Search results for: Emre Tokmak
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 55

Search results for: Emre Tokmak

55 Structural and Functional Comparison of Untagged and Tagged EmrE Protein

Authors: S. Junaid S. Qazi, Denice C. Bay, Raymond Chew, Raymond J. Turner

Abstract:

EmrE, a member of the small multidrug resistance protein family in bacteria is considered to be the archetypical member of its family. It confers host resistance to a wide variety of quaternary cation compounds (QCCs) driven by proton motive force. Generally, purification yield is a challenge in all membrane proteins because of the difficulties in their expression, isolation and solubilization. EmrE is extremely hydrophobic which make the purification yield challenging. We have purified EmrE protein using two different approaches: organic solvent membrane extraction and hexahistidine (his6) tagged Ni-affinity chromatographic methods. We have characterized changes present between ligand affinity of untagged and his6-tagged EmrE proteins in similar membrane mimetic environments using biophysical experimental techniques. Purified proteins were solubilized in a buffer containing n-dodecyl-β-D-maltopyranoside (DDM) and the conformations in the proteins were explored in the presence of four QCCs, methyl viologen (MV), ethidium bromide (EB), cetylpyridinium chloride (CTP) and tetraphenyl phosphonium (TPP). SDS-Tricine PAGE and dynamic light scattering (DLS) analysis revealed that the addition of QCCs did not induce higher multimeric forms of either proteins at all QCC:EmrE molar ratios examined under the solubilization conditions applied. QCC binding curves obtained from the Trp fluorescence quenching spectra, gave the values of dissociation constant (Kd) and maximum specific one-site binding (Bmax). Lower Bmax values to QCCs for his6-tagged EmrE shows that the binding sites remained unoccupied. This lower saturation suggests that the his6-tagged versions provide a conformation that prevents saturated binding. Our data demonstrate that tagging an integral membrane protein can significantly influence the protein.

Keywords: small multidrug resistance (SMR) protein, EmrE, integral membrane protein folding, quaternary ammonium compounds (QAC), quaternary cation compounds (QCC), nickel affinity chromatography, hexahistidine (His6) tag

Procedia PDF Downloads 379
54 Seismo-Volcanic Hazards in Great Ararat Region, Eastern Turkey

Authors: Mehmet Salih Bayraktutan, Emre Tokmak

Abstract:

Great Ararat Volcano is the highest peak in South Caucasus Volcanic Plateau. Uplifted by Quaternary basaltic pyroclastic and lava flows. Numerous volcanic cones formed along with the tensional fractures under N-S compressional geodynamic framework. Basaltic flows have fresh surface morphology give ages of 650-680 K years. Hyperstene andesites constitute a major mass of Greater Ararat gives ages of 450-490 K years. During the early eruption period, predominately pyroclastics, cinder, lapilly-ash volcanic bombs were extruded. Third-period eruptions dominantly basaltic lava flows. Andesitic domes aligned along with the NW-SE striking fractures. Hyalo basalt and hornblende basaltic lavas are the latest lava eruptions. Hyalo-basaltic eruptions occurred via parasitic cones distributed far from the center. Parasitic cones are most common at the foot of Mount covered by recent NW flowing basaltic lava. Some of the cones are distributed on a circular pattern. One of the most hazardous disasters recorded in Eastern Turkey was July 1840 Cehennem Canyon Flood. Volcanic activities seismically triggered resulted in melting of glacier cap, mixed with ash and pyroclastics, flowed down along the Valley. Mud rich Slush urged catastrophically northwards, crossed Ars River and damned Surmeli Basin, forming reservoir behind. Ararat volcanoes are located on NW-SE striking Agri Fault Zone. Right lateral extensional faults, along which a series of andesitic domes formed. Great Ararat, in general strato-type volcano. This huge structure, developed in two main parts with different topographic and morphological features. The large lower base covers a widespread area composed of predominantly pyroclastics, ignimbrites, aglomerates, thick pumice, perlite deposits. Approximately 1/3 of the Crest by height formed of this basement. And 2/3 of the upper part with a conic- shape composed of basaltic lava flows. The active tectonic structure consists of three different patterns. The first network is radially distributed fractures formed during the last stage of lava eruptions. The second group of active faults striking in NW direction, and continue in N30W strike, formes Igdir Fault Zone. The third set of faults, dipping in the northwest with 75-80 degrees, strikes NE- SW across the whole Mount, slicing Great Ararat into four segments. In the upper stage of Cehennem Canyon, this set cutting volcanic layers caused numerous Waterfalls, Rock Avalanches, Mud Flows along the canyon, threatens the Village of Yanidogan, at the apex of flood deposits. Great Ararat Region has high seismo-tectonic risk and by occurrence frequency and magnitude, which caused in history caused heavy disasters, at villages surrounding the Ararat Basement.

Keywords: Eastern Turkey, geohazard, great ararat volcano, seismo-tectonic features

Procedia PDF Downloads 182
53 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale

Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin

Abstract:

A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.

Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale

Procedia PDF Downloads 133
52 Healing Architecture and Evidence Based Design: An Interior Design Example in Medicana KızıLtoprak Hospital

Authors: Yunus Emre Kara, Atilla Kuzu, Levent Cirpici

Abstract:

Recently, in the interior design of hospitals, the effect of the physical environment on the healing process has been frequently emphasized, and the importance of psychological and behavioral factors has increased day by day. When designing new hospital interiors, it became important to create spaces that not only meet medical requirements but also support the healing process of patients with interior design. In this study, the patient rooms, corridor, atrium area, waiting area, and entrance counter in a hospital were handled with patient-centered design, evidence-based design, and remedial architectural approaches, and it was seen that the healing and reassuring elements in hospitals were extremely important.

Keywords: evidence based design, healing architecture, hospital, organic design, parametric design

Procedia PDF Downloads 190
51 The Influence of Residual Stress on Hardness and Microstructure in Railway Rails

Authors: Muhammet Emre Turan, Sait Özçelik, Yavuz Sun

Abstract:

In railway rails, residual stress was measured and the values of residual stress were associated with hardness and micro structure in this study. At first, three rails as one meter long were taken and residual stresses were measured by cutting method according to the EN 13674-1 standardization. In this study, strain gauge that is an electrical apparatus was used. During the cutting, change in resistance in rail gave us residual stress value via computer program. After residual stress measurement, Brinell hardness distribution were performed for head parts of rails. Thus, the relationship between residual stress and hardness were established. In addition to that, micro structure analysis was carried out by optical microscope. The results show that, the micro structure and hardness value was changed with residual stress.

Keywords: residual stress, hardness, micro structure, rail, strain gauge

Procedia PDF Downloads 603
50 Liquid Biopsy Based Microbial Biomarker in Coronary Artery Disease Diagnosis

Authors: Eyup Ozkan, Ozkan U. Nalbantoglu, Aycan Gundogdu, Mehmet Hora, A. Emre Onuk

Abstract:

The human microbiome has been associated with cardiological conditions and this relationship is becoming to be defined beyond the gastrointestinal track. In this study, we investigate the alteration in circulatory microbiota in the context of Coronary Artery Disease (CAD). We received circulatory blood samples from suspected CAD patients and maintain 16S ribosomal RNA sequencing to identify each patient’s microbiome. It was found that Corynebacterium and Methanobacteria genera show statistically significant differences between healthy and CAD patients. The overall biodiversities between the groups were observed to be different revealed by machine learning classification models. We also achieve and demonstrate the performance of a diagnostic method using circulatory blood microbiome-based estimation.

Keywords: coronary artery disease, blood microbiome, machine learning, angiography, next-generation sequencing

Procedia PDF Downloads 158
49 Effect of Hot Rolling Conditions on Magnetic Properties of Fe-3%Si Non-Grain Oriented Electrical Steels

Authors: Emre Alan, Yusuf Yamanturk, Gokay Bas

Abstract:

Non-grain oriented electrical steels are high silicon containing steels in which the direction of magnetism is intended the same in any direction of the material. Major applications of non-grain-oriented electrical steels are electrical motors, generators, etc. where low magnetic losses are required. Selection of proper hot rolling process parameters is an important factor in order to produce a material that has desired magnetic properties. In this study, the effect of finishing and coiling temperatures on magnetic properties of Fe-3%Si non-grain oriented electrical steels will be investigated. Additionally, the effect of slab reheating temperature at same entry finishing temperature will be investigated by means of reduction in roughing mill pass number from 1-5 to 1-3.

Keywords: electrical steels, hot rolling, magnetic properties, roughing mill

Procedia PDF Downloads 326
48 An Android Application for ECG Monitoring and Evaluation Using Pan-Tompkins Algorithm

Authors: Cebrail Çiflikli, Emre Öner Tartan

Abstract:

Parallel to the fast worldwide increase of elderly population and spreading unhealthy life habits, there is a significant rise in the number of patients and health problems. The supervision of people who have health problems and oversight in detection of people who have potential risks, bring a considerable cost to health system and increase workload of physician. To provide an efficient solution to this problem, in the recent years mobile applications have shown their potential for wide usage in health monitoring. In this paper we present an Android mobile application that records and evaluates ECG signal using Pan-Tompkins algorithm for QRS detection. The application model includes an alarm mechanism that is proposed to be used for sending message including abnormality information and location information to health supervisor.

Keywords: Android mobile application, ECG monitoring, QRS detection, Pan-Tompkins Algorithm

Procedia PDF Downloads 235
47 Mechanical and Thermal Stresses in A Functionally Graded Cylinders

Authors: Ali Kurşun, Emre Kara, Erhan Çetin, Şafak Aksoy, Ahmet Kesimli

Abstract:

In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson’s ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.

Keywords: functionally graded materials, thermoelasticity, thermomechanical load, hollow cylinder.

Procedia PDF Downloads 459
46 Buckling Analysis of Composite Shells under Compression and Torsional Loads: Numerical and Analytical Study

Authors: Güneş Aydın, Razi Kalantari Osgouei, Murat Emre Öztürk, Ahmad Partovi Meran, Ekrem Tüfekçi

Abstract:

Advanced lightweight laminated composite shells are increasingly being used in all types of modern structures, for enhancing their structural efficiency and performance. Such thin-walled structures are susceptible to buckling when subjected to various loading. This paper focuses on the buckling of cylindrical shells under axial compression and torsional loads. Effects of fiber orientation on the maximum buckling load of carbon fiber reinforced polymer (CFRP) shells are optimized. Optimum fiber angles have been calculated analytically by using MATLAB program. Numerical models have been carried out by using Finite Element Method program ABAQUS. Results from analytical and numerical analyses are also compared.

Keywords: buckling, composite, cylindrical shell, finite element, compression, torsion, MATLAB, optimization

Procedia PDF Downloads 589
45 Investigations on Microstructural and Raman Scattering Properties of B2O3 Doped Ba(Ti1-xZrx)O3 Nanoceramics

Authors: Keri̇m Emre Öksüz, Şaduman Şen, Uğur Şen

Abstract:

0.5 wt. % B2O3–doped Ba (Ti1-xZrx) O3, (x=0-0.4) lead-free nanoceramics were synthesized using the solid-state reaction method by adopting the ball milling technique. The influence of the substitution content on crystallographic structure, phase transition, microstructure and sintering behaviour of BT and BZT ceramics were investigated. XRD analysis at room temperature revealed a structural transformation from tetragonal to rhombohedral with enhancement of ZrO2 content in the barium titanate matrix. The scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to investigate microstructure and surface morphology of the sintered samples. The evolution of the Raman spectra was studied for various compositions, and the spectroscopic signature of the corresponding phase was determined. Scanning Electron Microscope (SEM) observations revealed enhanced microstructural uniformity and retarded grain growth with increasing Zr content.

Keywords: BaTiO3, barium-titanate-zirconate, nanoceramics, raman spectroscopy

Procedia PDF Downloads 343
44 Determination of Steel Cleanliness of Non-Grain Oriented Electrical Steels

Authors: Emre Alan, Zafer Cetin

Abstract:

Electrical steels are widely used as a magnetic core materials in many electrical applications such as transformers, electric motors, and generators. Core loss property of these magnetic materials refers to dissipation of electrical energy during magnetization in service conditions. Therefore, in order to minimize the magnetic core loss, certain precautions are taken from steel producers; “Steel Cleanliness” is one of the major points among them. For obtaining lower core loss values, increasing proper elements in chemical composition such as silicon is a must. Therefore, impurities of these alloys are a key value for producing a cleaner steel. In this study, effects of impurity levels of different FeSi alloying materials to the steel cleanliness will be investigated. One of the important element content in FeSi alloy materials is Calcium. A SEM investigation will be done in order to present if Ca content in FeSi alloy is enough for proper inclusion modification or an additional Ca-treatment is required.

Keywords: electrical steels, FeSi alloy, impurities, steel cleanliness

Procedia PDF Downloads 334
43 Perturbative Analysis on a Lunar Free Return Trajectory

Authors: Emre Ünal, Hasan Başaran

Abstract:

In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission’s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6th order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial.

Keywords: Apollo-13 trajectory, atmospheric drag, lunar trajectories, oblateness effect, perturbative effects, solar radiation pressure, third body perturbations

Procedia PDF Downloads 148
42 Investigation of Heat Transfer of Nanofluids in Circular Microchannels

Authors: Bayram Sahin, Hourieh Bayramian, Emre Mandev, Murat Ceylan

Abstract:

In industrial applications, the demand for the enhancement of heat transfer is a common engineering problem. The use of additives to heat transfer fluid is a technique applied to enhance the heat transfer performance of base fluids. In this study, the thermal performance of nanofluids consisting of SiO2 particles and deionized water in circular microchannels was investigated experimentally. SiO2 nanoparticles with diameter of 15 nm were added to water to prepare nanofluids with 0.2% and 0.4% volume fractions. Heat transfer characteristics were calculated by using temperature, flow and pressure measurements. The thermal conductivity and viscosity values required for the calculations are measured separately. It is observed that the Nusselt number increases at the all volume fraction of particles, by increasing the Reynolds number and the volumetric ratios of the particles. The highest heat transfer enhancement is obtained at Re = 2160 and 0.4 % vol. by 14% under the condition of a constant pumping power.

Keywords: nanofluid, microchannel, heat transfer, SiO2-water nanofluid

Procedia PDF Downloads 389
41 Analysis of the Benefits of Motion Simulators in 5th Generation Fighter Pilots' Training

Authors: Ali Mithad Emre

Abstract:

In military aviation, the use of flight simulators has proliferated recently in order to train fifth generation fighter pilots. With these simulators, pilots can carry out real-time flights resulting in seeing their faults and can perform emergency drills prior to real flights. Since we cannot risk losing the aircraft and the pilot himself/herself in the flight training process, flight simulators are of great importance to adapt the fighter pilots competently to real flights aboard the fifth generation aircraft. The real flights are impossible to simulate thoroughly on the ground. To some extent, the fixed-based simulators may assist the pilot to steer aircraft technically and visually but flight simulators can’t trick the pilot’s vestibular, sensory, and perceptual systems without motion platforms. This paper discusses the benefits of motion simulators for fifth generation fighter pilots’ training in preference to the fixed-based counterparts by analyzing their pros and cons.

Keywords: military, pilot, sickness, simulator

Procedia PDF Downloads 468
40 The Effect of Ethylene Propylene Diene Monomer on the Rheological Properties of Bitumen

Authors: Emre Eren, Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, Çigdem Canbay Turkyilmaz, Emrah Turkyilmaz

Abstract:

This study aimed to investigate the mechanical and high-temperature rheological properties of Ethylene Propylene Diene Monomer (EPDM) modified bitumen. To achieve this, the neat binder was modified with EPDM additive in different percentages: 2% to 5%. The neat and modified binder were subjected to conventional and rheological tests, including penetration and softening point tests, as well as evaluations of their rutting performance and high-temperature viscosity characteristics. Additionally, the mixing and compaction temperatures for hot mix asphalt production were identified using a rotational viscometer. The findings indicated that EPDM is a highly effective bitumen modifier, with the high temperature performance class of the neat binder improving by 3 grades according to the Superpave asphalt grading system.

Keywords: polymer, bitumen, rheology, EPDM, dynamic mechanical analysis

Procedia PDF Downloads 125
39 Production of (V-B) Reinforced Fe Matrix Composites

Authors: Kerim Emre Öksüz, Mehmet Çevik, A. Enbiya Bozdağ, Ali Özer, Mehmet Şimşir

Abstract:

Metal matrix composites (MMCs) have gained a considerable interest in the last three decades. Conventional powder metallurgy production route often involves the addition of reinforcing phases into the metal matrix directly, which leads to poor wetting behavior between ceramic phase and metal matrix and the segregation of reinforcements. The commonly used elements for ceramic phase formation in iron based MMCs are Ti, Nb, Mo, W, V and C, B. The aim of the present paper is to investigate the effect of sintering temperature and V-B addition on densification, phase development, microstructure, and hardness of Fe–V-B composites (Fe-(5-10) wt. %B – 25 wt. %V alloys) prepared by powder metallurgy process. Metal powder mixes were pressed uniaxial and sintered at different temperatures (ranging from 1300 to 1400ºC) for 1h. The microstructure of the (V, B) Fe composites was studied with the help of high magnification optical microscope and XRD. Experimental results show that (V, B) Fe composites can be produced by conventional powder metallurgy route.

Keywords: hardness, metal matrix composite (MMC), microstructure, powder metallurgy

Procedia PDF Downloads 800
38 Comparison of Various Control Methods for an Industrial Multiproduct Fractionator

Authors: Merve Aygün Esastürk, Deren Ataç Yılmaz, Görkem Oğur, Emre Özgen Kuzu, Sadık Ödemiş

Abstract:

Hydrocracker plants are one of the most complicated and most profitable units in the refinery process. It takes long chain paraffinic hydrocarbons as feed and turns them into smaller and more valuable products, mainly kerosene and diesel under high pressure with the excess amount of hydrogen. Controlling the product qualities well directly contributes to the unit profit. Control of a plant is mainly based on PID and MPC controllers. Controlling the reaction section is important in terms of reaction severity. However, controlling the fractionation section is more crucial since the end products are separated in fractionation section. In this paper, the importance of well-configured base layer control mechanism, composed of PID controllers, is highlighted. For this purpose, two different base layer control scheme is applied in a hydrocracker fractionator column performances of schemes, which is a direct contribution to better product quality, are compared.

Keywords: controller, distillation, configuration selection, hydrocracker, model predictive controller, proportional-integral-derivative controller

Procedia PDF Downloads 439
37 Effects of Corynebacterium cutis Lysate Administration on Hematology and Biochemistry Parameters with PPR Vaccine

Authors: Burak Dik, Oguzhan Avci, Irmak Dik, Emre Bahcivan

Abstract:

The objective of this study was to evaluate the effects of alone and combined administration of Peste des petits ruminants (PPR) vaccine with Corynebacterium cutis lysate (CCL) on the hematology and biochemistry parameters levels in sheep. CCL and PPR vaccine changes cell and organ activity. In this study, 12 ewes were divided into equal groups; first group; PPR vaccine was applied only one time 1 mL subcutan of armpit on 6 sheep, and the second group; CCL (1 mL) and PPR vaccine (1 mL) combination were applied only one time subcutan of armpit on 6 sheep. Blood samples were collected before treatment (0. hour, control) and after treatment (1, 3, 7, 14, 21 and 28 days) from the sheep. Plasma and serum samples were evaluated for hematology and biochemistry parameters and there were statistically significant in sheep. In conclusion, combined usage of PPR vaccine with CCL may not influence cells and organs. Repeated CCL treatment with vaccine can create hepatotoxic, renal and bone marrow effects in sheep.

Keywords: Corynebacterium cutis lysate, hematology, peste des petits ruminants, vaccine

Procedia PDF Downloads 254
36 Improvement of Buckling Behavior of Cold Formed Steel Uprights with Open Cross Section Used in Storage Rack Systems

Authors: Yasar Pala, Safa Senaysoy, Emre Calis

Abstract:

In this paper, structural behavior and improvement of buckling behavior of cold formed steel uprights with open cross-section used storage rack system are studied. As a first step, in the case of a stiffener having an inclined part on the flange, experimental and nonlinear finite element analysis are carried out for three different upright lengths. In the uprights with long length, global buckling is observed while distortional buckling and local buckling are observed in the uprights with medium length and those with short length, respectively. After this point, the study is divided into two groups. One of these groups is the case where the stiffener on the flange is folded at 90°. For this case, four different distances of the stiffener from the web are taken into account. In the other group, the case where different depth of stiffener on the web is considered. Combining experimental and finite element results, the cross-section giving the ultimate critical buckling load is selected.

Keywords: steel, upright, buckling, modes, nonlinear finite element analysis, optimization

Procedia PDF Downloads 260
35 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method

Authors: Omer Oral, Y. Emre Yilmaz

Abstract:

Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.

Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization

Procedia PDF Downloads 138
34 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim

Abstract:

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.

Keywords: magnetic nanofluids, thermal conductivity, viscosity, nife2o4-water, cofe2o4-water

Procedia PDF Downloads 262
33 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid

Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi

Abstract:

Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.

Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer

Procedia PDF Downloads 141
32 Real-Time Mine Safety System with the Internet of Things

Authors: Şakir Bingöl, Bayram İslamoğlu, Ebubekir Furkan Tepeli, Fatih Mehmet Karakule, Fatih Küçük, Merve Sena Arpacık, Mustafa Taha Kabar, Muhammet Metin Molak, Osman Emre Turan, Ömer Faruk Yesir, Sıla İnanır

Abstract:

This study introduces an IoT-based real-time safety system for mining, addressing global safety challenges. The wearable device, seamlessly integrated into miners' jackets, employs LoRa technology for communication and offers real-time monitoring of vital health and environmental data. Unique features include an LCD panel for immediate information display and sound-based location tracking for emergency response. The methodology involves sensor integration, data transmission, and ethical testing. Validation confirms the system's effectiveness in diverse mining scenarios. The study calls for ongoing research to adapt the system to different mining contexts, emphasizing its potential to significantly enhance safety standards in the industry.

Keywords: mining safety, internet of things, wearable technology, LoRa, RFID tracking, real-time safety system, safety alerts, safety measures

Procedia PDF Downloads 63
31 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand

Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova

Abstract:

The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.

Keywords: ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control

Procedia PDF Downloads 297
30 Reliability-based Condition Assessment of Offshore Wind Turbines using SHM data

Authors: Caglayan Hizal, Hasan Emre Demirci, Engin Aktas, Alper Sezer

Abstract:

Offshore wind turbines consist of a long slender tower with a heavy fixed mass on the top of the tower (nacelle), together with a heavy rotating mass (blades and hub). They are always subjected to environmental loads including wind and wave loads in their service life. This study presents a three-stage methodology for reliability-based condition assessment of offshore wind-turbines against the seismic, wave and wind induced effects considering the soil-structure interaction. In this context, failure criterions are considered as serviceability limits of a monopile supporting an Offshore Wind Turbine: (a) allowable horizontal displacement at pile head should not exceed 0.2 m, (b) rotations at pile head should not exceed 0.5°. A Bayesian system identification framework is adapted to the classical reliability analysis procedure. Using this framework, a reliability assessment can be directly implemented to the updated finite element model without performing time-consuming methods. For numerical verification, simulation data of the finite model of a real offshore wind-turbine structure is investigated using the three-stage methodology.

Keywords: Offshore wind turbines, SHM, reliability assessment, soil-structure interaction

Procedia PDF Downloads 533
29 Development of 3D Laser Scanner for Robot Navigation

Authors: Ali Emre Öztürk, Ergun Ercelebi

Abstract:

Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost.

Keywords: 3D laser scanner, embedded system, 1D laser range finder, 3D model

Procedia PDF Downloads 277
28 Effects of Local Decongestive Agents at Trachea and Lungs

Authors: Sertac Arslan, Guven Guney, Ayse Ipek Akyuz Unsal, Emre Demir, Buket Demirci

Abstract:

Purpose: There is little histologic data concerning effects of nasal decongestants on the respiratory tract. We aimed to put forth the effects of nasal decongestants on the trachea and lower airways of rats. Materials and Methods: Four to six months old 60 male rats were randomly categorized into 6 groups. Experimental drugs were applied to the same nostril of rats twice daily for 8 weeks (Xylometazolin, Benzalkolyum, EDTA, Sorbitol and combined drug solutions). We applied normal saline solution (NaCl %0.9) for the control group. In the end, trachea and both lungs were dissected and kept in formaldehyde for histopathologic evaluation. Results: Inflammation and bronchial edema were most common findings. While all rats in sorbitol group had increased numbers of type 2 pneumocytes; 80% of BAC group had increased numbers of type 2 pneumocytes. Spillover of tracheal epithelium was seen mostly in sorbitol, EDTA and combined drug groups (60%, 87.5%, 50% respectively). Bronchial smooth muscle hypertrophy was seen mostly in BAC and EDTA group (70%, 62.5% respectively). The number of goblet cells showed the significant difference between control-combined drug (p=0.025) and control-BAC (p=0.001) groups. Conclusions: Nasal decongestants can cause permanent changes at lower respiratory tract in addition to changes in upper respiratory tract.

Keywords: decongestive agents, xylometazoline, lung, trachea

Procedia PDF Downloads 177
27 The Innovative Leadership in Air Forces

Authors: Ahmet Emre Yonder

Abstract:

The concept of present time is inevitably and rapidly changing. That provokes unbalanced, uncertain and elusive platform in the world order. Keeping up with this fluctuation requires a willingness to step beyond the comfort zones and to take a step through unknown. That is the perspectives of organizations in which the shareholders persistently create and then they share their creation. Moreover they are adapted to the unpredictable shifts and they establish vision. These are the meaning of innovation which is a process that converts new ideas to invaluable outcomes and that process can be ensured via innovative leaders. Leaders’ creativity is needed when challenging against countless complicated and unsteady situations in the battlefield. However, little attention has been paid to the importance of being innovative leader apart from innovating new technologies so far. Additionally, in most situation militarist organizations are hesitant to welcome different attitudes and that may discourage new ideas. Furthermore military leaders may complain about the lack of sources in today's world where the sources are very rare. In that point military leaders should change the strategies they apply from conventional views to the innovation of different point of views. But the constant occupation in Air Forces can be counted as a huge obstacle for innovative thinking. An organizational structure is needed to be developed for solutions of the problems which the creative leaders will encounter.This article focuses on how to raise innovative military leaders with innovative thinking skills and the need for a change from conventional to the innovative leadership in Air Forces. It also gives important suggestions to encourage raising innovative military leaders.

Keywords: air force, creativity, leadership, military, innovation

Procedia PDF Downloads 313
26 Locative Media Apps for Re-Building Urban Experience: Discovering Cities Through Technology

Authors: Kerem Rızvanoglu, Serhat Güney, Betül Aydoğan, Emre Kızılkaya, Ayşegül Boyalı, Onurcan Güden

Abstract:

This study investigates the urban experience of international students coming to Istanbul with exchange programs and reveals how locative media applications accompany their urban experiences. The sample of the research consists of international students who lived, perceived, and conceived the city on a daily basis during the academic year of 2022. Focusing on this particular sample would demonstrate the opportunities and authentic experiences offered by the city as well as the prevalent urban problems for the foreigners. In this regard, international students' urban experience in Istanbul, the blockages they encounter as resident tourists, the hotspots that the city offers, and the role of locative media in enriching the urban experience are the main axes to be evaluated. In the first step of the multi-staged research, we conduct an online qualitative survey with a sample; then, we evaluate the data obtained from the survey using cluster analysis to identify the urban experience, consumption habits, and tastes. In the final stage, digital ethnographic fieldwork will be carried out with representative personas identified by the cluster analysis. With this field research on the urban experience accompanied by locative media applications, suggestions will be developed by evaluating the opportunities these applications offer to enrich the urban practice of foreigners.

Keywords: digital ethnography, international students, locative media applications, urban experience

Procedia PDF Downloads 140