like its mechanical stability and piezoelectric properties. Additionally, the obtained results were compared with the other two samples used for the growth of ZnO nanorods on silver coated glass substrates for similar measurement. The consistency of the results verified the importance of surface integration effect. This study will help us to fabricate improved performance devices by using surface integrated substrates.Keywords: ZnO nanorods, surface integration, mechanical properties, harvesting piezoelectricity
Procedia PDF Downloads 13211181 Facile, Cost Effective and Green Synthesis of Graphene in Alkaline Aqueous Solution
Authors: Illyas Isa, Siti Nur Akmar Mohd Yazid, Norhayati Hashim
Abstract:
We report a simple, green and cost effective synthesis of graphene via chemical reduction of graphene oxide in alkaline aqueous solution. Extensive characterizations have been studied to confirm the formation of graphene in sodium carbonate solution. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. Based on the result, with the addition of graphene to the glassy carbon electrode the current flow increases and the peak also broadens as compared to graphite and graphene oxide. This method is fast, cost effective, and green as nontoxic solvents are used which will not result in contamination of the products. Thus, this method can serve for the preparation of graphene which can be effectively used in sensors, electronic devices and supercapacitors.Keywords: chemical reduction, electrochemical, graphene, green synthesis
Procedia PDF Downloads 33711180 Single-Walled Carbon Nanotube Synthesis by Chemical Vapor Deposition Using Platinum-Group Metal Catalysts
Authors: T. Maruyama, T. Saida, S. Naritsuka, S. Iijima
Abstract:
Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (>2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 °C and 600 °C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 °C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth.Keywords: carbon nanotube, chemical vapor deposition, catalyst, platinum, rhodium, palladium
Procedia PDF Downloads 34711179 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils
Authors: Alim Asamatdinov
Abstract:
Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.Keywords: hydrogel, chemical, polymer, sandy, colloid
Procedia PDF Downloads 14311178 Molecular Modeling and Prediction of the Physicochemical Properties of Polyols in Aqueous Solution
Authors: Maria Fontenele, Claude-Gilles Dussap, Vincent Dumouilla, Baptiste Boit
Abstract:
Roquette Frères is a producer of plant-based ingredients that employs many processes to extract relevant molecules and often transforms them through chemical and physical processes to create desired ingredients with specific functionalities. In this context, Roquette encounters numerous multi-component complex systems in their processes, including fibers, proteins, and carbohydrates, in an aqueous environment. To develop, control, and optimize both new and old processes, Roquette aims to develop new in silico tools. Currently, Roquette uses process modelling tools which include specific thermodynamic models and is willing to develop computational methodologies such as molecular dynamics simulations to gain insights into the complex interactions in such complex media, and especially hydrogen bonding interactions. The issue at hand concerns aqueous mixtures of polyols with high dry matter content. The polyols mannitol and sorbitol molecules are diastereoisomers that have nearly identical chemical structures but very different physicochemical properties: for example, the solubility of sorbitol in water is 2.5 kg/kg of water, while mannitol has a solubility of 0.25 kg/kg of water at 25°C. Therefore, predicting liquid-solid equilibrium properties in this case requires sophisticated solution models that cannot be based solely on chemical group contributions, knowing that for mannitol and sorbitol, the chemical constitutive groups are the same. Recognizing the significance of solvation phenomena in polyols, the GePEB (Chemical Engineering, Applied Thermodynamics, and Biosystems) team at Institut Pascal has developed the COSMO-UCA model, which has the structural advantage of using quantum mechanics tools to predict formation and phase equilibrium properties. In this work, we use molecular dynamics simulations to elucidate the behavior of polyols in aqueous solution. Specifically, we employ simulations to compute essential metrics such as radial distribution functions and hydrogen bond autocorrelation functions. Our findings illuminate a fundamental contrast: sorbitol and mannitol exhibit disparate hydrogen bond lifetimes within aqueous environments. This observation serves as a cornerstone in elucidating the divergent physicochemical properties inherent to each compound, shedding light on the nuanced interplay between their molecular structures and water interactions. We also present a methodology to predict the physicochemical properties of complex solutions, taking as sole input the three-dimensional structure of the molecules in the medium. Finally, by developing knowledge models, we represent some physicochemical properties of aqueous solutions of sorbitol and mannitol.Keywords: COSMO models, hydrogen bond, molecular dynamics, thermodynamics
Procedia PDF Downloads 4211177 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles
Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban
Abstract:
In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272
Procedia PDF Downloads 33811176 Biocontrol of Fusarium Crown and Root Rot and Enhancement of Tomato Solanum lycopersicum L. Growth Using Solanum linnaeanum L. Extracts
Authors: Ahlem Nefzi, Rania Aydi Ben Abdallah, Hayfa Jabnoun-Khiareddine, Nawaim Ammar, Sined Medimagh-Saidana, Mejda Daami-Remadi
Abstract:
In the present study, leaf, stem, and fruit aqueous extracts of native wild Solanum linnaeanum L. were screened for their ability to suppress Fusarium Crown and Root Rot disease and to enhance tomato (Solanum lycopersicum L.) growth under greenhouse conditions. Leaf extract used at 30% w/v was the most effective in reducing leaf and root damage index by 92.3% and the extent of vascular discoloration by 97.56% compared to Fusarium oxyxporum f. sp radicis lycopersici -inoculated and untreated control. A significant promotion of growth parameters (root length, shoot height, root and shoot biomass and stem diameter) was recorded on tomato cv. Rio Grande seedlings by 40.3-94.1% as compared to FORL inoculated control and by 9.6-88.8% over pathogen-free control. All S. linnaeanum aqueous extracts tested significantly stimulated the germination by 10.2 to 80.1% relative to the untreated control. FORL mycelial growth, assessed using the poisoned food technique, varied depending on plant organs, extracts, and concentrations used. Butanolic extracts were the most active, leading to 60.81% decrease in FORL mycelial growth. HPLC analysis of butanolic extract revealed the presence of thirteen phenolic compounds. Thus, S. linnaeanum can be explored as a potential natural source of antifungal and biofertilizing compounds.Keywords: antifungal activity, HPLC-MS analysis, Fusarium oxysporum f. sp. radicis-lycopersici, tomato growth
Procedia PDF Downloads 16011175 Optimization Study of Adsorption of Nickel(II) on Bentonite
Authors: B. Medjahed, M. A. Didi, B. Guezzen
Abstract:
This work concerns with the experimental study of the adsorption of the Ni(II) on bentonite. The effects of various parameters such as contact time, stirring rate, initial concentration of Ni(II), masse of clay, initial pH of aqueous solution and temperature on the adsorption yield, were carried out. The study of the effect of the ionic strength on the yield of adsorption was examined by the identification and the quantification of the present chemical species in the aqueous phase containing the metallic ion Ni(II). The adsorbed species were investigated by a calculation program using CHEAQS V. L20.1 in order to determine the relation between the percentages of the adsorbed species and the adsorption yield. The optimization process was carried out using 23 factorial designs. The individual and combined effects of three process parameters, i.e. initial Ni(II) concentration in aqueous solution (2.10−3 and 5.10−3 mol/L), initial pH of the solution (2 and 6.5), and mass of bentonite (0.03 and 0.3 g) on Ni(II) adsorption, were studied.Keywords: adsorption, bentonite, factorial design, Nickel(II)
Procedia PDF Downloads 15911174 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes
Authors: N. Ouslimani, M. T. Abadlia
Abstract:
Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.Keywords: adsorption, dyes, fiber, valorization, wastewater
Procedia PDF Downloads 28911173 Effect of Chemical Mutagen on Seeds Germination of Lima Bean
Authors: G. Ultanbekova, Zh. Suleimenova, Zh. Rakhmetova, G. Mombekova, S. Mantieva
Abstract:
Plant Growth Promoting Rhizobacteria (PGPR) are a group of free-living bacteria that colonize the rhizosphere, enhance plant growth of many cereals and other important agricultural crops and protect plants from disease and abiotic stresses through a wide variety of mechanisms. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth. In the present study, strain improvement of PGPR isolates were carried out by chemical mutagenesis for the improvement of growth and yield of lima bean. Induced mutagenesis is widely used for the selection of microorganisms producing biologically active substances and further improving their activities. Strain improvement is usually done by classical mutagenesis which involves exposing the microbes to chemical or physical mutagens. The strains of Pseudomonas putida 4/1, Azotobacter chroococcum Р-29 and Bacillus subtilis were subjected to mutation process for strain improvement by treatment with a chemical agent (sodium nitrite) to cause mutation and were observed for its consequent action on the seeds germination and plant growth of lima bean (Phaseolus lunatus). Bacterial mutant strains of Pseudomonas putida M-1, Azotobacter chroococcum M-1 and Bacillus subtilis M-1, treated with sodium nitrite in the concentration of 5 mg/ml for 120 min, were found effective to enhance the germination of lima bean seeds compared to parent strains. Moreover, treatment of the lima bean seeds with a mutant strain of Bacillus subtilis M-1 had a significant stimulation effect on plant growth. The length of the stems and roots of lima bean treated with Bacillus subtilis M-1 increased significantly in comparison with parent strain in 1.6 and 1.3 times, respectively.Keywords: chemical mutagenesis, germination, kidney bean, plant growth promoting rhizobacteria (PGPR)
Procedia PDF Downloads 19811172 Growth Studies and Leaf Mineral Composition of Amaranthus hybridus L. in Soil Medium Supplemended with Palm Bunch Ash Extract from Elaeis Guineensis jacq. in Abak Agricultural Zone of Akwa Ibom State, Nigeria
Authors: Etukudo, M. Mbosowo, Nyananyo, L. Bio, Negbenebor, A. Charles
Abstract:
An aqueous extract of palm bunch ash from Elaeis guineensis Jacq., equilibrated with water was used to assess the growth and minerals composition of Amaranthus hybridus L. in agricultural soil of Abak, Akwa Ibom State, nigeria. Various concentrations, 0 (control), 10, 20, 30, 40, and 50% of palm bunch extract per 4kg of sandy-loam soil were used for the study. Chemical characteristics of the extract, Growth parameters (Plant height, root length, fresh weight, dry weight and moisture content), leaf minerals composition (Nitrogen, phosphorus, potassium, calcium and magnesium) of the crop and soil chemical composition before and after harvest (pH, organic matter, nitrogen, phosphorus, potassium, calcium and magnesium) were examined. The results showed that palm bunch ash extract significantly (P < 0.05) increased the soil pH at all levels of treatments compared to the control. Similarly, the soil and leaf minerals component (N, P, K. Ca, and Mg) of the crop increased with increase in the concentration of palm bunch extract, except at 40 and 50% for leaf minerals composition, Soil organic matter, nitrogen and phosphorus J(before and after harvest). In addition, The plant height, Root length, fresh weight, dry weight and moisture content of the crop increased significantly (P < 0.05) with increase in the concentration of the extract, Except at 30, 40 and 50% where these growth parameters decreased in relation to the control treatment. Therefore, this study suggests that palm bunch ash extract could be utilized at lower concentration as a nutrient supplement for both Amaranthus hubridus L. and soil medium, most especially in the tropical soils of the Niger Delta region of Nigeria.Keywords: Amaranthus hybridus L., growth, leaf minerals composition, palm bunch ash extract
Procedia PDF Downloads 44511171 Biosorption of Fluoride from Aqueous Solutions by Tinospora Cordifolia Leaves
Authors: Srinivasulu Dasaiah, Kalyan Yakkala, Gangadhar Battala, Pavan Kumar Pindi, Ramakrishna Naidu Gurijala
Abstract:
Tinospora cordifolia leaves biomass used for the removal fluoride from aqueous solutions. Batch biosorption technique was applied, pH, contact time, biosorbent dose and initial fluoride concentration was studied. The Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) techniques used to study the surface characteristics and the presence of chemical functional groups on the biosorbent. Biosorption isotherm models and kinetic models were applied to understand the sorption mechanism. Results revealed that pH, contact time, biosorbent dose and initial fluoride concentration played a significant effect on fluoride removal from aqueous solutions. The developed biosorbent derived from Tinospora cordifolia leaves biomass found to be a low-cost biosorbent and could be used for the effective removal of fluoride in synthetic as well as real water samples.Keywords: biosorption, contact time, fluoride, isotherms
Procedia PDF Downloads 17711170 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles
Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi
Abstract:
Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization
Procedia PDF Downloads 39511169 Dielectrophoretic Characterization of Tin Oxide Nanowires for Biotechnology Application
Authors: Ahmad Sabry Mohamad, Kai F. Hoettges, Michael Pycraft Hughes
Abstract:
This study investigates nanowires using Dielectrophoresis (DEP) in non-aqueous suspension of Tin (IV) Oxide (SnO2) nanoparticles dispersed in N,N-dimenthylformamide (DMF). The self assembly of nanowires in DEP impedance spectroscopy can be determined. In this work, dielectrophoretic method was used to measure non-organic molecules for estimating the permittivity and conductivity characteristic of the nanowires. As in aqueous such as salt solution has been dominating the transport of SnO2, which are the wire growth threshold, depend on applied voltage. While DEP assembly of nanowires depend on applied frequency, the applications of dielectrophoretic collection are measured using impedance spectroscopy.Keywords: dielectrophoresis, impedance spectroscopy, nanowires, N, N-dimenthylformamide, SnO2
Procedia PDF Downloads 65911168 Adsorption of Methyl Violet Dye from Aqueous Solution onto Modified Kapok Sawdust : Characteristics and Equilibrium Studies
Authors: Widi Astuti, Triastuti Sulistyaningsih, Masni Maksiola
Abstract:
Kapok sawdust, an inexpensive material, has been utilized as an adsorbent for the removal of methyl violet in aqueous solution. To increase the adsorption capacity, kapok sawdust was reacted with sodium hydroxide (NaOH) solution having various concentrations. Various physico-chemical parameters such as solution pH, contact time and initial dye concentration were studied. Langmuir, Freundlich and Redlich-Peterson isotherm model were used to analyze the equilibrium data. The research shows that the experimental data fitted well with the Redlich-Peterson model, with the value of constants are 41.001 for KR, 0.523 for aR and 0.799 for g.Keywords: kapok sawdust, methyl violet, dye, adsorption
Procedia PDF Downloads 31211167 Removal Cobalt (II) and Copper (II) by Solvent Extraction from Sulfate Solutions by Capric Acid in Chloroform
Abstract:
Liquid-liquid extraction is one of the most useful techniques for selective removal and recovery of metal ions from aqueous solutions, applied in purification processes in numerous chemical and metallurgical industries. In this work, The liquid-liquid extraction of cobalt (II) and copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. Our interest in this paper is to study the effect of concentration of capric acid on the extraction of Co(II) and Cu(II) to see the complexes could be formed in the organic phase using various concentration of capric acid. The extraction of cobalt (II) and copper (II) is extracted as the complex CoL2 (HL )2, CuL2 (HL)2.Keywords: capric acid, Cobalt(II), copper(II), liquid-liquid extraction
Procedia PDF Downloads 441